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The reciprocity relation in the photopion processes y+N ~+—7I+N as a possible test of C,& and T,& in-
variances of the electromagnetic interaction is discussed, where N can be any nucleus or nucleon. The
sensitivity of such a test is estimated for the special case N=rs or p in the energy range near the P„-,')
resonance.

y+N -+ sr+N'

y+N & rr+N', —
(2)

(3)

where N and N' can be any two nuclei (or nucleons). As
examples of (2) and (3), we may mention

y+ rt ~~ sr +p,
y+p+~ sr++I,

y+H'+~ sr +He',
and

y+He'+~ sr++ H'. (7)

That time-reversal symmetry implies reciprocity rela-

I. INTRODUCTION

T present, there is good experimental evidence
that the strong interaction H, & is separately

invariant under the space inversion I',t,, the time-
reversal T,t, and the particle antiparticle conjugation
C,&, there is also strong evidence that the electromag-
netic interaction H~ is invariant under the same space-
inversion operation P„and the product (C,.~&„i&.t).
However, it was realized quite recently' that there
exists, as yet, no good evidence that H~ is, or is not,
invariant under C,~ or T,t,. Throughout this paper, for
clarity we use the subscript "st" to denote the particular
choices of these discrete symmetry operators that are
determined by the strong interaction alone.

In a previous paper' (hereafter called 1), it was
pointed out that a systematic way to study the question
of T,t, invariance of H~, over a wide range of energy mo-
mentum transfer, is to consider the inelastic scattering
of a charged lepton l+ on a polarized target nucleon
(or nucleus) N:

t++N ~ t++I',

where 1=e, or p and I'&E, but otherwise F can be any
complex of strongly interacting particles. In this paper,
we wish to call attention to a related possible test of T,t
invariance of H~: the reciprocity relation for reactions

tions is, of course, well known. '4 The purpose of this
paper is to examine the sensitivity of reciprocity rela-
tions as possible tests of T,t invariance of H~, assuming
that the strong interaction is invariant under T,t,.
We observe that in photon reactions without meson pro-
duction (or absorption), e.g. , y+ d ~~ st+ p, the nucleons
are, or almost are, on the mass shell. Thus, except for
those processes which actually correspond to a photo-
pion production with the pion subsequently absorbed
by the nucleon, reciprocity relations for these reactions
hold to a good approximation provided that the strong
interaction satisfies time-reversal invariance; such rec-
iprocity relations are relatively insensitive to the
transformation property of HY under time reversal.

Another well-studied reciprocity relation is reaction
(4) at the zero-pion-energy limit. This relation is
usually expressed in terms of the Panofsky ratio, the
S-wave pion-nucleon scattering lengths and the thresh-
old limit of the photopion-production cross section. As
will be shown in the next section, such a relation can be
derived by using only the Hermiticity property of H~,
and is independent of the transformation property of
H~ under time reversal, provided all higher order terms
in the fine-structure constant are neglected.

However, at high energy both reactions (4) and (5)
can be used as good tests of T,& invariance of the electro-
magnetic interactions. Some estimations of the sensi-
tivity of these tests are given in Sec. III. In principle,
reactions (6) and (7) can also be used as tests of T,&

invariance; but, their cross sections are not known, and
it is dificult to estimate their sensitivities.

It is clear that the matrix elements for reactions (2)
and (3) are closely related to those for reaction (1).
The relations between these two diRerent tests of time
reversal invariance are discussed in Sec. II.

II. GENERAL DISCUSSIONS

In this section, we will consider reactions (2) and (3).
Let k, X and k', X' be, respectively, the momentum
and helicity of E and E' in the center-of-mass system,
and e is the polarization of p. LHelicity is defined to be
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&. ,= P I&X, ,, Ie gI(~iV')„, +&I,
y, ge, e

(9)

where ci is the space component of the electromagnetic
current operator of the hadrons, IXj,,i) is a single-
particle eigenstate of II,&, I

(s.E')i, , i,.+) is the outgoing
eigenstate of H, » and I(srlV')s, i ) the corresponding
iecomieg eigenstate. For definiteness, we choose the co-
ordinate system such that

k II s axis

k' is in the (x,s) plane.

