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A dispersion relation for the nucleon axial-vector vertex, in which the subtraction term at infinite nucleon
mass is given by the unrenormalized vertex, is derived from the axial current-field commutation relations.
Using the hypothesis of partially conserved axial-vector current, a sum rule for the axial-vector coupling-
constant renormalization g4 is obtained in terms of the =~V form factor. In the elastic-unitarity approxima-
tion, the sum rule involves the integral over the difference of the Pj; and S1; phase shifts. Certain experi-
mental phase shifts up to 1-GeV pion kinetic energy give ga=1.1. However, because of the lack of consistent
experimental data beyond 500 MeV, and also because of the lack of reliable theory to estimate the im-
portant contribution from inelastic channels, all we can conclude at the moment is that the sum rule is not

inconsistent with the experimental data.

I. INTRODUCTION

HE sum rule for the axial-vector coupling con-
stant in 8 decay has been derived by Adler! and
Weisberger? using Gell-Mann’s current algebra® and
the hyvpothesis of partially conserved axial-vector
current? (PCAC). The success of the sum rule in giving
an excellent numerical value has been a big stimulus to
the opening of a new chapter in physics called “current
algebra dynamics.” Although the new technique is
powerful and promising, one has yet to see how it fits
with, or goes beyond the conventional formulation of
field theory. In an attempt to understand the new tech-
nique in relation to field theory, we pointed out in our
previous paper that the current-current commutator in
the Adler-Weisberger sum rule can be interpreted as
the bare Born term in a certain amplitude and that it
serves as the subtraction constant at infinity in the dis-
persion relation for the amplitude. We also pointed out
that in a similar way we could use the dispersion rela-
tion for the axial-vector vertex with the subtraction
constant at infinity given by the bare vertex to derive
a sum rule for the axial-vector coupling-constant re-
normalization. In this paper, we will give a somewhat
detailed derivation of the sum rule, which can be ex-
pressed in a simple form in terms of the pion form factor
using PCAC (Sec. II).

In Sec. ITI, we evaluate the pion form factor using the
phase representation. In the elastic region, the phase of
the pion form factor is given by the difference of the Py,
and S1; phase shifts. The trouble lies in the inelastic
region where the absorption in the Py channel is enor-
mous, so that the use of experimental phase shifts needs
justification. A simple analysis of the inelastic channel
contribution is given, and it is shown that the phase of
the form factor is sensitive to the phase of the inelastic
contribution.

* This work was supported inpart by the U. S. Atomic Energy
Commission.

1S, L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
137, B1022 (1965) ; 139, B1638 (1965); 140, B736 (1965).

2W. 1. Weisberger, Phys. Rev. Letters 14, 1047 (1965); Phys.
Rev. 143, 1302 (1966).

3 For an extensive listing of the relevant literature see Refs. 1
and 2.

148

Inasmuch as this latter phase is unknown, we were
forced to neglect it, and to evaluate our sum rule purely
on the basis of the rather poorly known elastic phase
shifts.

If we use the elastic phase shifts from the Saclay
analysis (see Sec. III) and integrate up to a pion labo-
ratory kinetic energy of 1 GeV we obtain g4=1.11, a
result not inconsistent with experiment.

II. DERIVATION OF THE SUM RULE

We begin with our definition of the vector and axial-
vector B-decay currents: V,2(x) and 4,%(x) (¢=1,2,3).
We assume,* in place of current commutators,

8x0) [V, (x),8(0) Jyo=Gob (0)vu(7a/2)8%(x) ,
8(x0) L4, (),¥ (0) Tvo=God (0)v,ivs(ra/2)8*() ,

where G, is the unrenormalized universal coupling
constant. The nucleon operator ¥(x) (we neglect the
neutron-proton mass difference) can be either a re-
normalized or an unrenormalized operator, as long as
they differ only by the common wave function re-
normalization Zy2. (This situation no longer holds in
case a refers to the unitary spin, as Z, has different
values for different baryon masses.) For definiteness
we will use the unrenormalized operator in the following.
A model which gives Eq. (1) is, for instance,

V‘.u‘*‘Ana:GO‘/—’ (x)'Yu(l'l"YB) (70/2)¢ (x)

+(eka), @
where V’e4A4’e is assumed to commute with ¢(x) at
equal times. The observed Fermi and Gamow-Teller

coupling constants of 8 decay, Gv and G4, are given by
the one-nucleon matrix elements of ¥,% and 4,°.

