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However, as we have already seen in this Appendix, a
Fredholm operator depending analytically upon a
parameter c can have eigenvectors corresponding to unit
eigenvalue for only a discrete set of values of c. There-
fore, there are continuous ranges of c for which the only
solutions to Eq. (C51) are f,=0. F—or these continuous
ranges of c, Eq. (C50) reduces to Eq. (C43), which
establishes the equivalence of Eqs. (C18) and (C1).

The solutions of Eq. (C18) have been shown to be
continuous functions of s, so that they obviously satisfy
a Holder condition by virtue of the mean-value theorem.

The Holder condition can be established under even
weaker conditions than that of continuity. "Since the
solutions of the Fredholm equations (C18) belong to the
class of functions Z~,

- these functions must vanish for
large values of s. All of the integrals in Eq. (C1) are
weighted with the functions aa(s) which are assumed to
vanish su%.ciently rapidly to ensure convergence of the
principal-value integrals. If this is not the case, then
one simply makes enough subtractions to guarantee
convergence.

' N. I. Muskhelishvili, Ref. 11, pp. 135—140.
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In the present discussion we seek to clarify certain aspects of SU(6) theory which have an important
bearing on the problem of formulating a bootstrap dynamical description of symmetry breaking. We discuss
here, in particular, a certain ambiguity of the meson-baryon coupling which exists even in the limit of exact
SU(6) symmetry, and which we call assignment mixing. It is possible to recover certain special theories,
such as the so-called W-spin theory, by a particular choice of the assignment mixing angles. Bootstrap
equations in the exact SU(6) limit do not 6x the angles, unless one also considers mesonic bootstrap equa-
tions corresponding to Fermi- Yang —type theories. It is also shown that in the exact SU(6) limit, the normal-
ization and vertex equations of the Cutkosky-Leon bootstrap method both yield the same equation, which
relates the coupling constant f to the ratio of the meson mass m to the cutoff parameter ks. Approximate
solutions of the Bethe-Salpeter equation are obtained.

I. INTRODUCTION AND SUMMARY

''T is commonly believed that SU(6) theory is a
- - closed subject in the static limit and that the only
interest is in the formulation of a relativistic version of
the SU(6) group. However, our experience with the
bootstrap version of SU(6) theory has been that there
are still some features of SU(6) symmetry even in the
nonrelativistic domain which, to the best of our
knowledge, have not yet been thoroughly discussed.
One of these features is the problem of assignment
mixing, which we will discuss in the present paper. This
mixing leads to the situation that even though there is
only one SU(6) Clebsch-Gordan coe%cient' for coupling
35I356+56, there still remains an ambiguity in the
meson-baryon couplings.

The present paper is in the erst place an extension of
the bootstrap version of SU(6) symmetry of Capps' and
of Belinfante and Cutkosky. 3 In addition, we intend
to provide an elementary and rather explicit discussion

*Work supported in part by the U. S. Atomic Energy Com-
mission.' C. L. Cook and G. Murtaza, Nuovo Cimento 39, 531 (1965).

2 R. H. Capps, Phys. Rev. Letters 14, 31 (1965).' J. G.. Belinfante and R. E. Cutkosky, Phys. Rev. Letters 14,
33 (1965).

of the model. Our emphasis therefore is not on the vari-
ous successful features of the SU(6) bootstrap theory,
but on the conceptual problems involved in the formula-
tion of the theory.

Since we wish to discuss low-energy meson-baryon
scattering, it is reasonable to take advantage of the
great simplifications which arise by making use of the
static model, suitably extended to include vector mesons
and spin--, isobars. The simplifications include, first of
all, the limitation to p-wave orbital angular momentum
states. A second nice feature of the static model is that
the baryon mass M disappears from the 6nal bootstrap
equations, 4 thus reducing the number of parameters in
the theory. In the third place, the static model is very
familiar and we have therefore the advantage of being
able to build on previously acquired intuition. Finally,
it is our belief that the close relation of the static model
to relativistic dispersion theory' may help to provide a
link between the present nonrelativistic theory and a
relativistic SU(6) theory, if such a theory exists at all.
In a relativistic theory there are several vertices which

4In the case of broken symmetry, only the mass differences
between the various baryons will appear.' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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lead to the same static limit, so that our static theory
does not correspond directly to a unique relativistic
theory; that is to say, the relativistic bootstrap is not
uniquely determined by its static limit.