Since H, ~ satis6es T,~ invariance, one has

T„exp(—inJ„) I Xu, i,)= I Ei,.i&

T«exp( —i7rJw) I (~Ã)&'.i'+&=
I (n1P)~', v~& (12)

where J„ is the y component of the total-angular-
momentum operator. ' Following the notations of paper

we may decompos'e the electromagnetic-current
operator ci„of the hadrons into a sum

the spin component in units of A along the direction
of motion. ) The differential cross sections for reactions
(2) and (3) are, respectively, proportional to

8, .= g I((s.S')u, i-Ie gISi, i&I'
y, x', e

exp(2i8 r) . (18)

Just as in paper 1, for each of these channels I', we may
select a stationary eigenstate of H, t, denoted by I&r&

where Xi. is the s component of the total angular mo-

mentum. Since the strong interaction is assumed to be
invariant under T,t,, the phase factors of these eigen-

states can always be chosen so that

T.& exp( in J„—) I
Xr) =

I & r& (19)

find, at k'=k"=0

(0,~"
I SI 0,x'&= 8„., (17)

where 8qq is the Kronecker 8 symbol. Thus, at zero pion

energy, n(k, 8)=0 for both reactions (4) and (5) in-

dependently of whether E„is, or is not, zero.
We will now derive the general expression of the

asymmetry function cr(k, 8) for any nuclei (or nucleons)
S', and at an arbitrary energy. In the collision

(p+1tr), the final system I' can be any one of the many
possible states (called channels) of the strongly inter-

acting particles. It is useful to choose I'=i, 2, 3,
to denote the various eigeechaenets of the strong-
interaction S matrix; each eigenchannel I' has a de6nite
isospin Ir, a definite parity (Pp and a de6nite total
angular momentum ji. The precise defintion of eigen-

channel will be given in Appendix A. In terms of these
eigenchannels the S matrix is a diagonal matrix and its
diagonal matrix element is

where

and

A.=J.+E.,

C,ig„C.r, ' —— J„+E„—
T.ig„T.r, '= J„+E„. —

(13)

(14)

(15)

The explicit construction of IXr) and some of its
properties are also given in Appendix A.

I et us consider first the transition:

(20)

The question of T,t, (or C,r) invariance of II„is to study
whether E„=O or not.

It is useful to de6ne the asymmetry parameter

n(k, 8)= (R„„.—E. ,/E„„.+R. ,), (16)

where 8 is the angle between k and k', and k is the
magnitude of k. From the above expressions (8)—(16),
it is clear that if cr(k, 8) AO, then E„WO and, therefore,
B, violates T,& and C,~ invariances.

Ke note that the outgoing and incoming states of
the xÃ' system are related to each other by the strong-
interaction 5 matrix:

(k",X"
I
S

I
k', X'& = ((vrE') i,",g"—

I
(7rcV') g, i +) .

For the special case where 1V and X' in reactions (2)
and (3) are both single-nucleon states, since all pion-
nucleon scattering phase shifts —+ 0 at zero energy, we

' Throughout the paper, the relative phase between states of
diferent helicities, or diRerent s components of the angular mo-
mentum, is chosen according to the convention used in A. R.
Edmonds, Angular Momentum in Quanlum Mechanics (Princeton
University Press, Princeton, New Jersey, j.957). We also use
Edmonds' conventions for all Clebsch-Gordan coe%cients.

Through rotation invariance and space inversion, the
matrix elements for transition from ) = —

~ to Xi = —
2

+1 can be easily related to the same F+ given by (21).
If H~ satisfies T,t invariance, then all F~(1') must be
relalisely real The subs. cript ~ in F~(l') denotes the
helieity 0 = &1 of the photon.

From Eqs. (12) and (19), it follows that

= (Xr I (~1P)„.i,+&. (22)

Furthermore, as will be shown in Appendix A, the
phase of the matrix element (22) is related to the
eigenvalue of the S matrix:

(22) = real coefficient &( exp(iver) . (23)

Here, we have taken advantage of the special co-

in which 1V can be any nucleus (or nucleon), but its
spin is assumed to be ~. For any given 6nal channel F,
there are only two matrix elements Lc.f. Eq. (32) of

paper 1j:
F+(I')=~l( = i+118*(0)+8.(0) I&, -~) (21)
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ordinate system (10). Since the azimuthal angle P
of k' is zero, all spherical harmonics Vi„(8,&) are real.

