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Internal Symmetries in a Coupled-Channel Soluble Model with Inelasticity*
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The conjecture that an internal symmetry group may be selected by a bootstrap mechanism is studied
within the framework of a closed, exactly soluble model. In order to have two-body unitarity and crossing
without necessarily identically zero amplitudes, two types of particles of different mass (each possessing
internal quantum numbers corresponding to an unspecified internal symmetry group and each assigned
to irreducible representations of this group) are allowed to scatter in a two-dimensional world. The sym-
metry group makes its appearance explicitly only through the crossing matrix, characterized by a parameter
which is to be determined self-consistently. All two-body channels, both elastic and inelastic, are treated
exactly. Unitary, crossing-symmetric, analytic scattering amplitudes corresponding to the various processes
are constructed for continuous ranges of the parameter of the crossing matrix. Even with the additional
constraint of a self-consistency requirement in the form of Levinson s theorem, an internal symmetry group
is not selected by the bootstrap mechanism in this model. Also, a technique is developed for converting a
coupled set of singular, linear Cauchy integral equations into an equivalent uncoupled Fredholm set.

I. INTRODUCTION

ECAUSE of the reasonable success of some of the
early bootstrap calculations, ' numerical ratios of

coupling constants produced by crude N/D calculations'
have sometimes been interpreted as indicating that a
particular internal symmetry group is favored, or possi-
bly chosen uniquely, by the strong interactions. ' The
general philosophy is that a particular symmetry group
may be the only one compatible with a unitary, cross-
ing-symmetric, self-consistent set of scattering ampli-
tudes. The hope is that the nonlinear, coupled integral
equations may be su8liciently complicated to impose
stringent constraints on any allowed internal sym-
metries. However, in practice, although elastic unitarity
is ensured by use of the E/D method in bootstrap calcu-
lations, the crossing symmetry is badly violated in con-
structing approximate solutions, so that it is unclear to
what extent a symmetry generated in this manner is
indicative of a symmetry possessed by the actual scat-
tering amplitudes. It is possible that the apparent sym-
metry is a result of the approximations made.

Therefore, it is of interest to examine an exactly
soluble model possessing as many features of a realistic
scattering situation as possible in order to see in detail
whether or not the internal symmetry will indeed Qow
from the enunciated principles as hoped. Certainly the
most serious obstacle to a soluble, realistic model is that
two-body unitarity in all channels and exact crossing
are incompatible. That is, in a four-dimensional world
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the simultaneous requirements of crossing and of a
truncated two-body unitarity condition everywhere
above threshold in all channels imply that the resulting
scattering amplitude must vanish identically. This re-
sult depends very essentially upon the fact that the
amplitudes are functions of two independent complex
variables and upon relativistic invariance. Therefore,
since three-body unitarity would render a realistic
problem intractable, the only hope of proving the boot-
strap conjecture within the framework of a closed two-
body model would appear to be in a two-dimensional
world where Aks'4 theorem does not apply.

Martin and McGlinn' have considered a static-limit
Chew-Low-type model with two channels and con-
structed exact solutions for arbitrary values of the
parameter in the 2)&2 crossing matrix. In other words,
their requirements of unitarity, crossing, and analyticity
did not sufBce for a unique selection of those discrete
values of this parameter that correspond to SU(2). More
recently, Huang and Low' and Huang and Muellerv
have studied the Chew-Low equation for various
theories (i.e., neutral scalar, charged scalar, etc.) in
which they impose a bootstrap requirement in the form
of Levinson's theorem in addition to those of unitarity,
crossing, and analyticity. The basic idea is that within
the context of a bootstrap philosophy all particles are
simply bound states of other particles, there being no
elementary particles. In potential theory Levinson's
theorem states that the difference between the phase
shift at threshold and that at inanity in a particular
channel is equal to x times the number of bound states
in that channel. Therefore, since the number of bound
states (i.e., poles corresponding to particles) in a given

' A. W. Martin and W. D. McGlinn, Phys. Rev. 136, B1515
(1964).

s K. Huang and F. E. Low, J. Math. Phys. 6, 795 (1965).
K. Huang and A. H. Mueller, Phys. Rev. 140, 8365 (1965).
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Fro. 1.Two-body scattering
diagram.

Pp However, in the center-of-mass system of our one space
dimension we have

Pl+'Ql 0 P2+&I2 y

so that t=—0. Therefore,

s+I= 2(M2+2N2), (2)

channel is known for a particular model, the ful6llment
of Levinson's theorem can simply be imposed as a boot-
strap, or self-consistent, condition. This additional re-
quirement places strong restrictions on the high-energy
behavior allowed by the solutions, but practically none
on the possible internal symmetry group.

It is the purpose of this paper to investigate whether
or not the inclusion of inelastic effects may further con-
strain any allowed internal symmetry group. Therefore,
we have considered a relativistic, two-dimensional model
possessing unitary, crossing-symmetric, analytic scat-
tering amplitudes in which all two-particle intermediate
states, both elastic and inelastic, have been treated
exactly. Finally, the effect of applying the bootstrap
criterion, in the form of Levinson's theorem, to these
amplitudes has been studied. Also, Appendix C presents
what is believed to be a new method for converting a
coupled set of singular linear integral equations of the
Cauchy type into an equivalent uncoupled set of
Fredholm integral equations.

II. DESCRIPTION OF THE MODEL

We begin by embedding our particles in a two-dimen-
sional space-time background. In such a world there can
be no space spin, either intrinsic or orbital, since there
is only one space dimension. Physically, this is obvious
since it is impossible to perform a spatial rotation if
there exists only one space dimension, so that there are
no generators for the rotations. Mathematically, this is
simply a result of the fact that the Lorentz group be-
comes an Abelian one so that all of its irreducible repre-
sentations are one-dimensional and, therefore, there
exist only spin-zero particles. Lorentz invariance then
requires that the scattering amplitudes be scalar func-
tions of the scalar invariants of the system. Since we
shall consider only two-body scattering, there are four
two-vectors available. These are shown in Fig. 1. Ke
may define the usual invariants

s= (pl+ql)'= (p2+q2)',
t= (ql+q2)'= (Pl+P2)',
I= (q2+Pl)'= (ql+P2)',

p.2 M2 q.2 2N2

and obtain the relation

s+ t+I= 2(M'+ )2222

&n

T»*(s'k &' k„&'&)T (s k &'l k„&»)

Xh(k„&»'—M„2)S(k„&»'—~.2)

XHLs„—(k„&'&+k„&2~)')
XS&»(P;+k.&'&+k.&»)S&»(P;+k.&'&+ k.&2&)

Xd'k "'d'k "', (5)

where the sum over n represents the sum over all possi-
ble two-body intermediate states. This can be reduced
directly to

ImT;, =P T,„'(s)p„(s)T„;(s)8(s s„), —

p„(s)= -,'(Ls —(M~+m. )2)Ps—(M~—m. )2)}—'".
In the following we shall consider the scattering of

two types of strongly interacting particles, denoted by
a and b, having masses m and M, respectively, with
ns&M, and each carrying internal quantum numbers.
That is, we assign these particles to multiplets of the
internal symmetry group which is not specified further.
%e shall consider a model in which particle u belongs
to a singlet representation and is its own antiparticle
while particle b belongs to a doublet representation so
that the antiparticle b is distinct from b. Graphically,
the allowed two-particle scattering processes will be
those shown in Fig. 2.

