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The crossing relation between the g's of Eq. (2.2) and the Wolfenstein parameters is

a(e)'

m(8)

1+et (8) 1—+cr (8)

—1++(e) 1++(8)

2P (8) 0

2P (8) 0

g1

0 g~

c(8)
2s'

g(8)

h(8)

iP (8) iP (8) —2in(8) 0 0 gs

g4

—1 g5

where the Wolfenstein parameters are now expressed in terms of the analytically continued g's. The functions
cr (8) and P(8) were given in Eq. (2.12).

The crossing relation and Stapp's Table I can be used to rederive Eq. (2.11), and the triple-correlation
parameters, if needed.
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The reciprocal bootstrap idea is applied to the p and B mesons in m-~ scattering. The p appears as a 1
bound state in the m-co system, while arguments favoring a 2 P-wave B meson are presented. Our method of
calculation follows a previously developed general theoretical framework which treats the interaction of
pseudoscalar and vector-meson systems. Because of the divergence difBculties associated with higher spin
particles and the eventual necessity for an additional parameter in the form of a cutoff, we demand only that
the masses of the p and B mesons be self-consistent. Values of the mph and ~Bee coupling constants required to
give this self-consistency are compared with the corresponding output parameters characterizing these
solutions. Our results show that the p can be produced self-consistently at its experimental mass, although
the B width and ~pc0 coupling constant required to do this are somewhat larger than what experiment
indicates. On the other hand, a completely self-consistent B meson can be obtained in reasonable agreement
with experiment only if the distant singularities associated with p exchange are neglected. Otherwise, p ex-
change is electively repulsive in the 2 amplitude because of the change in sign of the Born term, thus re-
quiring a large Bwidth to produce a resonance at the experimental mass of the B.

I. INTRODUCTION

'HE problem of x-co scattering has recently attracted
the attention of many authors' ' with the dis-

covery of a possible resonance in the x-co system. ~' This
resonance, called the 8 meson, has a mass of 1220 MeV
and full width of 125 MeV; however, its spin and parity

*Research supported in part by the U. S. Atomic Energy
Commission.' R. F. Peierls, Phys. Rev. Letters 12, 50 (1964); 12, 119(E)
(1964).

~ T. K. Kuo, Phys. Rev. Letters 12, 465 (1964).' E. Abers, Phys. Rev. Letters 12, 55 (1964).
J. Franklin, Phys. Rev. 137, B994 (1965).

'K. Kang, Phys. Rev. 140, 81629 (1965). This work will be
referred to as K in the text.

' R. Atkinson, III, Phys. Rev. 142, 1154 (1966).
2 M. Abolins, R. L. Lander, W. A. %. Mehlhop, N. Xuong,

and P. M. Yager, Phys. Rev. Letters 11, 381 (1963).
8 G. Goldhaber, S. Goldhaber, J. A. Kadyk, and B. C. Shen,

Phys. Rev. Letters 15, 118 (1965), have analyzed data which
suggest that the B is not a resonance in the 2I--co system.

have yet to be determined experimentally. A model in
which p exchange is the dominant force has been used
to determine the spin and parity of the 8 on theoretical
grounds. '—' Using this model in a nonrelativistic calcu-
lation, Peierls' has obtained a resonance, with J of 2—,
as the analogy of the S*in ~-S scattering. Kuo' found
the same result in a relativistic calculation. Abers, how-
ever, demonstrated that a 1+ resonance is also possible
in this model. All of these previous authors considered
forces from p exchange only and the effects due to 8
exchange were absent.

More recently, in another nonrelativistic calculation,
one of us4 showed the existence of a reciprocal bootstrap
between the p and a 2—8 meson, in analogy with the
reciprocal bootstrap of the E and E*in x-E scattering,
proposed by Chew. ' In this scheme one takes the ex-

' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
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change of both p and B mesons to provide the force re-
sponsible for low-energy scattering. Clearly, one has to
calculate forces not only from p exchange but also from
8 exchange in order to determine the preferable
quantum state of the 8 meson.