We cannot, of course, deny that there are many
faults of the static model. The old original static model
of pion-nucleon scattering' did not take into account
pion-pion interactions, and we have also, for simplicity,
not included the meson-exchange poles. We omit them
because their inclusion would require us to discuss
tri-meson vertices also, and the additional bootstrap
equations which would result. These omitted meson-
exchange poles would also lead to s-wave scattering,
thereby further complicating the model. While these
features may be necessary to make meaningful compar-
isons with experiment, they do not add appreciably to
our understanding of either the interpretation of the
SU(6) group or the content of the bootstrap equations.

Baryon bootstrap models within the static model are
all based on the original Chew reciprocal bootstrap
model, ~ which, incidentally, did include the p-meson
exchange poles as well as the E, lV~ poles in bootstrap-
ping the 1V and 1V*. Extensions of this model to SU(3)
symmetry were studied by many people. ' ' In our
own work, the paper of Lin and Cutkosky" has played
a major guiding role. Their model, however, fails to be
an SU(6) theory because the vector mesons were
omitted altogether; surprisingly enough, this did not
affect matters very much, and SU(6)-like features
were discovered in their baryon bootstrap.

Our primary purpose in setting up a bootstrap SU(6)
theory could be achieved in various ways. We could
use the Chew-Low equations and the 1V/D method, or
the so-called Z=O method" " for formulating the
bootstrap dynamics instead of the Bethe-Salpeter
equation. These alternative approaches in general are
just as adequate, but, in the particular case of static
baryon-meson scattering, the 1V/D approach happens to
have some undesirable features recently discussed by
Sawyer'; the discussion of symmetry-breaking in

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
r G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
8 R. E. Cutkosky, J. Kalckar, and P. Tarjanne, Phys. Letters

1, 93 (1962).' R. E. Cutkosky, J. Kalckar, and P. Tarjanne, in Proceedings
of the International Cortference on High Energy Physics at-CERX,
D'6Z, edited by J.Prentki (CERN, Scienti6c Information Service,
Geneva, Switzerland, 1962), p. 653.

"A. W. Martin and K. C. Wali, Phys. Rev. 130, 2445 (1963)."R.E. Cutkosky, Ann. Phys. (N. Y.) 23, 415 (1963).' I. S. Gerstein and K. T. Mahanthappa, Nuovo Cimento 32,
239 (1964)."R.H. Capps, Nuovo Cimento 34, 932 (1964).

~4 B. M. Udgaonkar, High-Energy Physics and Elementary
Particles (International Atomic Energy Agency, Vienna, 1965),
p. 791."K.Y. Lin and R. E. Cutkosky, Phys. Rev. 140, 3205 (1965).' B. Jouvet, Nuovo Cimento 5, 1 (1957).

'7 M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. Q4,
1258 (1961).

'8 R. M. Rockmore, Phys. Rev. 132, 878."R.F. Sawyer, Phys. Rev. 142, 991 (1966).

particular when carried out in the 1V/D formalism runs
counter to simple intuition, whereas the Bethe-Salpeter
equation appears not to suffer in this respect. This is
primarily due to the use of standard approximations and
it is not a criticism of the 1V/D method in principle,
but only of the 1V/D method in practice. The Bethe-
Salpeter equation and the Z=O methods have in
common a close relation to Lagrangian field theory.
We believe that calculations using the Bethe-Salpeter
equation have the advantage of having a clear analog
with corresponding calculations based on the Schro-
dinger equation, on which is based most of our intuition
regarding compositeness.

The formalism developed in the present paper can
be used to discuss a number of interesting questions,
including the calculation of the relation between meson
and baryon mass differences, and coupling constants
in the case of broken symmetry. 0'ne can also calculate
the ratios of magnetic moments of the baryons as well
as their magnitudes, without resorting to a quark
model. The ratio —

2 for the proton to neutron magnetic
moment is not automatic in bootstrap SU(6) theory,
and one can hope to improve upon this result. The
arguments presented in the paper of Belinfante and
Cutkosky' can actually lead to a result between —11/8
and —-'„depending on what is assumed about the
V I' yvertex (th-at -is, the magnetic dipole transition
rate for vector mesons to decay into pseudoscalar
mesons). The result —11/g corresponds to setting this
rate equal to zero.

We now proceed to outline the contents of the
remainder of the paper. In Sec. II, the vertices required
in order to extend the static model to include the
baryon isobars and the vector mesons are presented. It
is here that the assignment ambiguity alluded to above
is discussed. The construction of an SU(6)-invariant
Lagrangian formalism from these vertices is presented
in Sec. III. This Lagrangian is used in Sec. IV in
deriving the Bethe-Salpeter equation for the wave
function representing the baryons as bound states of
the mesons and baryons. From this Bethe-Salpeter
equation is derived the vertex equation, which is one
of the two basic equations in the bootstrap approach
of Cutkosky and Leon. ' Approximate solutions of
the Bethe-Salpeter vertex equation in the symmetry
limit are also presented in this section, and it is shown
that these solutions lead to a successful bootstrap. The
other equation, the normalization equation, is derivable
from the o8-shell scattering amplitude, as is shown in
the Appendix.