A few comments are in order about Fig. 2. First, all
of the particles are drawn as formally ingoing. Lines
corresponding to ingoing actual particles have positive

and there is just one independent variable left to de-
scribe the scattering.

For our two-body reactions we de6ne an invariant
T-matrix element in terms of the S matrix as

(I la»l ~l I 2+i&
=8&2&(P~+P,)8;,+2i8&2l(P;+Ps)Tg(s), (3)

where
Pi pl+qly Pj p2+q2y

and where i and j are the channel indices for the internal
degrees of freedom in the initial and 6nal states, re-
spectively. If we assume time-reversal invariance so
that T;,(s) can be chosen symmetric in the indices i and

j and integrate over the invariant volume element
dk;/kt2, then the unitarity of S implies that

5&2&(P;+P;) ImT;;(s)
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A(s, u) F(s, u)

timelike two-vectors, while the.negative timelike vectors
represent outgoing actual antiparticles. ' Second, the
t channel in all cases has been labeled as t—=0 to indicate
that this channel does not exist in a two-dimensional
model. Also connected with this peculi:arity of a two-
dimensional model is the fact that the amplitudes F(s,u)
and G(s,u), corresponding, respectively, to Figs. 2(b)
and 2(c), are disttrzot amplitudes —as oppsoed to the
situation in a four-dimensional world in which these
two diagrams are the same and di6'er only in the labeling
of the s, t, and I channels which all exist. Finally, the
amplitude 8 (s,u), corresponding to Fig. 2(d), has an

index 0, taking on values which correspond to the
quantum numbers of the possible reactions. Since the
particle b belongs to a doublet, we would a Pnori expect
ot to take on four values. However, we assume that there
are just tao independent amplitudes 0.=1, 2, which are
sufhcient to describe the scattering of bb. If we had
specified our internal symmetry group to be, say, SU(2),
then this would follow from the charge independence of
the strong interactions. It will become apparent later

FIG. 3. Basic vertex of the model.

that this simplifying assumption does not invalidate
our conclusions.

We shall also assume that the u particle communicates
only with the o.= 1 channel of bb. This would correspond
to the vertex of Fig. 3. Obviously, we have in mind the
scattering of isotopic-spin-0 from isotopic-spin--, parti-
cles, although it is precisely this interpretation of the
model which we hope will follow necessarily from an
analysis of the coupled-channel e6ects.

We must now apply the general requirements of
unitarity, crossing, and analyticity to this model. The
unitarity condition (6) locates the threshold singularities
for the various amplitudes of Fig. 2. A qualitative sketch
of the s plane for these amplitudes is given in Fig. 4.
If we define the phase-space factors

pi(s) = ll:s(s—4~')j "', (7a)

s: a+a a+a
u: a+a . a+a

s: a+b a+b

u: a+b ~ a+b

(b)

p2(s) = 2 {ts—(M+rrt)'jLs (M m)'1) '" (7b)

ps(s) =2Ls(s—4M') j "', (7c)

then the unitarity conditions (6) become the following:

(i) In the direct (i.e., s) channel for A(s, u),

ImA (s) =pi(s) A*(s)A (s)8(s—4m')

+pe(s) G*(—s+2M'+ 2rrt')

XG(—s+2M'+2rrt')8(s —4M') (8)

G(s, u) B (s, u)
b

A similar relation holds in the physical region of the
m channel since, by crossing,

A (4ttt' —s) =A (s) .

(ii) In the direct channel for F(s,u),

ImF(s) =P2(s)L~*(s)F(s)+G*(s)G(s)3
X8[s—(M+m)']. (9)

s: a+ b a+b
u: a+a b+b

s: b+b 4+b
u; b+b b+ b

Again, the crossed channel is related simply by the
relation

Fl 2(M'+rrt) —s)=F(s).
(iii) In the direct channel for G(s,u),

ImG( ) = p (s)LG*(s)F(s)+~*(s)G(s)l
XHts —(M+rrt)'j, (10a)

FIG. 2. Two-body processes considered in the model. while in the crossed channel

ImG(u) =pi(u) A *(u)G(u) 0(u 4m')—' G. F. Chew, S Matrt'x Theory of Strolg I-itteraett'orts Ovv. A.
Benjamin, Inc., New York, T96T), p. TT. +ps(u)G*(u) 8'(u) 0(u—4M') . (10b)
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(iv) In the direct channel for 8'(s,u),

ImB'(s) =p3(s)8'*(s)8'(s) 0(s—4M')
+pg(s) G*(—s+2M'+2m')

XG(—s+2M'+2m') 0(s—4m') (11a)

while in the direct channel for 8'(s,u),

ImB'(s) =pa(s)8'*(s) 8'(s) 8(s—4M') . (11b)

With the aid of crossing symmetry and an assumed
analytic behavior for the various scattering amplitudes,

we can write the coupled integral equations describing
this model. We shall assume that there are no bound
states in either channel of A(s, u), but that there are
bound-state poles at M' in the s and zc channels of
F(s,u), a bound-state pole at M' in the s channel of
G(s,u) and a pole at m' in the u channel of G(s,u), poles
at m' in both channels for 8'(s,u), and, 6nally, no
bound-state poles in either channel of 8'(s,u). Of course,
8'(s,u) has the poles required by crossing. If we assume
an unsubtracted dispersion relation sufhcient for A (s,u)
and apply Cauchy's theorem in the s plane, we obtain

ds'p (s')
I
A (s')

I

' +
s' —s s'+s —4m'

ds'pa(s')
I G(—s'+2M'+2m')

I

' +. (12)s' —s s'+s —4m'

If we take account of the bound-state poles at M' in each channel of F(s,u), we fjnd

F(s)=—r,
1 1+- d"p (")LIF(")I'+ IG(") I'] — +

s—M2 M2+ 2m2 —s ~ (~+~) s .s' —s s'+s —2M' —2m'
(13)

For G(s,u) we have a pole at M' in the s channel and at m' in the u channel. Therefore,

G(s) =
s—M' 2M'+m' —s ~ ~pm)'

ds'p2(s') LF*(s')G(s')+G*(s')F(s')j
(s'—s)

1 " ds'pi(s')A*(s')G(s') 1 " ds'pq(s')G*(s')8'(s')
(14)

4 ~ (s'+s —2M' —2m') 7r 4~2 (s'+s —2M —2m )

The arnphtude 8 (s u) has poles at m' in both channels while 8'(s,u) has only those poles required by crossing.
Since the s and I channels are identical for each of these amplitudes, the crossing matrix' is

Therefore, unitarity and crossing imply

8'(s) = —I'4
1 c 1

+ +
s—m' 2M'+m' s~ 4~*—

, -IB'(")I' clB'(")I'+(1-c)I»(")I—
ds'pa(s')

S —S s'+s —4M2

4m'

ds'pq(s')
I G(—s'+2M'+2m')

I

' — + (1g)s' —s s'+ s—4M'

and

—I' (1+c) 1
8'(s) = +-

(2M'+m' —s) m 4~2

IB'(s')I' (1+c)IB'(s') I'—clB'(s') I'-
ds'p3(s') +

S —S s'+s —4M'

(1+c) " ds'pi(s')
I G(—s'+2M'+2m2)

I

2

4m' (s'+s —4M')
(17)
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2 2-4(M -m )

(a)

A(s, u)

2s+u =4m

4m 4M2 ?