A general theoretical framework for treating the inter-
action of any pseudoscalar meson and vector-meson
system has recently been given in K.' This formalism,
based on the S-matrix point of view, gives a convenient
procedure for calculating the Born term for the exchange
of a particle of arbitrary spin and parity. A model calcu-
lation, which considers both 1+ and 2—assignments for
the 8 and which takes into account both p and 8 ex-
change, prefers a 2 8 meson.

Atkinson' has also considered the effects upon m-~

scattering of 8 exchange, calculated in a 6eld-theoretic
model, and found a 2 assignment for the 8 most likely.

In the present paper we re-examine the question of
the quantum numbers of the 8 meson, and we perform
a relativistic calculation of m-~ scattering in an eGort to
obtain both the p and 8 mesons via the reciprocal-boot-
strap mechanism. The concept of the reciprocal boot-
strap arose from a study of x-E scattering. It had been
known from the Chew-I. ow model" that the exchange
of a nucleon provides a sufficiently strong attractive
force to give a resonance in the P3~~, 3~2 state of m-E
scattering, the E~ resonance. It was then observed' that
the exchange of the E* is sufficient to produce a bound
state in the 8~~2 ~~2 amplitude of x-N scattering,
identified as the nucleon itself. On the other hand,
nucleon exchange gives a weak, attractive force to its
own state, while the exchange of the E* is negligible in
its own state. "Thus, taken together, the nucleon and
E*provide the forces necessary for the existence of each
other, although neither can reproduce itself, as the p
can in x-m scattering.

We apply the reciprocal-bootstrap idea to the p and
8 mesons in x-co scattering. The forces for x-co scattering
are given by both p and 8 exchange, as illustrated in
Fig. 1. We then search for both a bound state and a
resonance, the bound state in the 1—

amplitude, to
represent the p, and the resonant state in whichever
amplitude we choose for the B. The diagrams we wish
to calculate are illustrated in Fig. 2. It is not inconsistent
with the reciprocal-bootstrap concept for the individual

(b)

FIG. 2. ~-~ scatter-
ing diagrams for a
p meson and a B
meson in the direct
channel.

forces of p and 8 exchange in either state of interest to
be of the same order of magnitude. The important point
is that, to the extent the two particles form a closed
system, both are necessary to explain each other.

The present calculation should be considered as com-
plernentary to the more usual procedure of trying to
produce the p as a bootstrap resonance in m.-x scatter-
ing. "These calculations generally predict too low a p
mass and require too large a reduced width. Calculations
have been made coupling the x-or channel to the m-m

channel, but these have included only p exchange and
do not appreciably help the width problem. " It is
known that if a "resonance" is predominantly a bound
state in a higher threshold channel, the predicted width
can be appreciably smaller than if it is predominantly
a scattering resonance. "With this in mind, we investi-
gate the m-au channel including the 8 exchange force
(which does not exist in the vr-7r channel) and considering
the m-m channel only as it manifests itself by the p meson
in the I= 1, m-~ state. This shows up in m.-co scattering
as the p-exchange force and a bound-state pole in the
direct x-co channel. "

In order to achieve a completely self-consistent solu-
tion, the masses of the p and 8exchanged in the diagrams
of Fig. 1 (input masses) must equal the masses of the
p and 8 found by solving the partial-wave dispersion
relations to obtain the diagrams of Fig. 2 (output
masses). Secondly, the input coupling constants of Fig. 1
must reproduce themselves in Fig. 2. In the present
calculation we do not try to achieve complete self-con-
sistency. As in most numerical calculations involving
vector mesons, some form of cutoff is necessary in order
that the dispersion integrals converge. In a reciprocal-
bootstrap approach to the Ã and A*, the suggestion"
has been made to adopt the same value of cutoff for
both the E and E* amplitudes, the cutoff being deter-
rnined to give the A'* at its correct mass. However, there
is no reason why the cuto6 should be the same in two
different partial-wave amplitudes. Because of this ambi-
guity, we shall adopt the simpler approach of choosing

(a)
FIG. 1. m-co scattering diagrams, showing

p exchange and 8 exchange.