By using (22), the rate R„can be expressed as a
sum of four terms, corresponding respectively to the
initial helicities (o,X)= (1,~), (—1/2), (—1,—~2) and
(1 —2):

x r

+I Z &(~&')',~ l~r= ——,)F (r)ln

+
I
& &(~&')',~ I»= —r')&rF+(»I'

+
I E (( &')', -l&.=l)n.F-(i') I'}, (24)

where

qr=5'~&r expI i(fir —jr)j,
(Pz is the parity of S and j&= ~ is its spin. By using
reflection symmetry with respect to the (x,s) plane,
it can be readily verified that in (24) the first and the
second terms are, respectively, identical with the third
and the fourth terms. Hence,

R. .=4 + {I Q &(~V')~,v
—IXr=-', )F+(I') I'

By using (22), one finds

R 7=same expression as (25), except changing

F,(r) ~F,*(r) (26).

It is convenient to introduce two reuse functions
r~(F, X') and r (F,X') which represent the magnitudes
of the two matrix elements in (25):

&(~&')w, i, l&r= 2)Fy(I') =r+ expLi(Sr+fr+))

and

&(~&')' ~l ~r=. k)F (P—)=r -expL~(~-r+kr )3, (27)

where r, =r,(F;A') also depends on the momentum k'

(o =+ or —). In terms of r, and $r', R~„~ and R~„~
are given by

(R, .—R. „)= —8 Pr.(r,~')r, (r',~')

Xsin(8r —8r.) sin($r' —(r") (28)

and

Remarks

(i) If H~ satisfies T,» invariance, then fr+=0, or
~; therefore, a(k, 8) =0.

(ii) As already mentioned, for the zero-energy pion-
nucleon system all phase shifts 8i ——0. Thus, inde-
pendent of whether jr+=0 or not, the asymmetry
function n(k, 8)=0.

(iii) As discussed in Paper 1, the same functions

F~(P), but at different (four-momentum transfer), '
also appear in the various tests of T;~ invariance for
reaction (1). The introduction of these stationery
states

I Xr) makes it possible to give a relatively clean
separation of the effects of T,t, invariance of the strong
interaction from those of the electromagnetic inter-
action. Although (28) and (29) are derived for the
special case j~——~, it is clear that almost identical
expressions can be obtained for any arbitrary j&.

(iv) If in the sum (28), only one particular state P,
say the (2P) pion-nucleon resonant state, contributes,
then n(k, 8) is also zero. It is important to note that in

terms of the usual multipole moments there are two
matrix elements EI+'~' and M~+"' for the transition
from a y-nucleon system to the (2,2) resonance,
where E&+"' and M&+"' are, respectively, the electric
quadrupole and the magnetic dipole matrix elements.

I The explicit relations between these multipole mo-

ments and F~(1') are given by Eq. (37) in the next
section. $ These two matrix elements are relatively real,
if I„Istais fies T.» invariance. However, Eq. (28) shows
that even though Ej+'~' and M&+'" may be relatively
complex (which violates T„ invariance), their relative
phase does rot contribute to any violation of the
reciprocity relation, provided one averages over the
polarization of the photon. The same result also applies
to the T,~-symmetry-violating relative phase between
either E& and M~, or E&+ and M&+», for any orbital
angular moment l and isospin I of the pion-nucleon
system.

It will be shown in the next section that for the
actual case of reactions (4) and (5) near the (32/)
resonance, a magnitude of In(k, 8)

I
10% is quite

compatible with our present knowledge of these transi-
tion amplitudes.

(v) Res,ctions (4) and (5), or reactions (6) and (7),
are related to each other by the charge symmetry
operators exp(ArI„) where I„is the y component of the
total isospin operator. In order to derive the relations
between the matrix elements F+ of such related re-
actions, we may decompose

(R „+R,)=8 g r, (F,X')r,(P',X')

Xcos(8r —8r ) cos(&r' —$r"), (29)
where

exp(im I„)(g„). , exp( —ivrI„) = (g„), .„
(30)

where the sum extends over all 7, I", X', and. a= &.
The asymmetry function n(k, 8) is given by the ratio
of these two expressions. In this derivation, all higher
order terms in the fine-structure constant are neglected.

and

exp(ixI„) (g„).«exp( —i~I„)= —($„)g«.