F(s,u)

2 2s+ u = 2(m + M )

(M-m), (M + m)
2 2

(b)

so that
s =2M'(1+s),

u= 2M'(1 —s) .
(18b)

(18c)

In terms of this new variable, the thresholds for the
direct and crossed channels are at s=+1 and at s= —1,
respectively. Also, crossing now consists of the statement

? 2-2(M -m )

G(s p u)

? 2s+u -"2(m +M )

2(M -m ) (M+ m)
2 2 2

B (s, u)

2s+u =4M

4(M -m ) 4m 4M2 2 2 2

Bp (—s)= Z A-eBo'(s)

This problem is solved for the corresponding 5-matrix
elements in Ref. 5 and these can be related to the above
amplitudes from our Eq. (3) as

Sp~(s) =1/i Bp~(s) Ls(s 4M')—) "' (20)

, B (s u)
2

2s+ u =4M

4(M -m ) 4M

(e}

I'IG. 4. The s planes for the amplitudes.

Explicit solutions can also be found in Ref. 6, where it
is shown that one subtraction is required if there is a
bound state and if I evinson's theorem is to be satisfied.

Of course, G(s)$0. However, there is a physically
obvious parameter X=—m/M(1 for which X=O (i.e.,
M= oo) implies G(s)—=0. That is, M= op is the static
limit in which particle b is always at rest. Also, when
X= 0, A (s), F(s), and B (s) all reduce to the uncoupled
forms we have just discussed. Therefore, we assume the
following expansions as being physically reasonable:

Although we have assumed that none of the ampli-
tudes require any subtraction, it is a trivial matter to
modify these equations if subtractions prove to be
needed.

IG. METHOD OF SOLUTIOÃ

A (s)= ap(s)+ P X"a„(s),
n~l

(21)

(22)

s= (s—231')/2M' (18a)

' R. W. Lardner, Nuovo Cimento 28, 1375 (1963)."D.W. Schlitt, Nuovo Cimento 31, 858 (1964).

%e must now And solutions to the set of coupled
equations (11)—(17). First, we consider the situation if
G(s,u) should vanish identically. Then the equations for
the remaining amplitudes, Ao(s, u), Fp(s, u), and Bp (s,u)
would uncouple. In fact, Ap(s, u) and Fp(s, u) could be
found by a simple application of Cauchy's formula to
the inverse amplitude. These solutions have been fully
discussed in the literature. ' Any arbitrariness in these
solutions depends upon the number of Castillejo-Dalitz-
Dyson (CDD) poles and the number of subtractions.
In the spirit of the bootstrap philosophy, we shall
assume that no CDD poles are present in any of the
amplitudes. More particularly, we shall demand no
poles in the amplitude A p(s, u) and bound-state poles at
M' in both channels of Fo(s,u). We would expect Fp(s,u)
to require one subtraction. "

The coupled-channel problem for Bp~(s,u) can be
solved by use of the techniques of Ref. 5 if we make
the following observations. Deine a new variable

G(s) = g X"g„(s),
n I

(23)

B~(s)=bp (s)+P X"b (s).
n~l

(24)

Since ap(s) itself satisfies unitarity, we can write

ao(s)=—~ap(s) ~e' t'&=
sintt(s) e'" t'&

pt(s)
(26)

where g(s) is the phase shift at the static limit. Then

The important observation here is that the unitarity
conditions (8)—(11) involve G(s) in such a fashion that
the uth-order functions in the expansions (21)—(24) can
always be solved for in terms of those of order (n 1)—
and lower. In particular, at(s), ft(s), and bt (s) do not
involve g&(s), so that one can begin with ap(s) fp(s), and
bp (s) alone and construct all the higher order functions
from these by an iterative procedure. For example, in
Eq. (8) consider the first-order correction to A(s),
namely,

Imat(s) =pt(s)Lat*(s)ao(s)+ao (s)at(s)g. (25)
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solving Eq. (25) for Imap(s) yields

2p (s) Rea (s)
Imag(s) = Reap(s)

1—2pg(s) Imas(s)

where g (s) is the phase of fs(s). We have made use of the
fact that the residues r; of the bound-state poles depend
upon X, as is evident from Eq. (14), and have written

= tan[2ri(s) jReaq(s) . (27)
r(x)=g z-~ &&.

n=o
(32)

1
ag(s) =—

4m'

ds' Imaq(s') + (28)
s'—s s'+s —4ms

From Eq. (27) this becomes

00

a&(s) =— ds' tan[2ri(s') j
4m'

We know from the unitarity condition (8) for the full

A(s) that ~A(s)
~

is bounded in the physical region
s)4ms. If the expansion (21) holds for any arbitrarily
small but continuous range of values of the parameter
X, then all the

~
a„(s)

~
must also be finite in this physical

region. In particular, then, the value of Imaq(s) in
Eq. (27) must be finite throughout the physical region
in which (27) holds. Therefore, whenever tan[2ri(s)j
has a pole here, Rea&(s) must vanish suKciently rapidly
to keep the product in (27) finite. We shall always
assume this to be the case. Therefore, if we write an
unsubtracted dispersion relation for a~(s) and use cross-
ing symmetry for a~(s), we find

In fact, the integral equations for all the nth-order
corrections to A(s,l) and F(s,u) have the form

i (s)=
r2

+v(s)+—&P ds'o (s') y(s')
S—P1 P2—$

s —s s+s—ps
(33)

The corresponding equation for G(s,e) has two separate
integrals since this amplitude is not crossing symmetric
as are A(s, l) and F(s,u). However, we shall not write
this down explicitly since Eq. (33) will be sufficient for
our purposes. Here the locations of the poles (at y, &, ps)
are such that the poles do not lie on the cuts beginning
at ps and 0. The functions a(s) and v(s) are known in
terms of the previously determined lower-order func-
tions in the expansions (21)—(24). The function v(s) in
general has a left- and a right-hand cut and satis6es a
Holder condition" on these cuts (as shown in Appendix
3). Furthermore,

XRea~(s') + . (29)
s'—s s'+s —4m'

a. ,—s) = a.(s) .
Under suitable conditions on &i(s), defined as

(34)