"G. F. Chew and 1'. E. Low, Phys. Rev. 101, 1570 (1956)."E, Abers and C. Zernach, Phys. Rev. 131, 2305 (1963).

~2 See, for instance, Refs. 26 and 27, the second and third papers
of Ref. 29, and further references in those papers."J.R. Fulco, G. I. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1964); P. W. Coulter and G. L. Shaw, sNd 138,'tB1273.
(1965); see also Refs. 2'7 and 39.

"This was 6rst pointed out by R. H. Capps, Phys. Rev. 181,
1307 (1963), in connection with the v Echannel and the %*-
resonance. The idea was further developed by M. Bander, P. W.
Coulter, and G. L. Shaw, Phys. Rev. Letters 14, 270 (1965), who
emphasize the importance of whether the calculation of a higher
threshold channel can produce a bound state.

"The validity of this procedure is discussed in Ref. 1."J.S. Ball and D. Y. Wong, Phys. Rev. 133, 8179 (1964).
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particular values of the mass for the p and J3 mesons;
we then determine values of the m.pcs and vrBco coupling
constants, in order that the output mass of each particle
equal its input mass. In addition, we specify for each
particle the value of its self-consistant coupling con-
stant, wherever possible.

Next we consider the question of the quantun num-
bers for the B meson. Scattering in the ~-co system can
take place in every spin-parity state except 0+. We
consider all possible quantum numbers for the B
with 7&2.

0—.From an examination of the Born terms, it is seen
that p exchange gives a repulsive force to the 0—state.
In addition, the exchange of a 0—particle is repulsive
in the p state. Hence, in this model, this assignment is
ruled out.

l—.Experimentally, the decays B—+ 2x, KE' have not
been observed, whereas they would be expected if the
B were 1—.We do not consider this possibility.

1+. The exchange of a 2+ meson is repulsive in the

p state, so that this possibility must be ruled out in a
reciprocal-bootstrap model. It has been noted that p
exchange produces a sufficiently strong attraction in the
1+ state to produce a resonance. ' However, as happens
in x-S scattering, the long-range part of this force is
negligible in the s-wave state; hence, this force is mainly
of short range, and since short-range eBects have been
neglected in this calculation, it would be inconsistent
to consider this force seriously. We discuss this point in
greater detail later.

Z+. p exchange in the 2+ state is repulsive, which is
inconsistent with the reciprocal bootstrap idea.

Z—.The exchange of a 2—resonance gives an attractive
force both to the 1—amplitude as well as to itself. In
addition, p exchange is attractive in the 2—state. Hence,
this state is the only one consistent with the reciprocal-
bootstrap idea.

Thus, we perform a calculation for the 1 and 2—scat-
tering states of the ~-co system. We solve the partial-
wave dispersion relations by the well-known Ã/D
method, " under the assumption of elastic unitarity.
The experimental absence of the decay 8-+ rr+p allows
the unitarity condition to be satisfied up to higher
energies without the need for a multichannel calculation.
In addition, we shall see that f-wave mixing in the 2—

amplitude is quite small, so we consider only 2 p-wave
scattering by performing effectively a single-channel
calculation.

