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Dispersion Relation for the Axial-Vector Vertex and a Sum Rule for the
Axial-Vector Coupling-Constant Renormalization*
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A dispersion relation for the nucleon axial-vector vertex, in which the subtraction term at in6nite nucleon
mass is given by the unrenormalized vertex, is derived from the axial current-6eld commutation relations.
Using the hypothesis of partially conserved axial-vector current, a sum rule for the axial-vector coupling-
constant renormalization gz is obtained in terms of the x-N form factor. In the elastic-unitarity approxima-
tion, the sum rule involves the integral over the difference of the XII and SII phase shifts. Certain experi-
mental phase shifts up to 1-GeV pion kinetic energy give g~= 1.1.However, because of the lack of consistent
experimental data beyond 500 MeV, and also because of the lack of reliable theory to estimate the im-

portant contribution from inelastic channels, all we can conclude at the moment is that the sum rule is not
inconsistent with the experimental data.

I. INTRODUCTION

HE sum rule for the axial-vector coupling con-
stant in p decay has been derived by Adler' and

Weisberger' using Gell-Mann's current algebra' and
the hvpothesis of partially conser ved axial-vector
current' (PCAC). The success of the sum rule in giving
an excellent numerical value has been a big stimulus to
the opening of a new chapter in physics called "current
algebra dynamics. " Although the new technique is
powerful and promising, one has yet to see how it fits
with, or goes beyond the conventional formulation of
field theory. In an attempt to understand the new tech-
nique in relation to field theory, we pointed out in our
previous paper that the current-current commutator in
the Adler-Weisberger sum rule can be interpreted as
the bare Born term in a certain amplitude and that it
serves as the subtraction constant at infinity in the dis-

persion relation for the amplitude. We also pointed out
that in a similar way we could use the dispersion rela-
tion for the axial-vector vertex with the subtraction
constant at infinity given by the bare vertex to derive
a sum rule for the axial-vector coupling-constant re-
normalization. In this paper, we will give a somewhat
detailed derivation of the sum rule, which can be ex-
pressed in a simple form in terms of the pion form factor
using PCAC (Sec. II).

In Sec. III, we evaluate the pion form factor using the
phase representation. In the elastic region, the phase of
the pion form factor is given by the diRerence of the P»
and S11 phase shifts. The trouble lies in the inelastic
region where the absorption in the F11 channel is enor-

mous, so that the use of experimental phase shifts needs
justification. A simple analysis of the inelastic channel
contribution is given, and it is shown that the phase of
the form factor is sensitive to the phase of the inelastic
contribution.

*This work was supported in part by™theU. S. Atomic Energy
Commission.

' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
137, B1022 (1965); 139, B1638 (1965); 140, B736 (1965).

P W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965); Phys.
Rev. 143, 1302 (1966).' For an extensive listing of the relevant literature see Refs. 1
and 2.

Inasmuch as this latter phase is unknown, we were
forced to neglect it, and to evaluate our sum rule purely
on the basis of the rather poorly known elastic phase
shifts.

If we use the elastic phase shifts from the Saclay
analysis (see Sec. III) and integrate up to a pion labo-
ratory kinetic energy of 1 GeV we obtain g&=1.11, a
result not inconsistent with experiment.

II. DERIVATION OF THE SUM RULE

We begin with our definition of the vector and axial-
vector P-decay currents: V„(x) and A„(x) (a= 1,2,3).
We assume, 4 in place of current commutators,

5(* )LV. (*),lb(o) 37 =Godet (0)7.( ./2)b'(~),

6(* )P. (a),lb(o) 17o=Gplt'(O)v. vs(r. /2)~'(*)
(1)

where Go is the unrenormalized universal coupling
constant. The nucleon operator pfr(st) (we neglect the
neutron-proton mass difference) can be either a re-
normalized or an unrenormalized operator, as long as
they diRer only by the common wave function re-
normalization Zs'ts. (This situation no longer holds in
case u refers to the unitary spin, as Z2 has diRerent
values for different baryon masses. ) For definiteness
we will use the Nnrenormalised operator in the following.
A model which gives Eq. (1) is, for instance,

V, +~. =Gpk(*)v. (1+vs)(r-/2)0(*)
+ (V"+A"), (2)

where V' +A" is assumed to commute with tP(x) at
equal times. The observed Fermi and Gamow-Teller
coupling constants of p decay, Gv and Gz, are given by
the one-nucleon matrix elements of V„and A„.