If we now let s approach the cut portion of the real axis
from above, we obtain a linear, singular integral equa-
tion for Rea&(s), namely,

1
Rea, (s) =—

&p ds' tan[2ri(s')]
4m

a (s)= tanb(s), (35)

at s=p, s, and at s= ~, the solution of (33) is unique.
As shown in Appendix B, in this case the solution of
(33), extended to complex values of s, is

it (s) =XRea&(s') +, (30)
s'—s s'+s —4m'

S P1 P2 $

n(s) " — ra-
+ ds

r2
+v(s') sinb(s')

-$ P1 P2 $

1 1
Xexp[—p(s') j — +

s' —s s'+s —p,

1
0(s)=exp— ds'8(s') — +

-s —s s +s—ps

where the 6' before the integral sign indicates that a
principal-value integral is to be taken on the appropriate
portion of the real s axis. On the other cut it simply
reduces to an ordinary integral. Once we have Reaq(s)
on the cuts, we have Ima&(s) there by Eq. (27) and
then, by analytic continuation [e.g., via (28)j, a&(s) where
everywhere.

The corresponding integral equation for fq(s) is

1 1

(36)

(37)

Refg(s) =—yg&'i +
s—Ms Ms+2m' —s

ds' tan[2'(s') )

00

p(s') =-&P dl-~O-) +
s 1 +s —ps-

(38)
P3

If these threshold and asymptotic behaviors on g(s) are
1

XR f&( ), +, ~ (31) ~ N. L Muskhelishvili, Sr'ngnlar in&egrag ~qna&jans (p. Near's' —s s'+s 2ms 2Ms- —hoG, Groningen, The Netherlands, 1953), p. 11.
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not ful61led, then there is some arbitrariness correspond-
ing to subtractions. The connection between P(s) in
Eq. (36) and qo(s) in (33) is given on the physical cuts
—~ (s(0 and tts(s(+ ~ by

Ref(s) = qo(s) . (39)

X
s' —s s'+s —4Ms

A tt
" ds'&rs(s'))&~(s')

(P
4er* (s'+s 4M')—

~, P=1, 2; n~P (41).
Here &a(s) contains the crossing-symmetric pole terms
and the driving functions from lower order known terms,
just as did g(s) in Eq. (87).The solution of this coupled
set of equations is discussed in Appendix C. There, these
coupled equations for g (s) are reduced to a pair of
uncoupled Fredholm equations whose kernels have
weak singularities. "Therefore, all the usual Fredholm
theorems are applicable to these new equations for the
za(s). Since this Fredholm kernel depends continuously
upon the parameter c of the crossing matrix A p of
Eq. (15), we are able to argue in Appendix C that these
Fredholm equations for the ttth-order functions of (24)
will have solutions for any value of c, except possibly
for some discrete set of values (i.e., in effect the charac-
teristic values of the equation). Since there is at most a

Finally, the coupled-channel equations for the first-
order corrections to I3o (s) are

00

Rebr (s) =gr (s)+P —&P ds' tanl 2rtp(s')]
4m'

8~p A ~p
XRebrt'(s') +, (40)

s' —s s'+s —4M'

where gta(s) contains the pole terms of Eqs. (16) and
(17). Similarly, the coupled equations for the real part
of the n.th-order correction to Bs (s) are given by an
equation of the form

00

X (s)=V (s)+—
&p ds' (s')X (s')

4M

denumerable set of values of c in each order of X for
which no solution exists, the union of all such values of
c must again be denumerable, so that only a discrete set
of values of c can exist for which there is no 8 (s)
satisfying the integral equations. There would still be
many continuous ranges of c for which 8 (s) would exist.

Therefore, leaving aside the obviously dificult ques-
tion of the convergence of the infinite series (21)-(24),
we conclude that the requirements of unitarity, crossing,
and analyticity are not sufhcient to select an internal
symmetry, even when coupling to two-body inelastic
channels is taken into account in our model.

From unitarity we find, as previously for ur(s),

Imbt (s) =tanl 2rt (s)) Rebt (s). (45)

Therefore, the tangent of the phase shift of 8 (s) is

IV. THE BOOTSTRAP REQUIREMENT

%e shall now impose the bootstrap requirement' ~ via
Levinson's theorem as discussed in Sec. I to see whether
or not the parameter c is restricted in any way. Since
this will be done by explicit calculation, we shall make
only a erst-order correction to the result for the static
model. That is, we assume

& (s)=bo (s)+» (s)=—l~ (s)le*' " (42)

Stated in a form appropriate to a two-dimensional
model, ' Levinson's theorem is"

b (4M') —b (~)= (rt —
&f.)s ——,'tr, (43)

where n is the number of bound states in channel o.
and q is the number of CDD poles in channel 0.. The
extra ~m is peculiar to a two-dimensional model and
results from the fact that the phase-space factor
Ls(s —4M')]-'" becomes infinite at threshold rather
than vanishing there as does the corresponding factor
l (s—4M')/s]'" in the four-dimensional case. (Cf. Ap-
pendix A for an example of this behavior. )

Since we are going to rule out any CDD poles, we
shall demand one bound state in the a=1 channel and
none in the at=2 channel. If we let rt (s) be the phase
shift of bo (s), then

bo (s) = Ibo (s) le*" "
=2Ls(s—4M')7't' sinrta(s)e'e-&'&. (44)

Imbo~(s)+) Imbr~(s)
tanb (s)=

Rebo (s)+X Rebr (s)

2Ls(s—4M')]'t'sinsrt (s) cosL2& (s)]+) sinL2rt (s)] Rebr (s)
(46)

cosL2rt (s)]([s(s—4M')]'t' sinL2t) (s)]+XReb, (s)}
» S. G. Mikhlin, Integra/ Eqttattons (The Macmillan Company, New York, 1954), pp. 59—66.
~e~ Footnote added t'n proof. Since the a=1 channel of B~(s) is coupled to A (s) (cf. vertex of Fig. 3), Levinson's theorem for

this channel is in general to be stated in terms of the eigenpheses of this channel rather than in terms of bI{s), which is only the
phase of J3'{s) and not an eigenphase. The relevant quantity on the left side of Eq. {43) is {1/2i) ln{detS p), where 5 p is a 2X2
matrix. However, the off-diagonal elements of S„e are each proportional to X Pi.e., to G(s)], so that, to 6rst order in g, Kq. (43)
is correct for cx =1, as well as for a =2.
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Since Imbr'(s) is bounded by unitarity as was a&(s), it
follows that Rebr (s) = 0 whenever cosL2ri (s)j=0.
Therefore, 8 (s) will pass through a resonance only for
those values of s= s; for which

Ls;(s,—4M') j"'
Reb, (s,)= — sinL2ri (s,)]. (47)

Furthermore, as s —& 4M' or as s ~~,
tanb (s) —+tang (s) if Rebr (s)/Rebe~(s) —&0,