II. EXTENSION OF THE STATIC MODEL

In order to extend the static model to include baryon
isobars and vector mesons, we must consider the

~ R. E. Cutkosky and M. Leon, Phys. Rev. 135, 31445 (1964}.
&' R. E. Cutkosky and M. Leon, Phys. Rev. 138, 8667 (1965).
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additional vertices required. We will describe the static
spin--,' baryons (8) by a two-component field operator
P=P X,b'. Here, X, is a Pauli spinor and b' is the
annihilation operator in the spin state s. The spin--,
baryon isobars (8*) will be described by the static
limit of the Rarita-Schwinger 6eld operator. " This
operator is a vector-spinor, Q, and satisfies the auxiliary
condition

e =0.
This condition implies a number of interesting relations,
of which we mention but two:

Q= itrXQ,

Q tpjtmpI = —igtXQ.
k=1

The pseudoscalar (P) and vector (V) mesons are
described by the field operators 4 and V, respectively.
We will ignore any SU(3) indices in this discussion of
vertices.

The couplings which are possible and which even-
tually correspond to something easily accommodated by
an SU(6) model are two in number: Scalar-scalar, and
axial-vector —axial-vector. There are, of course, tensor
couplings which could be included, but at the expense of
additional complications which we wish to avoid.

From the fields considered, one can form three
independent scalars, and 6ve axial vectors, which are
listed in Table I. From these can be formed a total of

TABLE II. Vertices occurring in a static model.

Scalar-scalar Axial-vector-axial-vector

BBP
BBV
BB*P
BB~V
B~B~P
B*B*V

~ ~ ~

ftfV V

~ ~ ~

QtgVV

Pt(pP VP
$tg lg. VX p
4'&.V4
Ptg VXV
Qtxg vy
Qtxg Vxv

The additional factor in the commutation relation for
the vector-meson operators is a familiar relativistic one,
which we retain since the vector mesons are not
assumed to be slowly moving.

The Fourier transform of the baryon spatial distribu-
tion function is assumed to be spherically symmetric.
This being the case, the only quantities which can
depend on the direction of k are the meson operators in

combination with k. Thus, in the interaction Lagran-

gian, the meson operators will only occur in the
combinations

where we have set the time t equal to zero and have
included normalization factors, such that the equal-
time commutation relations for the creation and
annihilation operators are

L(p(k), yt(k') j= (2tr)'8(k —k'),
and

Lv(k), vt(k')$= (2tr)'8(k —k')Ll+kk/ttt'j.

TABLE I. Scalars and axial vectors in a static model.

(2tr)'
dQgkv (k),

BB
BB~
BtirB+

P
V

Scalars

1i,tg
~ ~ ~

~ ~ ~

V V

Axial vectors

tQ
Qtxg
VP
VXV

and

1
av(k) =-',v3

(2tr)'

m 1
~e(k) =—(v' l)

(2tr)'

dQikX v(k),

dQI,k. v(k),

eight diferent baryon-meson vertices, which are
compiled in Table II. From the latter table, it is seen
that the configuration space operators g(x) and V(x)
appear in various combinations with the gradient V.
It will prove to be more convenient to work in momen-
tum space, and thus we will expand the fields P and
V in terms of plane-wave creation and annihilation
operators:

which can be recognized as being p-wave creation and
annihilation operators. The element of solid angle for
the variable k is represented by dQI„while k=

~
k~. The

normalization factors for the pseudoscalar, transverse
vector, and longitudinal vector mesons are determined

by requiring that the p-wave operators satisfy com-

mutation relations of the form

E~(k), ~t(k') j=b(k —k').

and

4(x)=
d'k 1

Lq (k)e*i' *+H.c.j,
(2~)' (2~~)"'

d'k 1

The choice of the phases of the normalization factors is

physically irrelevant. Note that the factor

MI,
——(k'+m')'~'

V(x) =
Lv (k)e'" '*1H.c.g,

(2~)' (2~ )"' in the normalization factor combines with k v to give
k v/ott„which from the subsidiary condition B„V&(x)

gr. R.arita and J. Schwinger, phys. Rev. 60, 61 (1941); =0, is 3ust the time comP»ent of the vector-meson

K. K. Gnpta, Proc. Indian Acad. Sci, A55, 255 (1952). annihilation operator. A consideration of the static limit
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of the relativistic vertex gy„PV" indicates that it is
just this component of the field which should appear.