(PI V. (0) IP)=G N(P)v. (./2)N(P),

(PI~. (o) IP)=G~N(P)v. vs(r. /2)N(P).
(3)

The vector-coupling constant is not renormalized because

p Our conventions are: a b=apb„=apbp ab, {v&,v")+——2g»", —
gPP= —g"=1, v„"=vpvovpp vp $+pvfvpvp Plane-wave normal-
izations are such that the density of states is (2pr) p (m/pp)dpp for
fermions and (2pr) P(2qp) V'q for bosons.
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of the strict current conservation, and we have

Gg=Gp. (4)

Now we consider the axial-vector vertex part, as de-
scribed in Fig. 1.The nucleon of momentum p is on the
mass shell, p'=m2, and the momentum transfer q will

be held at q'=0 throughout. Our variable is then the
off-shell nucleon mass

We can continue G+(W) defined for W) 0 into the whole
complex 8" plane by

G(W) = (I/2m)l (W+m)F+(W')
+ (m—W)F (W')] (13)

which now has singularities along the positive and nega-
tive real axis, where

G(w+ie) —=G~(w), W) 0
—=G *(IWI), W&0.

W= L(P+q)']" (14)

q)
To project out G(W), we multiply Eq. (11) by q„and

(Pl(A„(0) II(x))+Io)D,e '~~~&dx, (6)
&(w)=I q (p+q)+w]/2w=A+(p+q), w)0

=A (p+q), W&0,
(16)

where D,= (iy. 5+m). In the limit W ~ m, we have

This is analogous to the vector vertex considered by
Bincer, ' and by Drell and Pagels. 6 We deine the axial- From Eqs. (3), (7), and (13), we have
vector vertex r„~(p, p+q) by G (m) =G+(m) =F+ (m2) = G„.
u(p)r„. (p, p+

u(p)r, (P,P)u(P)=(PIA. (o)IP). (7)
and obtain

To express I'„ in terms of invariant amplitudes, we can
use either of the two following projection operators,

r (W) = q&u(p)—r—„(p, p+q)A(W)
= (W+m)G(W)u(p)yg(T, /2)h(W), .

(17)

or
F~(p)=(wq p+m)/2m,

A~(p)= (~v P+—& P')/2& P'.

(8) from which we have a condition

r (—m)=o. (18)

On the other hand, performing D, in Eq. (10) and also
converting q„ into 8„, we reduce I' (W) to

Correspondingly, we write

(P)r. (P P+q)= (P)v.v (./2)
x LF,(w'p', (p+q)

+F (W')P (p+q)]+
u(P)r. (P, P+q)=u(p)v. v~( ./2)

XLGi(w)A+(p+ q)

+G (W)A (p+q)]+, (11)

+S(xo)(p I LA o (*),f(O)] IO))A(W)+r. (W),
(19)

r'(W) = —Z '" e"*{q&8(x,)(p I LA (x) p(0)] I 0)
)

where the dotted parts contain q„y5 and y50-„„g" terms,
which do not contribute in the following derivation.
Note that F~(w') are the boundary values of functions
analytic in the complex 8'2 plane with a branch cut
along the positive real axis, while G~ do not have this
property because of W in A~(p+q). They are related by

Gg(w) = (1/2m)L(m&w)F+(W'+is)
+ (m+W)F (W'+i&)]. (12)

The following derivation is somewhat neater if we work
in terms of G+ rather than F~ which we used. previously. '

q~q =0
A~

FzG. 1. Axial-vector vertex.

ra(W) Z —1/2 eig x

X(PI (a A„.(x),f(0))+IO)A(W), (2O)

where f(x) =ip(x)D, . The first commutator gives, from
(I) and (Ply(O) IO)=Z, '2u(P)

I'0 (W) =Go(w+m)u(p)y~(r, /2)A(w) . (21)

The second commutator gives a constant independent
of 8', which we must cancel by the subtraction con-
stant for I"(W) at W= —m to satisfy (18). Thus, de-
noting by A (f") the absorptive part of r',

W+m
r (w) =r,.(w)+

p+ q(Neutron)

w = (p+q)2 2
p (Proton)

p = In
A (r-(w') )

dW'. (22)
„(W'+m) (W' W)—' A. M. Bincer, Phys. Rev. 118, 855 (1960}.' S. D. Drell and H. R. Pagels, Phys. . Rev. 140, B39'? (1965).