~tanL2ri, (s)j if Rebe (s)/Rebr (s) ~0. (48)

In order that the series (24) approach a limit uniformly
as X ~ 0, we require that

Rebr (s)/Rebo (s) —+ 0 (49)

as s ~ 4M' or as s ~~ . This simply means, from (48),
that the phase shift b (s) will approach its static-limit
value ri„(s) continuously as M -+eo. Condition (47)
must be

Rebr'(sr) = —{Lsr(sr—4M') j'~'/X) sin(2rir(sr)] (50)

for only one value s =s» 4M' in the n= 1 channel, while
the equality (47) must never hold for any value of
s)43'' in the 0.=2 channel. Assume that there is no
pole in (46) for a= 2 and that the expression (50) holds
for one and only one value s&)4M' for some value of c,
the parameter in the crossing matrix. Since the func-
tions in (50) are continuous functions of c and s, with
4M (s(~, then if c is changed infinitesimally to c+bc,
there will be a value of s, say sr+bsr, for which (50)
will still hold. "b Therefore, the bootstrap condition in
the form of I.evinson's theorem will not restrict the al-
lowed values of c to u discrete set, although it may limit
c to finite continuous ranges.

V. CONCLUSIONS

As an introduction to this section, a few simple ob-
servations may be in order. This paper has been con-
cerned with singlet-doublet scattering; that is, with
events in which particle a, having only one possible
value of its quantum number associated with an internal
symmetry and assigned to a singlet representation of

"b Footnote added in proof. That Levinson's theorem be satisfied
gives us an equation of the form

Ii(c,s) =0, (I)

where F is a continuous function of the real variables c and s.
The Kq. (i) above represents the intersection of a two-dimensional
surface and the c-s plane. Now the argument based on continuity
given in the text is valid unless the c-s plane intersects the surface
only at a discrete set of points {i.e., only at extrema of the surface).
However, the numerical value of F (and possibly the shape of the
surface as well) depends upon the values of the coupling constants
I'; LEq. (32)g or upon X. Therefore, if for a particular value of X
this extremum condition occurs accidently, we may simply vary
X and, correspondingly, the intersection dehned by (i). Then the
argument given in the text applies to these new solutions, so that
a unique value of c is still not selected.

this group, is scattered from a particle b (or the anti-
particle b) having two possible values of this internal
quantum number and assigned to a doublet representa-
tion of the symmetry group. This treatment can easily
be extended to doublet-doublet scattering. In this case,
all the equations for the iterated functions would be
coupled ones and the methods of Appendix C would
suKce. As is probably fairly evident, the conclusions
remain in essence the same as above. There is still no
unique solution for the parameter of the crossing matrix.

Also, we have not been concerned with the possible
uniqueness of the solutions as functions of the variable
s (the energy squared in the c.m. frame) as were Huang
et at. '7 One reason for not investigating this question in
any detail is that the asymptotic behavior of the scat-
tering amplitude as a function of s does not depend
critically upon the value of c. This has been discussed
in detail for the case corresponding to X=O (i.e., all
nonzero amplitudes uncoupled). ' r This feature also
persists for the solutions found in Appendix C. There-
fore, it does not appear that a detailed study of asymp-
totics will place stringent restrictions on allowed values
for c.

Finally, it is desirable to evaluate the possible rele-
vance of this oversimplified model to the question of
bootstrapping internal symmetries in reality. It may
certainly be true that the complications inherent in a
four-dimensional world may be necessary to narrow the
many a priori possible internal symmetries to one (or
only a very few); hut if this is the case, then the boot-
strap mechanism would seem to have to remain an
unproved conjecture. Although additional approximate
calculations may generate an even greater number of
correct values of ratios of coupling constants and may
strengthen our belief in the mechanism, they cannot as
such demonstrate that bootstrapping does indeed gener-
ate the only physical situation possible. Therefore, a
tractable model that is mathematically similar to the
actual physical situation appears to be the only reason-
able means of demonstrating conclusively whether or
not the bootstrap conjecture about the origin of internal
symmetries is correct.

The model studied here is mathematically similar to
what is generally believed to be the situation realized
by nature in that unitarity, crossing, analyticity, non-
linearity, inelasticity, relativistic invariance, and a self-
consistency condition are all present. A limitation of the
work is that we have examined the possible bootstrap
restrictions only to first order in X (Sec. IV). Neverthe-
less, there is good reason to believe that the conclusions
of that section are true in general since the continuity
of the solutions as functions of c and s, which was
essential to the argument, will persist to all orders in X.
Therefore, at the very least, the fact that for this model
the bootstrap mechanism failed to select an internal
symmetry group is not an encouraging result for the
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bootstrap conjecture about the origin of internal
symmetries.
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APPENDIX A: AN EXACT SCATTERING AMPLITUDE

The, purpose of this Appendix is to exhibit briefly a scattering amplitude corresponding to Ap(s) of Sec. III.
~ith simple kinematical changes this will also serve as an example of Fp(s). The claim made is that an unsubtracted
Ap(s) is

A, (s) Ap(2m') 4m' 2[s(s—4m')]'IP

A p(2m')

(s—2m') dS

,~2 [s'(s' —4m') j"'(s'—2m') s' —s s'+s —4m'
(A1)

and 1/Ap(2m') is real. This obviously satisfies the elastic unitarity version of Eq. (6) which implies

1m[1/T(s)]= —2[s(s—4m') j "'.
It is a straightforward matter to show that

IIIl Im$=
(s—2m')A (s)

~

s—2m'~ 'A p(2mP)

dsc o

4„' [s'(s' —4m') $"'(s'—2m') (s' —Res) '+ (Ims) ' (s'y Res) '+ (Ims) p
(A2)

If we require 1/[A p(2m') j)0, then Im[(s —2m')A p(s) p'/Ims(0 everywhere in the finite s plane except possibly
on the real axis (i.e., except: where Ims= 0). Then Ap(s) will have no poles in the complex s plane, except possibly
on the real axis. This requirement on Ap(2m') in turn implies

1
C—= +- — )0.

A p(2m') 4m'
Therefore,

1/Ap(s) = C——',i[s(s—4m')1-'~' (A3)

can vanish only on the strip 0&s&4m of the real axis. There are in fact two bound-state poles on the real a»s
one on the strip 0(s(2mp and one on 2m'&s(4mp (i.e., one in the s channel and one in the I channel). Since

tang(s) =
2C[s(s—4m') j'~'

we see that Levinson's theorem, Eq. (43), is satisfied.