In Sec. II we discuss the kinematics of z-or scattering
and the partial-wave decomposition. In Sec. III we
write down the Born terms and examine them in some
detail to verify statements made concerning their order
of magnitude and relative signs. In Sec. IV we present
our calculations and discuss the solutions. For numerical
purposes we approximate the Born terms by poles,
which allow an exact solution to be given for the partial-

'7 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

wave amplitudes by the S/D method (with a cutoff
imposed on all integrals). Two different approximations
are made for /r exchange: (1) the Born term, as it is
given by theory, is approximated by one or two poles,
and (2) the long-range part of the Born term only (the
short cut) is approximated by one pole. Conditions
under which the p and 8 mesons reproduce themselves
are presented for both cases. Some general discussion
and conclusions are given in Sec. V.

f++ (1+cos8) 't+——+—(1—cos8)—'t~

f~++=(1+cos8) 't+++(1—cos8) 't~

f+o+——2(sin8) 't+o,

foo+= 2too

(2.3)

In terms of these amplitudes, partial-wave helicity
amplitudes of definite parity I' and total angular
momentum J can be found easily. "These amplitudes,

"These expressions are based on the definition of parity-con-
serving amplitudes, given by M. Gell-Mann, M. L. Goldberger,
F. E. Low, E. Marx, and F. Zachariasen, Phys. Rev. 133, 8145
(1964).

"M. Jacob and G. C, Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

II. KINEMATICS AND ANGULAR MOMENTUM
DECOMPOSITION

The kinematics of the reaction rr+oo~rr+or are
illustrated in Fig. 3; p, k (p', k') are the initial (final)
momentum four-vectors for the x and or, respectively,
and o (o') is the initial (final) polarization vector of the or.

We introduce the usual kinematic variables s, 3, I by

s — (p+k)2 2ko+rri 2+~2+2(k2+rro 2)1/2(k2+~2)1/2

t= —(p—p')' =—2k'(1 —cos8), (2.1)
u= (p —k')'—=2m„'+2/i' s —t, —
where k= ~k~ =

~p~ is the magnitude of the spatial
momentum in the barycentric system. 0 is the scattering
angle, m„ is the ~ mass, and p is the pion mass.

One can easily see that a description of x-co scattering
requires four independent amplitudes. One choice of
invariant amplitudes which are free from kinematic
singularities and which satisfy the Mandelstam repre-
sentation is given by Eq. (19) of K:

T($)t)u) = o oFi($)t)u)+(o 'F)(o F)F2($)t)u)
+(o'.R)(o R)Fo(s,t,u)
+-,'L(o' F)(o.R)+(o' R)(o F)jF4(s,t,u) r (2.2)

where

F=p+k, R=k —p'.

By appropriate choices of the ~, e', which are given in
the Appendix, one can construct helicity amplitudes,
ti„(s,t,u), where X(/i) is the helicity of the initial (final) or.

It is convenient to define parity-conserving amplitudes
which in the present problem are given by Eqs. (52)—
(55) of K":
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denoted by fz„~+(s), are given by Eqs. (56)—(59) of K:

1 + JPz+y(s)+(J+1)Pg y(s)
&++' (~)=- «P~(s)f+++(~,s)+ f++ (~,s)

2 ] 2J+1
1 + JPgyz(s)+(J+1)Pg y(s)

t++(s) = d—s f+++(s,s)+Pg(s) f++ (s,s—)
2 g 2J+1
1 +' LJ(J+1)j'"

3+0 (S)= « LP.+~(s)-PJ-.(s)jf+0+(~,s)(~./lf ),
2 g 2J+1

(2 4)

+1

t, o +(s)=— ds Pz(s) foo+(s,s)(m„/W)',
2 —1

spin-parity state in question in the direct channel, as
illustrated in Fig. 2. Here a distinction is drawn between
the role of the p and the B. Since the mass of the p lies
below the m-co threshold, it is a bound state in x-m scat-
tering and its amplitude is given exactly by a pole. On
the other hand, the 8 is a resonance in ~-co scattering;
to determine its amplitude, we assume that the 8
saturates m-~ scattering in the low-energy region and we
express the absorptive part of the invariant amplitudes
in terms of a delta function which is obtained from the
Breit-Wigner resonance form in the narrow-width ap-
proximation. Thus, we have the following expressions
for the p and 8 amplitudes:

(s)
tp(S) =

)
tg —S (3 1)

Im4(s) = fs(s)b(s mg') . —

The two functions f,(s) and f~(s) are chosen to
guarantee that the invariant amplitudes F,(s,t, N) are
free from kinematic singularities, when expressed in
terms of the p- and 8-meson amplitudes, Eq. (3.1).
One finds that f, sk' while f~ s'k' for a 2 p-wave
8 meson and f& s for a 1+ s-wave meson, denoted by
2, and if for convenience we express t~ as a pole, keeping
explicitly the factor f&(s), we have

T(s,t,g) ' do.

dQ
(2 5)

III. BORN TERMS

where W=(k'+m„')'~'. Here the amplitude t++~ (s)—
has parity (—1)~, while the others tz„~+(s) have parity

( 1)z
In the calculations of this paper, it is convenient to

work in terms of transition amplitudes between states
of definite orbital angular momentum J. These ampli-
tudes are denoted by 1~~(L—+ L'). Since the pion has
spin zero and the co has spin 1, one can have I=J,
J&1. The following transitions are allowed by parity
conservation: I.=J—+ L'= J, with parity (—1)~
and L=J 1~L'= J 1—, L=J 1 ——+ L'= I+1—, and
L=J+1~L'= J+1 all having parity —(—1)~. Time-
reversal invariance insures that the two transit ons
L=J 1~I,'= J+1—and L=J+1—+L'=J 1be the-
same. The transformation between the two sets of
amplitudes, tz„~+ and t~~(L —+ I.'), is given by Eqs.
(62)—(65) of K, by using a formula given in Appendix 8
of Jacob and Wick. " The results for J=1 and J=2
are stated explicitly in the Appendix.

Finally, we note the relationship between the in-
variant amplitude T(s,t,u) and the differential cross
section:

pl

7r

k,' e'

Fzc. 3. Kinematics of m-co

scattering.

The driving forces for low-energy x-co scattering are
taken to be the exchange of the p and 8 mesons. The
general method for discussing the exchange of any spin-
parity state has been given by K, and the reader is
advised to consult this paper for details. Here we wish
to point out certain features.

The erst step of this procedure is to express the in-
variant amplitudes F,(s,t,u) in terms of the particular

t, '—(s)= sy, Lsk'/(m, '—s)j,
tg' (s)= ;ygfs'k'/(—mg' —s)j&—
4'+(~) =v~l:~/(~~' —~)j

(3.2)

These expressions serve to de6ne the m-pcs, m-Bco, and
waco coupling constants, p„y&, and yz, respectively,
used in the present calculation. We note that y, /4~
=f'/4~ in the conventional notation, where f'/47r
=0.35 "for an or width of 8 MeV.

Finally, to obtain the Born terms for p and 8 ex-
change, we use the crossing properties of m-co scattering.
For p exchange, crossing is applied directly to the in-

2' M. Ge1I-Mann, D. Sharp, and W. Wagner, Phys. Rev. Letters
8, 2~& (sw2).
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variant amplitudes to yield th Be orntermsof Fi . 1 a .
for 8 exchange, crossing is a li d
par of the invariant amplitudes ImF s
o, '

is app e to the absor tive

terms of F' . 1(b) b
'

integral,
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and J=2 Born terms f
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Angular-
momentum

state
2 p-wave
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8 exchange

F;(u,f,s) = d—u'
1 ImF, (u', f,s)

x' I —I
p exchange

5.28
0.00
1.27
0.37

(3.3) J=1 p —+p
S~S
s~d

—0.204
12.0—0.19X10 '
0.47X10 '

1.42—71.00
0.68—0.83X10-1

0.286—0.86X10 '
0.89X10 '

—0.16X10 '

.06

.02

esp

Having obtained the quantities E,, we can write t

or e exchange of a 2 p-wave and 1+ s-wave
8 meson have been presented in K.