'H. Suura and L. M. Simmons, Jr., Phys. Rev. Letters 16,
p. 598 (1966}. The absorptive part of I' is related by PCAC to that
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of the-x-E vertex, deined by

&(P', )f's (P P+q)

=iZs "
&P~ (j (0)g(x))+j0)D,e 'i~~&'dx, (23)

so that'

g~ ——E'(O,m)/E (0, —m) . (31)

If we assume that K(O,W) has no zero, and satisfies a
phase representation

W " ip(W')
K(O,W) =K(0,0) exp — dW', (32)

„W'(W' —W)where

(24) then
2m " ip(W')+ te(—W')

dW' . (33)
t/t/"' —m'

gg= exp

IIL EVALUATION OF THE SUM RULE

( +u')4- =j
Corresponding to (11), we write

e(p)r, (p, p+q) =iu(p)7„,[K (q,W)~(p+q)
+E (q', W)A (p+q)j.

Again we can define a real analytic function K(q', W),
in the whole complex TV plane, such that

K(q', W+ie) =K~(q', W) W)0
25=K *(q' [Wi) W(0.

In terms of A(W) defined by (16), we can write, as in

(17),

In order to evaluate the sum rule (31), we first re-

place E(O,W) by K(IJ,',W) )for simplicity denoted as
E (W)j, so that we can use experimental 7r Escatte-ring
phase shifts. The phase representation for K(W) has
been worked out by Bincer' and Ida' in the elastic
approximation, but we will give a brief derivation con-
sidering the effect of the inelastic channels. From (23)
and (24)

r,.(W)
—=g(p)i', .(p, p+ q)~(W)
=K(q', W)ir2(P)ysr&(W) .

By PCAC'

c)&A '(x)= (G~mp'/K(0m))y '(x),

(26)

(27)

ImK (~W)i 2(rP)y, r A~(P+q)
= l (2~)' &- &P 1 j- (0) I ~'-)~(P+q —P-)

XZ2 'Is&ri;.
~ f(0) ~

0)~g(P+ q) . (34)

Taking 7r-E intermediate states
~

p'qs') we find

we can relate f' of (20) to I'p of (23) and (26). Thus,

A(I' (W))= ( Gg m/ K( ,0m))A( il' (—Os, W))
= (G~m/K(0, m)) IrnK(O, W)N(p)ver, A. (W).

(28)

Inserting (28), (17), and (21) into (22), we obtain

Gg 2m
G(W) =Go+

K(0,m) ~

IrnK (0,W')
dW'. (29)

„(W'+m) (W' —W)

Taking W=m, using (15), (4), and the conventional
notation g~ ——Gg/Gv, we have the sum rule

1 1 2m " IniK(O, W')
dW'. (30)

gg K(0,m) ~ „(W"—m')

Z '"&P'q ""'If(0) IO)

=iZ —'I'Z —'"(m)

&& &p'I (q..(0) 4(x))+l0)D; 'i~e& *d-*,

where Zs(s) is the pion renormalization constant.
Hence, from (23) and the usual substitution law we have

Z '"&P'q "
I f(0) IO» (p+q)

= s '"(~)K+'(W)i~(p)»r&+(P+q) (3 )

Zs 'I'(rr)&P~ j (0) ~P'qs" ) is the 7r Nscattering ampli--'
tude, which we expand into partial waves after Pauli
reduction

Z;i's(~)&plj..(O) IP'q,"-)

=g (2l+1)&Xi (T 'Pi++Ted "Pt ) iX')

XP~(cost)» ) . (36)If E(O,W) satisfies a dispersion relation with at most
one subtraction, the last term is simply Here ~X) and ~X') are spin functions, and

Pig= (1+1+o"L)/(21+1)
= (1—o"L)/(21+1)

—LK(0,m) —E(0,—m) j/E (O,m),

'This result has also been obtained by S. L. Adler (private
communication), who has proved its equivalence to the equation
derived by J. Bernstein, M. Gell-Mann, and L. Michel, Nuovo
Cimento 16, 560 (1960).' M. Ida, Phys. Rev. 136, B1767 (1965).

' From (13), (p ~B&A„(0)
~ p) =imG~rr(p)year, u(p) On the other.

hand, (p~p~(0) p)=II, '(po~ j (0) ~p), which by (22) and (25) is
equal to N{p Fq(p, p)n(p) =iX{0,ra)u(p)garou(p) Comparing.
these two expressions we obtain the coefBcient of (26). With our
definition of @ ~ as the unrenormalized operator, we have
K(0,m) =Z3'/~(~)g, but the normalization of E does not matter
in our sum rule.
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are projection operators into j=l&s. Introducing (35)
and (36) into (34), and reducing u(p')ysA~(p+(7) into
nonrelativistic form, we can easily perform the angular
integration over the direction of p', and the summation
over spin states X' and over the isospin. The isospin
sum projects the I= 2 amplitudes T~~'~' out of T~~
The angular integration projects out T~ 'I' for A+ and
To+'~' for A . We obtain