For example, the usual isoscalar current belongs to
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(P„), ,„and the isovector current belongs to (g„),«.
Similarly, the matrix elements F~(1') can be decom-
posed into two terms:

F,(1')= LF,(1')]....+I F,(l )].«(31)
where I F+(I')], , and IF+(I")],«are given by Eq.
(21), but replacing ei„by, respectively, (ei„), ,„and

p 06(i'

To study the relations between a transition
y+X~ I" and its charge symmetrical transition

y+S'~ I" (32)

where Jt'/' and I" are related to X and I' by exp(isI„),
it is convenient to 6rst 6x the relative phase between
the two state vectors [I,I,) and II, I.) wi—thin any
isospin multiplet. Here, I(I+1) and I, denote the
eigenvalues of the operators P and I,. We choose

exp(irrI„) [I,I,)= expLis (I+I.)][I, I,). (3—3)

The matrix elements F~ of transitions (20) and (32)
are, then, related by

(34)
and

LF+(I")].«= —fLF+(I")]«(35)
where f is a phase factor depending on the isospin
eigenvalues I/v, (I,)/v, Ir, (I,)r of the states Jt/ and I',

f'= exp(is. l Ir+ (I,) r I/v (I.)/v]—}~
— (36)

III. SPECIAL CASE: N=n or p
In this section, we discuss reactions (4) and (5)

within an energy range below the 2x threshold. The
channel F denotes, then, only the pion-nucleon system
in various jp, 6'r, and Ir states. Let l be the orbital
angular momentum of the pion-nucleon system. One
has jr——l&-,' and /Pr ———(—1)', assuming that (P/v=1.
Reactions (4) and (5) have been extensively studied in
the literature, and it is customary to express the
differential cross sections in terms of the electric and
magnetic multipole moments E~~ and 3f~~ . As will

be shown in Appendix 8, these multipole moments are
simply related to the form factors F~(l'):

F,(r) exp(iver) = (&/w) '/'&'/'(2~)

&& (i+1)"'(L(I+2) (i+1~1)]"'E/+'
~Li(i+1~1))i/sM/+r) if jr ——i+is

&&i"'(L(f—1)(I~1)]"'E—'~L(i+1)(I~I))"'M '),
if jr=/ ——,

' (37)

where the superscript I=Ir and the factor (R/s)r/'

7 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957). For other references, see, e.g., M.
L. Goldberger and K. M. Watson, Co/Hsiol Theory Qohn Wiley gt
Sons Inc., 1964), Chap. 9.

8 A more recent theoretical analysis has been made by A. Don-
nachie and G. Shaw, University College, London (unpublished).

where (A+8 cos8+Ccos'8) is proportional to Z„
and (A'+8'cos8+C'cos'8) is proportional to E
The coeKcients A, 8 and C are given by

A = —,
' [E s/'WV2E "'['+3 [ (Ei+"'—Mi+'/')

~a~(E„»s—M „t/s) [s

+-'[(3Ei "'+Mi '"+2Mi '")
~~g(3E i/2+M 1/s+ 2M 1/2)

[
2 (39)

4LE s/s~v2E i/2]aL3E 3/2+Mt 3/2 M s/&

~~g(3E,+r/s+M, +r/s M t/s)]+c c (40)
and

C=-'.„.[3Ei "'+Mi '"—Mi "'
~~(3E 1/2+M 1/2 M 1/2)

[

2

3 [E,+ s/sM, +s/s~&(E, +r/s M,+i/s) [s
—-'[3E "'+Mi "'+2Mi '"

Wv2(3Et+'/s+Mr+ / -//-2Mi '/ ) [' (41)

where the upper sign is for reaction (4) and the lower
sign is for reaction (5). The coefFicients A', 8', and C'
are, respectively, given by the same expressions (39),
(40), and (41), provided that Ei+r and Mi~r are re-
placed by E~&' and M&~', respectively, where

E~P exp( iver) =PE—i~i exp( —i8r)]a,
Mi+'r exp( —ibr) = LM/~r exp( —ibr)]*, (42)

' In order to conform to the notations of Paper 1, the physical
system is assumed to be in a large volume 0, and all state vectors
are normalized to unity' e.g. , (Xrl&r)=1 and (Nx, &, INx, z )
=((7rN)g, i+I (sN)s, i+)= ((sN)q, q I

(z.N)s, q )=bye s», where
b),)t. and 8&& are the usual Kronecker 8 symbol. For states of de6-
nite angular momentum, it is convenient to assume 0 to be a sphere
of radius R. By using the familiar expressions lim (R/s)b» -+

s(k —k') and lim (0/8s')sag -+ h'(h —h'), it is easy to change the

normalizations of these state vectors to the various Dirac 8
functions, instead of unity.

are due to our convention that all state vectors are
normalized to unity. '