The occurrence of p waves only is, of course, the
situation in the ordinary static model and continues to
be the case io this extension, since the vector mesons
have the same intrinsic parity as the pseudoscalar
mesons.

The purpose of developing the present formalism is to
have a concrete framework in which to discuss a model
of a bootstrap of the meson-baryon system. The mesons
will be classified according to the quantum numbers of
the SU(6) 35-dimensional representation, " which
contains the /SU(2), SU(3)] submodules (1,8), (3,8),
and (3,1). The erst of these is an SU(3) octet having
total angular momentum J equal to zero and is described
by the p-wave operator as (k), n=1 8, being an
octet index. In the case of the two J=1 submodules,
however, there is an ambiguity, since both a~ and ay
have J= 1. In an effort to be as general as possible, we
admit a linear combination of these; thus a~ cos08

+ar sin88 will describe the (3,8), while a~ cos8~

+ar sin88 will describe the (3,1).We have chosen to call
this mixing of operators, having the same SU(2) and
SU(3) transformation properties, assignment mixing

(AM), in contradistinction to cv-p mixing, which is
particle mixing (PM). In the special case of 8~——8s ——0,
the model of Capps and of Belinfante and Cutkosky
(CBC)' ' is recovered, while the angles for which

tan8g= tan8s= v2

yields the meson assignment of the S' spin or collinear
SU(6).24 This latter set of angles is derivable by
considering a Fermi-Yang model of the mesons. "Still
another choice of mixing angles is advocated by Singh
and Udgaonkar, "namely, 08=0, 0&=90'. In the work
of Belinfante and of Rerininger and Videira, which
were based on the CBC model, this possibility of
assignment mixing was omitted.

These angles cannot be determined from the bootstrap
dynamics presented here. Therefore, in order to get
an idea of the magnitudes of these angles, we must
compare predictions of specific quantities involving
these angles with the experimental values. For in-
stance, the angles can be determined from the magni-
tudes of magnetic moments and from the cross sections
for baryon isobar production from a two-baryon initial
state. These cross sections can be predicted by combin-
ing the Sakurai-Stodolsky model with the present model
for baryon-meson interactions. "

"One could also introduce a meson singlet, which would
correspond to the spatial divergence of the co-singlet vector meson
field.

"H. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670
(1965)."R.E. Cutkosky and M. Jacobs (private communication)."V. Singh and B.M. Udgaonkar, Phys. Rev. 139,31585 (1965),

'7 J. G. Belinfante, Phys. Rev. 140, 3154.
"G. H. Renninger and A. L. L. Videira, Phys. Rev. 140,

8691 (1965)."J.J. Sakurai and L. Stodolsky, Phys. Rev. Letters 11, 90
(&96S).

Note added ie proof. A. Kanazawa, M. Saito, T.
Sakuma, K. Seto, and N. Tokuda have recently obtained
results similar to those presented in Sec. II of this paper.
(Hokkaido University, Sapporo, Japan, unpublished
report. )

III. SU(6)-INVARIANT LAGRANGIAN

By using the p-wave creation and annihilation.
operators, we can construct an SU(6)-invariant
Lagrangian. g e introduce a meson field operator
(m=1 35)

y. (k, t) =a (k,t)+a.t(k, t),
in terms of which we can write down a Lagrangian
which is an obvious generalization of the one used to
define the Chew-Low static model. In the following,
a(k) is the usual structure function for the baryons,
which is normalized to unity at k =0. It is usually taken
to be unity for k&kz and zero for k) k&, where k& is
some cutoff momentum. In the limit of exact SU(6),
we may write the Lagrangian:

8
I-= 4'(t)~4 (—t)+

at

00 By 1 BP
dk y. (k, t)~,y. (k,t)—

4 p t9t

"k'dka(k)
y (k,t),

o

where f is a dimensionless coupling constant, m the
mesonic mass, and M the baryon mass. The G are the
generators of SU(6), which are normalized so that
G'(56) = 1.

The entire Lagrangian, including both the kinetic
part and the interaction part, is invariant under SU(6).
This is in contradistinction to certain earlier theories
of SU(6) in which it was believed that exact SU(6)
would require a zero meson-baryon coupling. This
unpleasant feature arose from an attempt to interpret
the SU(2) subgroup of SU(6) strictly as the rotation
group, so that the generator Jwould always be the spin.
In the model discussed in the present paper, however,
this is not the case for the mesons, since the generator
J here includes both the spin and the p-wave orbital
angular momentum.