(| V.ue(0) l 2)=Gva(p)vu (re/Du(p),
(1 4,2(0)|p)=Gaut(B)vuvs(ra/2)u(p).

The vector-coupling constant isnot renormalized because

1)

©)

4 Qur conventions are: a-b=atb,=a%"—a-b, {y4y’}4=2g*",
0= —gii=1 g =voyuvo, ¥5=—ivoy1727s. Plane-wave normal-
izations are such that the density of states is (27)73(m/po)d®p for
fermions and (27)%(2¢o)~'d% for bosons.

1579



1580 H.

of the strict current conservation, and we have
GV = Go . (4)

Now we consider the axial-vector vertex part, as de-
scribed in Fig. 1. The nucleon of momentum p is on the
mass shell, p2=m?, and the momentum transfer ¢ will
be held at ¢?=0 throughout. Our variable is then the
off-shell nucleon mass

W=[(p+97]". ©)

This is analogous to the vector vertex considered by
Bincer,’ and by Drell and Pagels.® We define the axial-
vector vertex I',%(p, p+¢) by

26, p+4)
=iz [ (6] (42O F @) 0D 00z, )

where D,= (iv-9+m). In the limit W — m, we have
AT (,p)u(p)=(p| 4,°(0)| ). (™)

To express I',% in terms of invariant amplitudes, we can
use either of the two following projection operators,

Py(p)= (v p+m)/2m, )
Ap(p)= (F7-p+V $9)/2V 1. ©
Correspondingly, we write

a(p)Tue(p, p+9)=u(p)vuys(ra/2)
X[E+ (WA Py (p4q)

or

+F_(W)P_(p+ 1+, (10)
a(p)Tu(p, P+Q)=7Z(P)7n75(7a/2)
X[G+(W)AL(p+9)
+G-MA-_(p+g+---, (11

where the dotted parts contain ¢,vs and vs0,,¢” terms,
which do not contribute in the following derivation.
Note that F, (W?) are the boundary values of functions
analytic in the complex W2 plane with a branch cut
along the positive real axis, while G do not have this
property because of W in Ay (p+¢). They are related by

Ge(W)= (1/2m)[ (m=£W)F (W>+ie)
+ (mFW)P_(W+ie)]. (12)

The following derivation is somewhat neater if we work
in terms of G, rather than F; which we used previously.”

2

9, 9%z 0
AL
F1G. 1. Axial-vector vertex.
p + q(Neutron) p (Proton)
w2s (P+q)2 p2= m?
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We can continue G (W) defined for 7> 0 into the whole
complex W plane by

GW)= (1/2m)[(W+m)F, (W?)

+(m—W)F_(W?)], (13)

which now has singularities along the positive and nega-
tive real axis, where

GCW+ie=G (W), W>0
—cx(w)), w<o.
From Egs. (3), (7), and (13), we have
G(m)=G.(m)=Fy(m*)=Ga. (15)

To project out G(W), we multiply Eq. (11) by g, and
a projection operator

AW)=[v-(p+9+W]12W=A(p+q), W>0 (16)
=A_(p+q), W<O,
and obtain
re(W)=—q*a(p)Tu(p, p+)A(W) ()
= (W+m)GW)i(p)vs(ra/ 2)AW),
from which we have a condition
re(—m)=0. (18)

On the other hand, performing D, in Eq. (10) and also
converting ¢, into 9,, we reduce I'*(W) to

re(W)=—Z2;" / ¢i2={ g3 (x0) (p| (4,4 (%),$(0)]] 0)

+8(xo)(p| [Ao(),7(0) 1|0} AW)+ T (W),
(19)

Ta(W) =212 f ¢iva

X (P] (a“Alla(x)yf(O))+]0>A (W) ) (20)

where f(x)=v(x)D,. The first commutator gives, from

(1) and (p|¥(0)|0)=Zs"?a(p),
T (W)=Go(W+m)a(p)ys(ra/2DAW).  (21)

The second commutator gives a constant independent
of W, which we must cancel by the subtraction con-
stant for T'¢(W) at W= —m to satisfy (18). Thus, de-
noting by 4 (I'¢) the absorptive part of T’

W+m
I‘a (W) = I‘oa (W)+

T
© A@))
o WHm)(W'—W)

The absorptive part of T'e is related by PCAC to that

w'. (22)
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of the 7-V vertex, defined by
a@(pYs*(p, p+9)

="Z“’_”2/ 0] GO F @)+ | O Daeirro sz, (23)

where
(4D px2= 7. (24)

Corresponding to (11), we write

@(p)Ts(p, p+q) =14 (p)vsra[ K4 (% W)AL (p+q)
+EK_(@W)A_(p+9)].