For clarity, we will assume erst that only the states
l=0, 1 and jz ——

~ or ~ contribute; i.e., there are six
pion-nucleon states: I"=sr, prb and pry, where the
subscript I is the isospin (I=~ or as), and the second
subscript in pri and pry denotes the total angular
momentum jr. It follows from definition (21) that
F+(I')=0 for jr ———,'. Thus, we have althgether eight
functions F~(1'), which can be expressed in terms of
the usual two electric dipole moments Eo+, four
magnetic dipole moments M~+ and two electric
quadrupole moments Et+r. By using (27)—(29) and

(37), o/(k, 8) can be expressed in terms of Mi~r, Ei~r
and the T„symmetry violating phases fr+. Thederiva-
tion of these expressions is straightforward but tedious.
We may write

(A —A ')+ (8—8')cos8+ (C—C')cos'8
a(k, 8) = (38)

(A+A')+ (8+8')cos8+(C+C') cos'8
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and I' denotes the pion-nucleon state with quantum
numbers ji ——t+1 and Ir=I. The matrix elements
Et~i and Mt~r for reactions (4) and (5) are related
to each other by the charge symmetry operator
exp(ivrI„); the explicit expressions are given by Eqs.
(34)-(»)

If H~ satisfies T,t, invariance then E~+'» ——E~+~,
Mt+'r Mt+——r, and therefore a(k, 8)=0. We note that
the amplitudes F+(I') and F (I') refer to photon states
of definite helicities o =+1 and —1, but the multipole
moments E~~ and 3f~+ refer to photon states of
definite parities. For unpolarized photons, such as the
case considered in the present paper, there is no inter-
ference term between F~(1') and F (I'), although, as
is evident from Eqs. (39)—(41), there are interference
terms between photon states of different parities (i.e.,

between Et~i and M;~r). In this connection, it is
relevant to recall remark (iv) of the preceding section.
By using either Eqs. (25) and (26), or Eq. (37), the
coefFicients A, 8, C, and A', 8', C' can be easily ex-

pressible in terms of the helicity amplitudes F~(i');
such expressions are somewhat simpler than Eqs.
(39)—(41).

We will now estimate the sensitivity of tr(k, 8) to a
violation of time reversal invariance, $r+AO, for
energies in the region of the (ss, ss) resonance. In order
to do this we must know the magnitudes of the multi-

pole moments appea, ring in Eqs. (39)—(41). These
cannot be uniquely determined from presently available
experimental information and therefore our estimate of
n(t'e, 8) must be based on a theoretical model for pion
photoproduction.

So far, we have considered only the &=0, 1 states of
the pion-nucleon system. Equation (38) can be easily
modified to include other higher angular momentum
states. The l) 1 states will also be taken into account
in the following.

Let us first consider the case that the time-reversal
noninvariant current K„satisfies the"

is de6ned by

((n-Ã')s, g
—

l
e KllVt, ,i)

((~&')',~ le &l&~,i)
(44)

Et+'= (Et+')' exp(2&I 8r+e(Et+') j)
and

M t~r ——(Mt~') *exp(2iL8r+$(Ether) )),
(45)

where bi is the x-S scattering phase shifts for the
state F, characterized by a total isotopic spin I, an
orbital angular momentum / and a total angular mo-
mentum j=t+-', . The phases tt(Et~r) and $(Mt~r)

50

7+p~% +A

e(c.m.) = l35'

RO—

k der It
k'dG

(ts b/sr)

lO—

then we will retain terms proportional to e and neglect
e'. Consequently, to 6rst order in e, the presence of
the time reversal violating E„affects ortly the Phase
and not the magnitude of the multipoles M~+, E~+,
the magnitudes of M~+~ and E~+~ can be calculated
from the usual T,&-invariant theory.

In the following, we will adopt a phenomenonogical
approach, and use the results of Donnachie and Shaw'
for the magnitudes (and signs) of the large multipole
moments having l~&1. For a,ll the magnitudes (and
signs) of other amplitudes, l~& 2, only the contribution
of the Born terms, represented in Fig. 3, is included.

l Further details will be given in Appendix C.j How-
ever, we allow the phase of each multipole to be different
from that required by T,t, invariance. These time-
reversal symmetry-violating phase differences P(Et+t)
and P(Mt+') are defined by

laIl =0 (43)

rule; i.e., E„ transforms like an isoscalar. In this case,
a maximal violation of time reversal invariance pre-
sumably means that the matrix elements of E„are
comparable in magnitude to the corresponding ele-
ments of the isoscala, r part (I„), of the time-reversal
invariant current J„.Now, in the energy range near
the (s,s) resonance, the photopion processes are
dominated by the matrix elements of the isovector part
(I„)„of the current. Thus, even for a maximal violation
of T,t, invariance we should expect the matrix elements
of E„ to be, in general, small compared to those of
I„=(I„),+(j„),a, provided (43) holds for E„. If e