With the Born terms in hand the
f~ f —057X10 '
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determine by studying the singularities of p exchange in
the partial-wave amplitudes. We find that, in the $

plane, p exchange gives rise to a short cut along the real
axis, from (m„'—p')'/m, ' to 2m„'+2p' —m, ', as well as
to a semi-infinite cut, also on the real axis, starting at
$=0 and going out to —ao.

It can be shown that the effects of the short cut is of
order p/m„, compared with unity, in s-wave states, and
hence $-wave scattering is due mainly to the more
distant cut starting at $=0. On the other hand, the
short cut is quite important for p-wave states. It is part
of present-day S-matrix philosophy that low-energy
scattering arises mainly from the nearby singularities of
the scattering amplitude and that distant singularities
are less important. "Furthermore, there are many con-
tributions to the distant singularities and for the most
part we do not know how to include them. Thus, we
feel that it would be inconsistent to take seriously only
one of the distant singularities while ignoring the rest.

s(s) = (8~$' '/k)e'" sinb . (4 1)

We next dehne a new amplitude and new Born term:

gs($) =2 s($)/fs($) ) bs($) =8$($)/fs($) . (4.2)

Here us(s) is an amplitude free from kinematic singu-
larities and zeros; the factor fs(s) is chosen to accom-
plish this and to guarantee that As(s) have correct
threshold behavior. The form of the direct-channel pole
terms, Eq. (3.2), suggests that we choose fi ——sk' and

$2k2 23

The scattering amplitude is determined from the
partial-wave dispersion relation

1 " Imas(s')
cs($)=— ds +by($),

$ —$
(4.3)

where so= (m„+p) 2, together with the unitarity
condition

Imas(s) =ps(s)
~
as(s)

~

',

pJ(s) is given by
1 k

p (s) = —ImLa (s)j—'=— f (s) .
SX $'~2

(4.4)

(45)

"G. F. Chew, S-3IIatrix Theory of Strong Interactions (W. A.
Benjamin, Inc., New York, 1961).

2'In the calculations of this paper we choose f1= f„=sk', for
reasons discussed later in the text.

IV. CALCULATIONS AND NUMERICAL
RESULTS

Having obtained the Born terms for p and 8 exchange,
we are now ready to perform the reciprocal-bootstrap
calculation for these two particles. We let As(s) be the
p-wave amplitude for the total angular momentum
3=1, 2 and Bs($) the complete p-wave Born term.
As(s) is normalized so that

The Born term bs(s) appearing in Eq. (4.3) represents
the contribution of the unphysical singularities to as(s)
and can be put in the form of a dispersion integral

bg(s) =
Imas(s')

ds
s —$

1'
(4.6)

where I denotes the unphysical cuts. Although it is
generally most convenient when calculating the eGect of
single-particle exchanges to evaluate the Born term
directly rather than through the integral in Eq. (4.6),
this form will be useful later.

To solve Eq. (4.3), we use the well-known E/D
method. "We set

+&($) +&($)(D&($)

then 1Vs(s) and Ds(s) are given by the equations"

(4.7)

7t

ps(s') Es(s')
ds

(s'—a) (s'—s)

where a is the point at which Ds($) is set equal to unity.
Because of the well-known divergence problem one

encounters when dealing with vector mesons, a rigorous
solution of Eq. (4.3) does not exist. One can see this by
examining the convergence of the integral equation for
Ãs(s), Eq. (4.8a). Since Bs($) s lns, bs(s)-lns/s for
fi(s)=sk', and b2(s) lns/s' for fr(s)=s'k'. However,
the integral J'ds'ps($')1V s($') bs($')/(s' s) generally—
does not decrease faster than 1/s, so that Xs(s) 1/s,
at best. "Thus, the integral in Eq. (4.8a) diverges at
least logarithmically for J= 1 and linearly for J=2."

