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which is consistent with the hypothesis that this
amplitude be real. The generalization of the preceding
analysis to the "complete" problem involving all two-
particle channels is straightforward.

Further details of this type of self-consistency prob-
lem, which we note can be considered to be a special
case of the multichannel approach of Lichtenberg and
Williams, ' will be published elsewhere. We merely
note here that a preliminary (spin inclusive) calculation
along these lines indicated that the co-p elastic cross

"D. B. Lichtenberg and P. K. Williams, Phys. Rev. 139,
8179 (1965).

section is a few rnb and. is characterized by a strong
forward di8raction peak. These results were obtained
with the same parameters used in the calculations pre-
sented in Sec. III. We are thus inclined to believe that
our approach in calculating absorptive amplitudes has
some merit, which leaves the problem of photo-p pro-
duction unsolved as yet.
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The many-body equations studied by Weinberg are applied to a particular system of three particles
interacting with separable potentials. For certain values of the energy, it is found that the homogeneous
equation has extraneous nonzero solutions.

A SET of equations has been proposed by Weinberg'
to solve for the T-matrix of the many-body

Schrodinger system. The equations are integral equa-
tions of Bethe-Salpeter type, with a connected energy-
dependent kernel. For local square-integrable potentials
the kernel is known to be Hilbert-Schmidt if the energy
is not real. ' In a certain case, we will show the existence
of solutions of the homogeneous equation for nonreal
energy. These, of course, do not correspond to bound
states of the Schrodinger equation; each bound state
does, however, correspond to a homogeneous solution.
This situation indicates the care one must exercise
generally in identifying homogeneous solutions of
Bethe-Salpeter equations with bound states.

We consider a system of three particles interacting
with separable potentials:

M=M=2, &=00,
V13 O y V12 Vl nn

p V32 V2 nn ~ (1)

In this situation we write Weinberg's equation

with

H p= Et'+E2', H1 =H3+V1, H2= H3+V2 ~ (3)

I, the inhomogeneous term, does not concern us; A is
related to the connected part of the T-matrix. Ke will
use the familiar expression for the resolvent involving
a single potential
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(in our solution A will equal zero when n=O), the
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B(x,y) =—
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homogeneous part of Eq. (2) becomes In any region of energy a finite distance from the real-
energy axis, the operator norm of bE approaches zero as
a —+ 0, so Eq. (14) is well defined (1—5K has an inverse) .
From Eq. (14) one sees that if Eq. (11) has a solution,
it is of the form

x &(»,yi)—
E—xio —yio 1+h(E,x)

d3$yd3py 8=CL1/(1 —8K)jnn

n(x, )'n(yi)' 1
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n(x) is now further specified

n(x) =0, x(Kp or x)Kp+a,
l/2

n(x) = Kp(x(Kp+a.
4m.ax'

a and X are parameters. From now on all variables x
and y are limited to the range Kp(x, y&Ko+a. As
motivation, we consider the limit n —&0 when n(x) ~
(X/4orKp')'~'P" (x—Kp). This limit does not represent a
potential. Equation (7) then becomes an algebr'aic
relation

'I

1—X/(E —2Kp') E 2Kp' E—2K—p'

(9)
1+X/(E—2Ko') E—2Ko' E 2Ko'—

There are two values of 8 solving this equation-:

with C an arbitrary constant. Equation (11) is then
equivalent to the relation

(16)

Equation (11) has a solution if and only if Eq. (16)
has a solution.

Calling the right-hand side of Eq. (16) R(E,a), one
easily shows: (1) for sufficiently small a, R is analytic
in E in a neighborhood 1V (independent of a), of
E=2Koo —iX. (2) R~ F(E) on E uniformly as a~0,
with F (E) analytic, F(2Ko' —iX) = 1, and (dF/dE)
(2Ko' —ik)WO. The existence of a solution to Eq. (16)
for small enough a follows from Rouche's theorem.

The example can be generalized trivially to the case
when M~ is sufhciently large but not infinite, and V~3
is' sufficiently small but-not zero, by including these
terms in bE in the above argument. It is natural to seek
similar examples involving only local potentials (assum-
ing they exist). Presumably these are more diflicult to
find, because:it would seem to require approximation of
the corresponding E by a separable Eo of rank greater
than one. The generalization of Eq. (16) is

8= 2EO'+iX . (10) Det(s;;—N, L1/(1 —)K))N )=0 (17)

Kp(x, y,x',y') = (1/X') n(x) n(y) n (x')n(y')

and write Eq. (11) as

01

(12)

(13)

(14)

We now show that for any b there is an e such that
Eq. (7) has a solution with ~E—2Kp'+iX~ &b if a&p.
Writing Eq. (7) as

EB=B, (11)
we define Eo as

where the equation to be solved is EB=8 and E=Zu,~;
+8K. If 5K is made sufficiently small, under favorable
circumstances Rouche's theorem may again be used to
verify the presence of a homogeneous solution. Of
course, other methods. may be used to find such
solutions.

Finally, we should state that the presence of the
homogeneous solutions we have found in no significant
way limits the utility of Weinberg's equations. Coming
as they do at isolated values of the energy, such
solutions can be handled by a variety of techniques.