"T. D. I.ee. Phvs, Rev, 140, 8959 (1965),

I50 250
Ey(lab)

550 450 MeV

FIG. 1.Differential cross section for y+ p ~ 7I++n at the center-
of-mass angle 135 . The theoretical curves are calculated by
assuming p(Eo+'f') =20', 0', —20' while all other T,t-violating
phases are zero. Quite similar theoretical curves would also result
for ditIerent choices of y(E~~r), or g(Mt r), =20', 0', and —20'.
V indicates data taken from M. Bazin and J. Pine, Phys. Rev. 132,
830 (1963); '7 indicates data taken from M. I. Adamovich et at
ProceeCings of the 196Z International Conference on High Energy
Physics, CERE (CERN, Geneva, 1962), pp. 207; && indicates
data taken from M. Heinberg et a/. , Phys. Rev. 110, 1211 (1958);
Q indicates data taken from M. Beneventano et al. , Nuovo
Cimento 4, 323 (1956); 0 indicates data taken from D. Freytag,
W. J. Schwille and R. J. Wedemeyer, Z. Physik 186, 1 (1965);
and g indicates data taken from K. Altho8, H. Fisher and g".
Paul, Z. Physik 175, 19 (1963).
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can be related by Eq. (37) to the fr' defined before.
If the selection rule (43) is valid, then only the phases
@(E~~'I') and P(M~~'~') can be different from zero.
From a phenomenological point of view, a possible
violation of the selection rule (43) can be easily taken
into account by including also the phases P(E&~'~')
and g(3E~~'"), provided e' remains small compared to
1. If any one of these phases @(Eg~r) and @(M~~r) are
different from zero, then-time-reversal symmetry is
violated. It is the sensitivity of a(k, e) to the presence
of such phases g that we wish to investigate.

Using these calculated magnitudes for Eg~l and

M~~, but assuming T,t, invariance, one obtains dif-

ferential cross sections for (2) in fair agreement with
experiment. The size of the time reversal violating
phases is restricted by the requirement that this
agreement with experiment be preserved. Figure 1
compares with experiment the computed differential
cross section with and without T,» violation for y+ p —+

e+v+ at a typical angle. One sees that T,t,-violating
phases of &20' can be allowed. Similar comparisons
at other angles also lead to the same conclusion. This
suggests a&0.3 and e'&0.1, consistent with our as-
sumption that e' can be neglected with respect to 1.

Figures 2 and 3 diplay n(k, e) for reactions (4) and

(5), at five values of k, and for four possible assign-
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Pro. 3. The asym-
rnetry function n(k, tt)
for p+R ~~ x' +p.
n(k, s) is displayed for
(a) 4(&o+' }=&O',

~so (b) 4 (~r+'") =2O',
(c) @(E0+'")=20',
(d) e(~~+'") =~o',
while all other T,t-
violating phases are set
equal to zero. Each
curve is labeled by the
y-ray energy in the rest
system of the neutron.
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ments of T,t,-violating phase. If the selection rule (43)
holds, then only figures 2(a), 2(b), 3(a), and 3(b) are ap-
plicable. The presence of the factor sin(8r —8r ) in Kq.
(28) is revealed by the small values of n(k, 8) found for
energies appreciably below the (s,s) ~-S resonance,
where 8p—0. In our model the large multipole mo-
ments are E~"' E0+'~', and Mj+'~ . Consequently, if
we add a T,t, violating phase of 20' to E0+'~', or Eo+'~',
or Mr+'" the behavior of n is dominated by the (8 8')—
Xcosg term in Eq. (38). Hence Figs. 2(a), 2(c), 2(d),
3(a), 3(c), and 3(d) show a similar behavior. Figures
2(b) and 3(b) diRer from these because of the large
cross term between 3f~+'~' and M~+')' which does not

involve an interference between s and p waves. From
an examination of Fig. 2 one sees that for a time-
reversal violating phase rk= g(B~~r) or Q(M ~~r),
n(k, o) can be as large as 0.5 sing. We conclude that
a(k, g), for appropriate 0, is quiet sensitive to T,t
violation in the energy region of the (sees) resonance.
Speci6cally, the asymmetry is most reliably large for
8&45' or 0&135', where 0 is the angle between the y
and x momenta in the center of mass system and for p
laboratory energies in reaction (2) between 300 and
390 MeU. /See, however, Figs. 2(b) and 3(b).$