APPENDIX B: THE UNCOUPLED EQUATIONS

In this Appendix we consider the solution to the singular integral equation

1 " 1.

p(s) =g(s)+ &&s'&(s') 9p(s') — +
pp s s s+s—pp

which is a generalization of the Omnes equation. Here 6' stands for the principal value since $ is on pne of the cuts
&s&0 or pp(s(+ pp. The real functions g(s) and 0 (s) are given and satisfyHolder conditions, "while solutions
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p(s) are sought which also satisfy this condition. More specifically, g(s) contains the bound-state pole terms as
well as driving terms from lower order functions and is given by

g(s) = r2
+s(s),

S Pj, P2 . S
(82)

where z(s) has both a right- and a left-hand cut. As usual, for complex values of z(Res—=s) we define a function

F(z)= ds'o(s')q(s') +
2~i s s s+s pa-

If we let s+= sixie, e ~ 0, then

~(+)—~( )=Le( —p)+e(—)j ()v()

(83)

J"(s+)+~(s )=—
XS P3

ds'o (s') &p(s') +
s —s s+s—p8

If we substitute these into (81), we find

{1—'
()Ltt( — )+tt(—)j)p(s")—{1+' ()I:~( — )+~(—)j}~( )=Le( — )+~(—)7 ()g().

As usual, let
F(z) =C(s)Q(s),

where Q(s) satisfies the homogeneous version of (86) t i.e., g(s) =—Oj. Then,

(86)

(87)

where
2%1 P3

ds'8(s') +
s —s s +s—p3-

(88)

o(s)—= tan8(s) .
Also, crossing symmetry has been used in the form

o(pg —s) =o(s).

(89)

then

p(s) —=—6' ds'8(s') +
s —s s +s—p8-

(810)

Q(z+) =expt p(s) +ib(s)j.
The equation satisfied by 4 (s) of Eq. (87) becomes

LtI(s—pa)+e( —s)jo(s)g(s)
C(s+)—C(z-) =

{1+~Le(s—ps)+~( —s)fo(s)&Q(z )
whose solution is

(811)

C(s)=

This can be simpli6ed to
271 Z P3

"ds'o(s')g(s') expt —p(s')+i8(s') j 1

L1+i~(s')] s —z s +s—pa-

C (s) = ds' sin8(s')g(s') expL —p(s') $ +
2xs s —s s+s—pe

We can now compute y(s) from (84) as

~(s)= LC'(s')Q(z') —C'(z»(z )j
o (s)

exptjo(s) j 1
=cosh(s) g(s) cosh(s)+ (P ds' sin8(s')g(s') exp) —p(s')$ — — +-

jr s —s s+s—ps
(813)
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Finally, the analytic function P(s) for complex s of which q (s) is the real part for real s, i.e., the function for which

Reij(s) = pp(s), s real,
1S

Q(s)
P(s) =g(s)+ ds' sin8(s')g(s') exp[—p(s')] +

s —s s +s—
imp

Of course, to this solution of (81) can be added any solution to the homogeneous equation

As before, we define

1
p o(s) =-6' ds'o (s') yp(s') +

s —s s+s pp

(815)

so that

Fp(s) = ds'o (s') pp(s') — +
271 $ p3 s —s s+s—pp

Fp(s+) =e"'i'&Fp(s )

such that

with Q(s) still given by Eq. (88), then

Fp(s) = C p(z) Q(s),

C p(s+) —C p(s-) =0,

P-[s(z—~p)]
Cp(s) =

2i[s(s—pp)]"
(816)

where I and m are positive integers or zero, P„(x) is a real polynomial of degree e, and we have assumed that
there are no essential singularities at p, 3 or ~ and have demanded crossing symmetry. Then,

[Fp(s+)—Fo(s )] P-[s(s—pp)]
V p(s) = e'&' cosh(s) .

o (s) [s(s pp)]"

Therefore, the most general solution of (81) for complex values of s is

(8»)

Q(s)P„[s(s—pp)] Q(s)
P(s) =g(s)+ +

[s(s—pp)]"

1 ].
ds' sinb(s')g(s') exp[—p(s')] +

s' —s s'+s —pp

(81S)

The values of e and m are fixed by requiring that P(s) remain bounded at threshold and have a prescribed behavior
as s —+ op .The behavior of 5(s) near imp and pp determines the behavior of the integral in (818) in the neighborhoods
of these points. One then chooses e and m in order to cancel any unwanted divergence at threshold and to give the
prescribed behavior at infinity. For example, if 8(ltip) =0=8(~), then the solution of Eq. (81) is unique and is
given by (813) or (814). Since we shall not be concerned with the question of uniqueness, we shall not discuss
the determination of m and m further here. This can, however, be found elsewhere. "' We simply require a proof
that there does exist a solution to (81) and a knowledge of its form.

APPENDIX C: THE COUPLED EQUATIONS

In this Appendix we shall discuss a method for obtaining solutions to the singular coupled integral equations

1
x. (s) =y (s)+—6'

1 3 A e
" ds'oe(s')ye(s')

ds'o (s')y (s') + + (P, n, P=1, 2; n/P. (C1)
s —s s +s—4M m' 4~~ (s +s—4M )

As in Appendix 8, we assume the given functions y (s) and o~(s) to satisfy Holder conditions" on the
cuts —pp &s(0 and 4M'&s(+~ on which Eq. (C1) is defined, and seek solutions z (s) satisfying such a

"R.Omnes, Nuovo Cimento 8, 316 (1958)."¹I. Muskhelishvili, Ref. 11, p. 230 and p. 330.
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E"(s, s')=
2(s' —s) (s' —s)

As~ f(p~(4M' —s) —@~(4M' s—')] Lf'~(4M' —s' 4M' —s) —f'~(4M' —s', 4M' —s')]

f'~(s",s) =6'

~s(s",s) = (p

bs(4M'-s' 4M' s) —~&(4-M'-s' s')]
+Ass a'(s'), (C11)

(s'+s 4M—')
E"( ")—"( ')] .

ds sinbs(s') expL —ps(s')],
(s'—s)

Lv~(4M' —s') —v~(s")]
ds sinbs(s') expL —pp(s')],

(s' —s)

i &(s)=(P
43f

ds' singp{s') expL —pp(s')]

(s' —s)
(C14)

" ds' sing&, (s')]

(s' —s)
(C15)

We can now reduce Eq. (C9) to a Fredholm equation of the second kind as follows: If we again return to (&1)
and (813) and take

A p

g (s)=o& (s)+ F."(s,s')y (s')ds',

and let go (s), which will be given by (813), denote the solution of

then we find

00

yo (s)=or (s)+—P
A

ds'0 "(s')yo (s') +
s' —s s'+s —4M'

(C17)

where

A p

x (s)=y, (s)+ — cos5„(s) E (s,s')x (s')ds',

expLp-(s)]
E (s,s')=cos8, (s)K (s,s')+ (P

A
ds" sinb (s")E"(s",s') expL —p (s")] +s"—s s"+s—4M'

(C19)

S that includes the real axis. First consider (C18) when

g (s) =Rebi (s), the first-order correction in Eq. (24).
Then the functions go (s), cos8 (s), and 1V (s,s') of
(C18) are defined in terms of analytic functions of and
principal-value integrals of the zero-order functions
Lbo~{s) in our earlier notation) which are the solutions
given by Martin and McGlinn. ' As reference to their
explirit solutions will show, these zero-order functions
are continuous functions of s in the range 4M2& s(+~
and are analytic in the region X) of the c plane. Note
that if a function f(X,t), which is continuous, bounded
for a&t(b, and analytic for some domain of X, is used
to define a g(X,s) as