ImE~(W) = (mp/4s W)Tt "'(W)E+*(W)+~(w),
ImE (W)= (mp/4mw)T()+'~'(W)E *(W)+& (W)

(37)

where yE~ is the usual absorption parameter and BE~ is
the phase shift. We write

~(w) =y~(w)e' "(~) (39)

where y~= ~~~. Equation (37) imposes a rather strong
condition on ~(w), as the right-hand sides must be
real. Using (25), (34), and (37) we obtain

esiy(w) —E e/E
Lr)& esis&rr esia+g/$1 t)& e 2i(() Plr a—+)j-

e" ( )=E (~w~)/E ([W~)

'
(40)

t)ee
—2i(()eu-a —)j/Lqe esiseu esia —

$

We have employed the usual notation S», I'» for the
l=0, 1 states with J=2, T= —,'. In the elastic region,
q=I, and we have

&(w) =&~„(w), w &0
=—h„,(~ w~), w&0.

The sum rule (33) can be written as

gg= exp
&z„(W')—4„(w')de'

W'2 —m2

Xexp
2m " p(w')+(p( —W')

de' (42)

where 8'; is the inelastic threshold and

where ~(w) represents the contribution from the in-
elastic channels. "With our definition of Ti~ by (36), it
is normalized to

Ti~(w) = (4mw /mp) (r) ries's&+ —1)/2i, (38)

$+11 become rather small at intermediate energies. This
does not necessarily exclude the possibility that p is
small. This would be the case, for example, if
++=8~ ——,'x and n =8g —~m. This requires a strong
coherence between elastic and inelastic contributions.
In any case, a great amount of theoretical work,
beyond the scope of this paper, will be required to draw
a definite conclusion about the inelastic contribution in
Eq. (42). For simplicity, we shall neglect the correction
factor involving y and use

2m ~) (W) —he (W)dS"
W' —3P

The upper limit 8'~ is imposed by certain practical
considerations. Several large-scale m--S phase-shift
analyses' " have recently appeared. Although they
agree with one another on many points, they do not
agree in all details for the states of interest here. This is
partly due to the fact that for both states p becomes
small, making the cross section insensitive to 8. We may
summarize the situation as follows. "

(i) For pion laboratory kinetic energy T &250
MeV, bz„—bs„&0.

(ii) 4„—he„)0 from about 250 MeU up to at
least 1 GeV.

(iii) Both phase shifts become "large" (possibly
exceeding ss.) in this energy range.

(iv) All four of these analyses give values of 8&„—he„
which are in rough agreement up to about 500 MeV.
Beyond this point they do not agree.

If we use the results of the Livermore analysis" in
(42) with W~ given by T ~=500 MeV, the integral is
approximately zero and we obtain g&=1. (For the
Saclay data'4 we need T ~=550 MeV to get the same
results). Thus, all of the renormalization comes eifec-
tively from the region T &500 MeV and we cannot
hope for a reliable determination of g&. If we employ
the Saclay results" and integrate up to their limit,
T =1 GeV, Eq. (42) yields g&=1.11. At T =1 GeV
the integrand of (42) is positive and non-negligible so
it appears that a larger value of g~ would be obtained
if it were possible to extend the integration to higher
energy. In view of the theoretical and experimental un-
certainties involved, we can only say that our sum rule
is not in disagreement with the known facts.

(7 (W') = y(W') —hi „(W'), W') 0
= y (W') —he„(w'), W'&0. (43)

"The 6rst named author acknowledges a useful conversation
on this subject with Professor D. A. Geffen.

If the absorption in the E~~ and S~~ states were small
()7=1), the correction (7(W) would be small, as we see
from (38). As discussed below, however, both r)i «and

"L.D. Roper, R. M. Wright, and B.T. Feld, Phys. Rev. 138,
B190 (1965)."P. Auvil, A. Donnachie, A. T. Lea, and C, Lovelace, Phys.
Letters 12, 76 (1964).' B. H. Bransden, P. J. O'Donnell, arid R. H. Moorhouse, .
Phys. Rev. 139, B1566 (1965).

'5 P. Bareyre, C. Bricman, A. P. Stirling, and Q. Qillet, Ph~ ~.
Letters 18, 342 (1965).

"The current states of x-X phase shift analyses has recently
been summarized by L. D. Roper at the Willamsburg Conference
on Intermediate Energy Physics, 1966 (unpublished). We are
grateful to Dr. Roper for a copy of his address.