In order to test time reversal by reciprocity at
higher energy, these considerations would suggest
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that one always look near a resonant energy of the
x-E system.
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outgoing states are given by

I r(j,j„(P)+)=2,f,(1')
I ~(j,j„P)+). (Ag)

The stationary state
I Xr) used in the text is defined by

I'Ar) = sLexp( —ibr) I F(j,j„d&)+)

+ p(+ & ) ll'(j, j*,lP) H, (A9)
where

APPENDIX A
&r= j=, ji =j and. 6'i =5. (A10)

In this appendix, we will review some elementary
properties of the sta, tionary states IXr) introduced in
Sec. II.

Let us consider the strong-interaction scattering
process

rr+N ~ various channels c,
and also the reaction between these channels

c~~c )

(A1)

(A2)

(c'
I
s

I c)= (c I
s

I
c') . (A6)

Thus, in the subspace of these n channels, the strong
interaction 5 matrix becomes an nXn symmetric and
unitary matrix. Let f(1') be its eigencector (I'=1, 2,

.e)

P, (c'ISlc)P,(F)=exp(2i8r)f, (I'). (A7)

Each of these eigenvectors is an n)&1 matrix; they can
be chosen to form a set of n real orthonormal vectors.
From these eigenvectors and the arbitrarily chosen
channels c, we can construct the eigenchunnels F= j., 2,
~ .n of the S matrix; the corresponding incoming and

"See M. L. Goldberger and K. M. Watson, Coll~sion Theory
Qohn Wiley & Sons, Inc. , New York, 1964), pp. 375.

where N can be any nucleus, c (or c')=1, 2, e
denotes all possible channels (ri may be in6nite). For
definiteness, we will assume that the system has zero
total momentum, a definite, but arbitrary, energy E,
a definite parity (P, a definite total angular mo-
mentum j and its s component j,. Let

I c(j,j„(P) ) and

Ic(j,j„6') ) be, respectively, the usual outgoing and in-

coming eigenstates of the strong-interaction H, t,. The
elements of the strong-interaction 5 matrix are given by

(&'ISI &)= (o'(jj.P) I &(jj„e)+). (A3)

In (A1) and (A2), the choice of these channels is
arbi trury, provided

(A4)

and likewise for the states lc(j,j„(P) ).
Since H, & satisfies T,t, invariance, the phases of these

states can be chosen to satisfy'

&.» I ~(j,j.,6')') = expLiw(j+ j.)j I c(j —j*,IP)') (As)

Consequently, we have the well-known result"

APPENDIX 3
For completeness, the definitions of the usual

multipole moments will be given in this appendix. Let
us consider the reaction

y+N-+ w+N' (81)
in the center-of-mass system, where E and E' are both
nucleons. Let J be the total angular momentum
operator. For the initial state (yN)

J= jr+jar, (82)

where j~ is the nucleon-spin operator and j~ is the
angular-momentum operator of the photon (including
that due to the relative momentum between y and N).
Let J(J+1) and j(j+1) be the eigenvalues of J'
and j~', respectively. For any given N=e or p, the
initial state

I &N(J,J„j,(P)) is characterized by J,J„jand (P where J, is the s component of J and (P

is the parity. The 6nal (wN') state is characterized by
the total isospin I and the total orbital angular mo-
rnentum l, besides J, J„and (P. Let

I
~N'(J, J„/,(P,I) )

be the corresponding incoming eigenstate of the strong
interaction. The multipole moments E~l and3f~l
used in the text are given by

&wN'(J, J.,i,oP,I)-l g„(0)~„(0)l&N(J,J.,j,6))
=I:j(j+1)j'"X(~~+') f 6 =(-1)'

XM(~1 if IP= —(—1)&, (83)

where the subscript + or —in E~~l and M~~r depends
on whether J=l+si or l si, A„(x) is—the electrornag-
netic Geld operator, and g„(x) is the current operator.
By using the normalization convention'

(~N'(J,J„l,O,I) IwN'(J, J.,/, O,I) )= A,
--

NN(J J*i/)IVN(J J*,iP))=1 (84)

and the relative-phase convention given by Ref. 6,
together with Eqs. (21) and (A11), the matrix elements
F~(1') can be easily expressed in terms of E~~r and
3f&~r. The result is Eq. (37).