The kernel in (C19) has a weak singularity, "as is evi-
dent from the definition of E (s,s') given in (C11).
Therefore, (C18) is a Fredholm equation of the second
kind with a weak singularity and, as such, is subject to
all the familiar I'redholm theorems. "

Now recall that the functions xo"(s), 8,(s), and
E (s,s') of (C18) depend upon the parameter c of the
crossing matrix (15) in our model. It is known that a
solution of (C18) will be given by the Fredholm re-
solvent unless, possibly, there is a nontrivial solution
to the homogeneous, adjoint version of (C18). We wish
to show that this can happen for at most a discrete set
of values of c. To this end, let us study the modified
kernel ' dtf(~, t)

(t s)—g(X,s) =6'M (s,s')—=A s cosL8 (s)]X (s,s'). (C20) (C21)

The first step is to show that M~(c; s,s') of (C20) is a
continuous function of c and s, s on the cuts —~ (s(0, then g(X,s) is also continuous for a&s&b and is analytic
and 4M'&s(+~. In fact, M (c; s,s') will be a holo- in X. The only thing requiring proof is the continuity in
morphic function of c in the complex c plane in a region s, which is easily seen as fo11ows. Let 5&&, both suS.-
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ciently small. Then

dt f(t)
I g(~+b) —g(~) I

= b 6'
(t—s)(t—s—b) N

E&(X; s,s') = P a,P.,s)b„*g.,s'), (C27)

known to be the same. As is usual for completely con-
tinuous operators such as (C26), we begin by considering
a Gnite-rank kernel

8+8 dt f(t)
b6

, , (t—s)(t—s—b)

1—bi )»If(~) I

I f(s) I
ln

I

=—e'. (C22)
1+6/e) e

Therefore, we see that xo (c,s) and b (c,s) of Eq. (C18)
are analytic functions of c in region S of the c plane,
while E (c; s,s'), and hence M (c; s,s') of (C20), has a
weak singularity on 4M'&s(or s')&+~ and also
possesses the same analyticity in c. If we iterate (C18),
the weak singularity will disappear. %e conclude, then,
that (C18) is equivalent to a Fredholm equation of the
second kind whose kernel is continuous in s and s' on
the cut from 4M2 to+ ~ and is an analytic function of
the parameter c in region X) of the c plane. Now if we
knew that the homogeneous adjoint equation associated
with this Fredholm equation [in essence Kq. (C18))
could have nontrivial solutions for only a discrete set
of values of c, then we could deduce that the Fredholm
resolvent would produce solutions to (C18) for con-
tinuous ranges of c (that is, for all values of c except
those belonging to this discrete spectrum of the kernel)
and, therefore, that a unique value of the crossing
parameter is not selected. The correctness of this as-
sumption will now be proved.

In other words, we have an inhomogeneous Fredholm
equation

g(X,s)+ q P.,s) = E(X; s,s')P(X,s')ds', (C23)

and we must show that the eigenvalues «(», given by

«(»f(X,s) = E(X; s,s')P(X,s')ds', (C24)

can take on the value «(»=+1 for only a discrete set
of values of X. It is given that p(X,s) and E(X;s,s') are
continuous functions of s and s' on the range for which
(C23) is defined and are analytic functions of the
parameter ) in some domain of the 'A plane and that

where a„(X,s) and b„(X,s) are analytic functions of X for
the same domain of X as is E(X; s,s') and

Then,
( -I -)=b-=(b-lb„&. (c28)

P(X,s) = Q c„(»b„(X,s), (C29)

so that (C24) becomes

P c„(»g,(X,s)=«(»P c (»b (X,s). (C30)

This implies

p [f„„(»-b.„.(»)c,(»=o,
x=1

(C31)

where the functions

f,(»=-(b.(»l, (»)
are analytic in ). As usual we must set

(C32)

Kp(»leap(X s) = E~(X; s,s')Po(X,s')ds', (C35)

where

detl f „(»—8„„«(»l=0. (C33)

Ke are interested in showing that there is only a dis-
crete set of values of X for which ~= 1.Therefore, setting
a=1, we obtain

detlf. „( )—b.„l =o. (c34)

This quantity is a polynomial of degree E in the f „(»,
so that it is an analytic function of X. Therefore, (C34)
can hold for only a discrete set of values of X, say (X;),
since the zeros of an analytic function are isolated.

We can now return to our exact equation (C24), since
a completely continuous kernel satisfying (C26) can be
approximated arbitrarily closely by a kernel of Gnite
rank of the form (C27).'~ The solutions of (C24) may
be approximated arbitrarily closely by those of

I q(x, s) I'ds& ~, (c25) E(),; s,s') =E~(X; s,s')+ eE(X; s,s'), (C36)

I E();s,s') I'dsds'& ~ .

in which the norm of eR(X; s,s') can be made as small
as we please for E large enough. ' Therefore, we shall

(C26) write
iP(X,s)=lP (X,s)+bx(X,s). (C37)

It is sufficient to prove this for (C24), which is actually
the homogeneous equation, since the number of eigen-
values of the homogeneous adjoint equation is well

17 B. Friedman, Princip/es and Techniques of App/ied Mathe-
matics (John Wiley L Sons, Inc. , New York, 1956), p. 39.

'8 $. G. Mikhlin, Ref. 12, p. 22.
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From Eqs. (C24) and (C35)—(C37) we find

(Z)PP, ,S)—«O(~) O'OP &~) I

tions. Symbolically, Eq. (C1) may be written

Kl'Pl LlP2+ fl &

KOP2=L2P1+ f2&
(C43)

K"(h; s,s') LP(X,s') —Po(X,s')]ds'

+o E(X; s,s')P(X, s')ds' & o', (C38)

from which it follows that

I
«(l )L|t p(~,s)ybx(), s)]—«OP)yp(x, s)

I

«' (C»)

where the E; and I,;, j= j.) 2, are integral operators with
Cauchy singularities. Now Appendix 8 was concerned
with the construction of operators K,*and L,*such that

E,E;~=I=E;*E;,
L,L,*=I=L;*L;,

where I is the identity and the index j is not summed.
Therefore, Eq. (C43) is equivalent to the set

Therefore, for suKciently large S we can write

«(x) =«p(x)+ g«(z), (C40)

Pl= Kl*L1P2+Kl*f1
&

P2=K2 L2Pl+K2 f2 ~

(C45)

where jg«(X) ~
can be made arbitrarily small in the

domain of X being considered. We conclude that «(X)
can take on the value 1 for only a discrete set of values
of X.