If one wishes to discuss broken symmetry, the
coupling constants (f/m)G /Qcoj, and the masses M
and m should be regarded as matrices, rather than as
numbers. The bootstrap equations then become matrix
equations and are correspondingly more difficult to
solve. Since the purpose of the present paper is primarily
pedagogical, we prefer not to burden the exposition with
the general case of broken symmetry. However, we do
wish to emphasize that our model is most useful in
discussing the problem of broken symmetry, and the
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results obtained for symmetry breaking are less sensitive
to the cutoff parameter than the results we obtain
below, which are rather strongly dependent on this
parameter.

Capps" has pointed out that further terms in an
SU(6) Lagrangian which describe mesonic interactions
can be constructed in a fashion similar to the way
presented above for the meson-baryon vertices. Here
one takes the vector mesons instead of the baryons as
being infinitely heavy. We shall, for the sake of simplic-

ity, omit these further complications of the static
model.

IV. BETHE-SALPETER EQUATIONS

In order to formulate the bootstrap hypothesis in a
transparent way, we will write down a Bethe-Salpeter
equation expressing the intuitive idea that any baryon
is a bound state of baryons and mesons.

We begin by de6ning a vertex function F related to
the Bethe-Salpeter amplitude 0 by O'=G0I', where

Gp is the product of the meson and baryon propagators.
We also introduce a conjugate amplitude 4 and a
corresponding vertex function I". These are defined as
follows:

d~'- (0!ry-(k, ~)y(0)!a )

and

df e '"'(8
! Ty„(k)t)P(0)!0).

In the above equations we have used the Wigner-
Eckart theorem and the lack of multiplicity in the
SU(6) coupling 35Qx56+56 to extract the group-
theoretic structure, which is summarized by the SU(6)
indices 0.= 1 ~ 35 and m=1 56. Upon examination
of the Bethe-Salpeter equations, one concludes that F
and I' do not in fact depend on k at all, and hence we

may write them as functions of co only. These functions
have been normalized so that

I ((v=0) =I'(co=0) = f/nz=g.

In the ladder approximation, the Bethe-Salpeter equa-
tion (see Fig. 1) for I'(cu) may be written (r= VG,r):

00 Eg' I'(a „)
I'(~) = p'dp ~'(p)

0 M Mn Nu

where I' is a Racah coeKcient having the value 11/15.

"R.H. Cappe, Phys. Rev. Letters 14, 842 (1965l.

I'zo. 1. Schematic representation of the Bethe-Salpeter equation.
The solid lines represent baryons, while the dashed ones represent
mesons carrying energy co.

We have set G'(56) = 1, so that

G G)G =G'(56)L1—-,'G'(35)/G'(56)jGy
=RGg.

The Bethe-Salpeter equation for the vertex can be
solved approximately. For example, if we take e(p)
=8(kq —p) as usual, then an approximate solution can
be obtained by replacing p4e'(p) by a 8 function
(kd/5)5(p —kz). This yields

r( )=g/(1+( / )$,
from which we find

1 p'dp e'(p) (og ) Rkg'
!

—=E
g p 97& GOg+CO&1 10M'

This is very similar to a well-known result obtained from
the old-fashioned static model, except that the latter
result involves the mass difference between the S*and
E, or, equivalently, the effective-range parameter of the
Chew-Low theory. " It gives us one relation between
the dimensionless coupling constant f and the dimen-
sionless ratio m/cuq. Thus, given an average meson mass
and a cutoff, we can calculate the meson-baryon
coupling constant.

The equation obtained here is the so-called vertex
bootstrap equation in the terminology of Cutkosky
and Leon. ' "In addition, there will be a normalization
equation, which is discussed in detail in the Appendix.
It is shown there that the normalization equation
coincides with the vertex equation to within 1%,
so that we do not get any additional condition, this
being a peculiar feature of the exact symmetry limit.

APPENDIX

The derivation of the normalization equation is
described in a paper by Cutkosky and Leon,""to
which we have referred above. Here we shall only
sketch a few of the details. The basic technique" is to
make use of the off-shell scattering amplitude k(co', co; Q),
which is defined in the following way. From the four-
point vacuum expectation value is subtracted the
disconnected part. This is then Fourier transformed and
the center of mass motion is extracted as 8(Q' —Q).
Af ter removing the k-dependent kinematic factors
k'e (k)/groan, the external legs of the diagram are
amputated to get rid of the poles. All of these various

"E.M. Henley and W. Thirring, E&lemerltary QNantgm Field
1'heory (McGraw-Hill Book Company, Inc. , New York, 1962),
p. 213, Eq. (18.53}.

"V. K.. Agrawala, J. G. Belinfante, and G. H. Renninger,
Nuovo Cimento (to be published}.
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