These stationary states satisfy Eq. (19), and they
form an orthonormal set of state vectors. Furthermore,
by using (A3), (A7), and (A9), it can be easily verified
that

(c(j,j.,(P)+
I lir) =exp(~i 8r)p. (&) (A11)

for any arbitrarily chosen set of channels c=1, 2,
Thus, Eq. (23) follows.
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', /N'

FIG. 4. Feynman dia-
grams representing the
Born terms. These were
used to compute the
magnitude (and sign) of
the l)~2 photopion pro-
duction amplitudes used
in our model of T,t viola-
tion. They were also used
to obtain Ej+ I Ej+ Im,

and those amplitudes aris-
ing from the isosc alar
part of the electromag-
netic current.

APPENDIX C

We will now discuss in detail the model for photo-
pion production used in Sec. III to estimate the sen-

sitivity of reactions (4) a,nd (5) to T,t non-invariance.
Let the electromagnetic current be split into two parts
(r(„). and (g„)„ the first transforming under isospin
rotation as an isovector a,nd the second as an isoscalar,

V P s ~

We define E&~r(t/), M&~r(v), and E&+r(s), M&~r(s) by
replacing ti„ in Eq. (83) by (g„)„and (g„)„respectively.
For Es+' '(e), Es+' '(t/), Mi "'(e), Mi ' '(u), Mt~"'(t/),
and Mtqs/'(w) we use the magnitudes (and signs) ob-
tained by the fully relativistic calculation of Don-

nachie and Shaw' using the dispersion theory of Chew,
Low, Goldberger, and Nambu. '

The magnitudes (and signs) of the other amplitudes
are assumed to be that obtained from Eq. (83) if
only the contribution of the diagrams appearing in
Fig. 4 is included. These multipole moments of the
Born terms have been calculated previously by Schmidt
and Guigay. "

The phases of the multipole moments in our model
of T, violation are given by Eq. (45), where the w-X

scattering phase shifts bI are set equal to 0 for t) 1
and are assumed to be those obtained by Roper ef, al."
for /~&1.

It should be noted that in the limit of T,t invariance
the photopion production differential cross section we
obtain differs somewhat from that of Donnachie and
Sha,w. This is primarily because we have given E&+"'
and Ei~'" the phase &r, where &=pi/s, s/s»d ps/2, 8/2,

respectively (as is required by T,& invariance); Don-
nachie and Shaw omitted these phases. Also we do not
include any approximation to the dispersion integral
~n the l~& 2 amplitudes, but keep only the contribution
of the Born terms.

' W. Schmidt and J. P. Guigay (unpublished). See Appendix
II of Donnachie and Shaw, Ref. 8."I. D. Roper, R. Wright, and B. Feld, Phys. Rev. 138, 8190
(1963), Table IX on p. B203.
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Long-Range Perturbations of Bound States and Resonances*
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Ke consider the modi6cation of the scattering matrix in multichannel potential-scattering theory by a
long-range perturbation. The perturbation ol "single-particle" energy levels (bound states or resonances) is
discussed by means of Weinberg's eigenvalue analysis of potential scattering. A straightforward distinction
between "single-particle" and "compound" states appears in this formalism, and it leads to a proof that
there are no bound states embedded in the continuum. A simple approximation for the eigenvalues cor-
responding to single-particle levels is developed and applied to the calculation of the energy diRerence be-
tween the (-', +) erst excited states of the C"-N" mirror pair.

'HE purpose of this paper is to elucidate the
problem of long-range perturbations in multi-

channel potential-scattering theory. Within this frame-

work we discuss the modification of energy levels

(bound states and resonances) by such perturbations;
while doing so we evolve a novel viewpoint toward the

relation between single-particle and compound reso-

~ +fork supported by the U. S. Atomic Energy Commission and
made use of computer facilities supported in part by NSF Grant
No. NSF-GP579.

nances, ' as well as convenient methods for doing prac-
tical calculations.

In Sec. I, we manipulate the Lippmann-Schwinger
equations for multichannel scattering into a form con-
venient for our discussion of long-range perturbations.
We treat such perturbations by formally summing an
infinite (divergent) subset of the terms arising from ex-
pansion in powers of the perturbation. Section II deals
with the extension of Weinberg's' eigenvalue analysis of

' Appendix A.' S. Weinberg, Phys. Rev. 131, 440 (1963).