Again we can define a real analytic function K (¢%W),
in the whole complex W plane, such that

K(¢t, Wi =K, (¢&W) W>0

_k_*e,\w|) w<o. &

In terms of A(W) defined by (16), we can write, as in

an,

La(N)=a)Te (G HOATT) e
=K (¢ W)ia(p)vsoA(W).
By PCAC?
a14,0(x)= (Gamu*/K (0,m) )=* () , 27
we can relate T'e of (20) to I's® of (23) and (26). Thus,

A(@e(W))= (Gam/K (0,m))A (—ils*(O,V))
= (Gam/K (0,m)) ImK (0,W)i(p)ys7aA (W).
(28)

Inserting (28), (17), and (21) into (22), we obtain
2m
K (0,m) —7r~
©  ImK(0,W")
o W +m)(W'—W)

GW)=Got+

w’. -(29)

Taking W=m, using (15), (4), and the conventional

notation g4=Ga/Gy, we have the sum rule
1 1 2m /w ImK (0,7
gA— K(O:m) T J—» (Wl2—m2)

w’'. (30)

If K(0,V) satisfies a dispersion relation with at most
one subtraction, the last term is simply

8 From (13), (p|8#44(0) | p) =imGasi(p)vsau(p). On the other
hand, (p|¢°(0) BP>=#_2(Pa|J'r“(0) | #), which by (22) and (25) is
equal to #(p)Ts(p,p)u(p) =:iK (0,m)i(p)ysen(p). Comparing
these two expressions we obtain the coefficient of (26). With our
definition of ¢.* as the unrenormalized operator, we have
K (0,m) =Z3'"2(n)g~, but the normalization of K does not matter
in our sum rule.
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so that?

If we assume that K (0,W) has no zero, and satisfies a
phase representation

W e (W)
K(0,W)=K (0,0 exp|:-— _—

T J_ o WW—-W)
then

gA=exp':-2-1n— /‘” MdW'] . (33)

T i Wr—m?

W’:I , (32)

III. EVALUATION OF THE SUM RULE

In order to evaluate the sum rule (31), we first re-
place K(0,W) by K (u?,W) [for simplicity denoted as
K (W)], so that we can use experimental m-V scattering
phase shifts. The phase representation for K (W) has
been worked out by Bincer® and Ida! in the elastic
approximation, but we will give a brief derivation con-
sidering the effect of the inelastic channels. From (23)
and (24)

ImK, (W)ii(p)ysres(p+q)
=3(2m)* Za (p17+°(0) |ain)3(p+g— pe)
X Z5 o | £(0)[0)AL(p+9) -

Taking 7~V intermediate states | p'qs’) we find
Z5Hp'gy'out| 7(0)] 0)
=iZ; 1 Z 0 ()

(34)

X/‘@’[ (jra (O) ,1/—/ (x) )+ i O>b—ze—i(l’+q) vy ,

where Z3(r) is the pion renormalization constant.
Hence, from (23) and the usual substitution law we have

Z2(p' /=] 1(0)|0)A£ (p+9)

=Z (@) KX (W)ia(p)vsrods(p+9) . (35)
Z512(r){(p| j.2(0) | p'¢s"™) is the 7-N scattering ampli-
tude, which we expand into partial waves after Pauli
reduction

Z 1P (m)(p j=*(0) | p'gs"™)

=§0 QA 1)(X| (To 2P+ Tr®P) | X')

X Pi(coshpp). (36)

Here | X) and | X’) are spin functions, and

Pu=(+1+40-L)/(2+1)
=(l—o-L)/(2141)

9 This result has also been obtained by S. L. Adler (private
communication), who has proved its equivalence to the equation
derived by J. Bernstein, M. Gell-Mann, and L. Michel, Nuovo
Cimento 16, 560 (1960).