We can also see easily that the solutions to (C24), or
to (C23), are continuous functions of s on the range of s
for which (C24) is defined. Since K(s,s ) is a continuous
function of s and s', it follows that

i K(s+ b, s') K(s,s')
i
=—bK(s, s')

i (p, (C41)

so that from Eq. (C24) one obtains

«I 4(~+b) 0(~) I

= —LK(~+b, ~') K(~,~')]0(~—')d~'

= b K(s,s')P(s')ds' & o', (C42)

which states that 1b(s) is continuous.
We began this argument for (C18) by letting x (s)

=Rebl~(s). However, it is now evident that our con-
clusions hold for any of the Reb„(s) since the terms

gp (s), cosb (s), and E~(s,s') are given in terms of the
lower-order functions, and ultimately in terms of the
boc2(s), which have the desired continuity and analyticity
properties by induction. Therefore, we have the result
quoted in Secs. III and IV, namely, that the Reb„"(s)
are continuous functions of c and of s in the range
4~2&s(+ ~ and that they exist for all values of c,
except possibly for a discrete set of values of c.

Finally, there is the important technical point of the
equivalence of the Fredholm set, Eq. (C18), and of the
original set of singular integral equations given by
Eq. (C1). That is, we must show that for contimious
ranges of the parameter c of the crossing matrix the
solutions of Eq. (C18) are necessarily solutions of Eq.
(C1) and that they satisfy a Holder condition and have

sufficiently well-behaved asymptotic behavior so that
the integrals in Eq. (C1) all converge. We begin by
demonstrating the equivalence of these sets of equa-

But Eqs. (C43) and (C45) together imply

KlPl LlK2 L2Pl+gl &

K2P2= LOK1 L1P2+g2 &

where
g1= L1K2*f2+fl &

g2=LOK1 f1+f2.

(C46)

In turn, Eq. (C46) is equivalent to the Fredholm set

Pl= Pl +llew 1P1,

P2 P2 +~2P2 &

where the Fredholm operators are given as

~1 +1 L1+2 L2)

~2 K2 L2K1 Ll
&

(C47)

CV1 =L1E2*L2E1*,

X2——LOK1~L1K2*.

(C49)

Since S, is not equal to the identity opera, tor, Eq. (C48)
implies

K1P1 L1P2 f1=a'1, (C50)

K2P2 L2P1 f2 g'2
&

where the g; are eigenvectors of X; with unit eigen-
values; i.e.,

(C51)

+1+1 g1)

+2q2 =g2.

In fact, Eq. (C47) is just Eq. (C18). Therefore, we need
only show) for continuous ranges of the parameter c,
that the solutions of Eq. (C46) are necessarily the solu-
tions of Eq. (C43).

Direct use of Eq. (C46) shows that

(KlPl L1P2 fl) = V1(1KlPl L1P2 fl).
(C48)

(K2'P2 L2'Pl f2) =1V2(K2P2 L2'Pl f2) &

where the Fredholm operators X, are given as
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However, as we have already seen in this Appendix, a
Fredholm operator depending analytically upon a
parameter c can have eigenvectors corresponding to unit
eigenvalue for only a discrete set of values of c. There-
fore, there are continuous ranges of c for which the only
solutions to Eq. (C51) are f,=0. F—or these continuous
ranges of c, Eq. (C50) reduces to Eq. (C43), which
establishes the equivalence of Eqs. (C18) and (C1).

The solutions of Eq. (C18) have been shown to be
continuous functions of s, so that they obviously satisfy
a Holder condition by virtue of the mean-value theorem.

The Holder condition can be established under even
weaker conditions than that of continuity. "Since the
solutions of the Fredholm equations (C18) belong to the
class of functions Z~,

- these functions must vanish for
large values of s. All of the integrals in Eq. (C1) are
weighted with the functions aa(s) which are assumed to
vanish su%.ciently rapidly to ensure convergence of the
principal-value integrals. If this is not the case, then
one simply makes enough subtractions to guarantee
convergence.

' N. I. Muskhelishvili, Ref. 11, pp. 135—140.
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In the present discussion we seek to clarify certain aspects of SU(6) theory which have an important
bearing on the problem of formulating a bootstrap dynamical description of symmetry breaking. We discuss
here, in particular, a certain ambiguity of the meson-baryon coupling which exists even in the limit of exact
SU(6) symmetry, and which we call assignment mixing. It is possible to recover certain special theories,
such as the so-called W-spin theory, by a particular choice of the assignment mixing angles. Bootstrap
equations in the exact SU(6) limit do not 6x the angles, unless one also considers mesonic bootstrap equa-
tions corresponding to Fermi- Yang —type theories. It is also shown that in the exact SU(6) limit, the normal-
ization and vertex equations of the Cutkosky-Leon bootstrap method both yield the same equation, which
relates the coupling constant f to the ratio of the meson mass m to the cutoff parameter ks. Approximate
solutions of the Bethe-Salpeter equation are obtained.

I. INTRODUCTION AND SUMMARY

''T is commonly believed that SU(6) theory is a
- - closed subject in the static limit and that the only
interest is in the formulation of a relativistic version of
the SU(6) group. However, our experience with the
bootstrap version of SU(6) theory has been that there
are still some features of SU(6) symmetry even in the
nonrelativistic domain which, to the best of our
knowledge, have not yet been thoroughly discussed.
One of these features is the problem of assignment
mixing, which we will discuss in the present paper. This
mixing leads to the situation that even though there is
only one SU(6) Clebsch-Gordan coe%cient' for coupling
35I356+56, there still remains an ambiguity in the
meson-baryon couplings.

The present paper is in the erst place an extension of
the bootstrap version of SU(6) symmetry of Capps' and
of Belinfante and Cutkosky. 3 In addition, we intend
to provide an elementary and rather explicit discussion

*Work supported in part by the U. S. Atomic Energy Com-
mission.' C. L. Cook and G. Murtaza, Nuovo Cimento 39, 531 (1965).

2 R. H. Capps, Phys. Rev. Letters 14, 31 (1965).' J. G.. Belinfante and R. E. Cutkosky, Phys. Rev. Letters 14,
33 (1965).

of the model. Our emphasis therefore is not on the vari-
ous successful features of the SU(6) bootstrap theory,
but on the conceptual problems involved in the formula-
tion of the theory.

Since we wish to discuss low-energy meson-baryon
scattering, it is reasonable to take advantage of the
great simplifications which arise by making use of the
static model, suitably extended to include vector mesons
and spin--, isobars. The simplifications include, first of
all, the limitation to p-wave orbital angular momentum
states. A second nice feature of the static model is that
the baryon mass M disappears from the 6nal bootstrap
equations, 4 thus reducing the number of parameters in
the theory. In the third place, the static model is very
familiar and we have therefore the advantage of being
able to build on previously acquired intuition. Finally,
it is our belief that the close relation of the static model
to relativistic dispersion theory' may help to provide a
link between the present nonrelativistic theory and a
relativistic SU(6) theory, if such a theory exists at all.
In a relativistic theory there are several vertices which

4In the case of broken symmetry, only the mass differences
between the various baryons will appear.' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).