10 M. Ida, Phys. Rev. 136, B1767 (1965).
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are projection operators into j=I4-1. Introducing (35)
and (36) into (34), and reducing #(p’)vsAL(p+¢) into
nonrelativistic form, we can easily perform the angular
integration over the direction of p’, and the summation
over spin states X’ and over the isospin. The isospin
sum projects the I=% amplitudes 7,12 out of Ty,
The angular integration projects out 71/ for A, and
To412 for A_. We obtain

ImK (W)= (mp/4aW)T1 2 (W)K *(W)+R.(W),

ImK_(W)= (mp/4aW)To*(W)K_*(W)+R_(W),
37

where R, (W) represents the contribution from the in-

elastic channels.! With our definition of T by (36), it
is normalized to

Ty (W)= (4« W/mp) (mpe*®e—1)/2i,  (38)

where n;4 is the usual absorption parameter and ;. is
the phase shift. We write

R W)=y (W)eix™

where v.= | Ry|. Equation (37) imposes a rather strong
condition on R, (W), as the right-hand sides must be
real. Using (25), (34), and (37) we obtain
Qe =K */K,

= [np,**Pu— ¥o+]/[1—np, e 2 @Pu—at) ]
M=K *(|W|)/K_(I1W])

= [1—nse, H5-aY]) g, titn—tio-].
We have employed the usual notation S, P11 for the
1=0,1 states with J=%, T=1. In the elastic region,
n=1, and we have

e(W)=bp,(W),  W>0
="5S|1(IWD: w<o.

39)

(40)

(1)

The sum rule (33) can be written as

2m [® ,61’11 (W) =85, (W)
ga= exp[— / aw -
T Jmtp W'2—m?

2m *
X exp[—— / aw
T Jw;

where W, is the inelastic threshold and

¢(W’) = ﬁp(W’)_aPu(W’) , W'>0
= (p(W’)—5su(W') , W’<O0.

W) +a(—W)

e ] , (42)

(43)

If the absorption in the Pj; and Sy, states were small
(n=1), the correction @(W) would be small, as we see
from (38). As discussed below, however, both 7p,, and

1 The first named author acknowledges a useful conversation
on this subject with Professor D. A. Geffen.
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7.5, become rather small at intermediate energies. This
does not necessarily exclude the possibility that @ is
small. This would be the case, for example, if
ay=08p —3m and a_=8s —im. This requires a strong
coherence between elastic and inelastic contributions.
In any case, a great amount of theoretical work,
beyond the scope of this paper, will be required to draw
a definite conclusion about the inelastic contribution in
Eq. (42). For simplicity, we shall neglect the correction

factor involving @ and use

2m VWE
ga= expl:— / aw
T J Mtu

The upper limit W7 is imposed by certain practical
considerations. Several large-scale w-N phase-shift
analyses”™5 have recently appeared. Although they
agree with one another on many points, they do not
agree in all details for the states of interest here. This is
partly due to the fact that for both states n becomes
small, making the cross section insensitive to §. We may
summarize the situation as follows.!6

Sen (W) b5, (W)
W' — M2 ] - 9

(i) For pion laboratory kinetic energy 77250
MeV, 5p,—bs,,<0.

(ii) 6p;;—85,>0 from about 250 MeV up to at
least 1 GeV.

(iii) Both phase shifts become “large” (possibly
exceeding 3w) in this energy range.

(iv) All four of these analyses give values of §p,,—8g,,
which are in rough agreement up to about 500 MeV.
Beyond this point they do not agree.

If we use the results of the Livermore analysis! in
(42) with W* given by T,L=500 MeV, the integral is
approximately zero and we obtain g4=1. (For the
Saclay datal* we need 7',2=550 MeV to get the same
results). Thus, all of the renormalization comes effec-
tively from the region 7',22500 MeV and we cannot
hope for a reliable determination of g4. If we employ
the Saclay results* and integrate up to their limit,
T+=1 GeV, Eq. (42) yields ga=1.11. At T,=1 GeV
the integrand of (42) is positive and non-negligible so
it appears that a larger value of g4 would be obtained
if it were possible to extend the integration to higher
energy. In view of the theoretical and experimental un-
certainties involved, we can only say that our sum rule
is not in disagreement with the known facts.

2 L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965).

18 P. Auvil, A. Donnachie, A. T. Lea, and C. Lovelace, Phys.
Letters 12, 76 (1964).

14B. H. Bransden, P. J. O’Donnell, and R. H. Moorhouse,
Phys. Rev. 139, B1566 (1965).

1 P. Bareyre, C. Bricman, A. V. Stirling, and G. Villet, Phys.
Letters 18, 342 (1965). )

18 The current states of =-N phase shift analyses has recently
been summarized by L. D. Roper at the Willamsburg Conference
on Intermediate Energy Physics, 1966 (unpublished). We are
grateful to Dr. Roper for a copy of his address.