Despite this general failing of the theory, several
methodsii, i6,26- have been proposed for extracting
information concerning low-energy scattering in numeri-
cal calculations. If a straight cutoff~ ~ is imposed
on all integrals, the integral equation for /Vs(s) becomes
Fredholm and a unique solution exists. However, one
generally cannot obtain the analytic solution in closed
form so that one must resort to a lengthy computer
solution. To avoid this, several approximate solutions

'4 A. W. Martin and J.L. Uretsiry, Phys. Rev. 135, B803 (1964).
~~ Cf. Ref. 11 for a similar discussion on this point.
2 G. F. Chew and S. Mandelstam, Nuovo Cimento 19, 752

(1961);L. Balazs, Phys. Rev. 128, 1939 {1962);J. Franklin, D. J.
Land, and R. Pinon, ibid. 187, 8172 (1965)."F.Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).

+ M. Bander and G. L. Shaw, Ann. Phys. (¹Y.) 31, 506 (1965).
2' G. L. Shaw, Phys. Rev. Letters 12, 345 (1964); G. Q. Hassoun

and K. Kang, Phys. Rev. 137, $955 (1965);J.Franklin, ibid. 139,
B192 (1965); H. R. Pagels, ibid 140, B1599 (1965).."S.C. Frautschi and J. D. Wvalecka, Phys. Rev. 120, 1486
(1960); A. W. Martin, ibid. 135, B975 (1964).

00

iVs($) = bs($)+ ds p—s($ )Ns($ )
7l gp

bs(s') —L(s—a)/(s' —a)ebs(s)
X (4.8a)

$ —s
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of Eq. (4.3) have been suggested. "These are generally
designed to yield solutions which depend only on the
evaluation of integrals, while keeping the exact Born
terms. Nevertheless, most of these methods would re-
quire some form of cutoff if applied to the present
problem. There exists a third school of thought" which
suggests that the Born terms be approximated by a
small number of Grst- and second-order poles. In this
case, an exact analytic solution is possible (with pre-
sumably a cutoff in some cases), since the kernal of the
integral in Eq. (4.8a) becomes a separable function of
s ands.

In the present calculation we have chosen to approxi-
mate the Born terms for p and 8 exchange, b,(s) and

b&(s), by a few poles. Because the exact equations of the
theory have no solution without imposing a cutoff, and
because we lack all knowledge of the distant singularities
and of the asymptotic behavior of the partial-wave
amplitudes, we feel that this approach is as likely to
yield valid semiquantitative results as any other
method. "Furthermore, the integral in the equation for
LVz(s) will not depend sensitively, for values of s in the
low-energy region, on the exact form of b(s') for large s',
provided b(s') does not oscillate. In other words, the
integral is essentially independent of small s for s' above
some value A,

' around the cutoffs we are using. Thus, by
using a form of b(s) which agrees with the exact Born
term in the low-energy region, we obtain results which
will differ from those obtained from use of the exact
Born term only in the cutoff value needed to reproduce
a particular resonance for a given set of input param-
eters. Moreover, it is possible to obtain a fairly accurate
representation for the Born terms throughout the low-

energy region with only one or two poles.
It should be noted that, after replacing the Born term

by poles, we change the asymptotic behavior of the
Born term by eliminating the factor lns. This generally
has the effect of reducing the degree of divergence of the
integrals by one power, and subsequently it reduces
somewhat the dependence of the physical results on the
cutoff. " In the present problem one finds that the
integrals diverge logarithmically for J= 1 and linearly
for J=2, if the pole approximation is used.

In a bootstrap calculation of this sort, it is somewhat
disturbing to find that two partial waves of interest have
a rather different dependence on the cutoff. In addition
to this, a linear divergence in itself makes results difficult
to interpret, since they are apt to depend rather sensi-
tively on the cutoff values. It is possible in the present

"Cf. Ref. 11,where a comparison is made between two solutions
for the p3~2, 3I2 state in ~-N scattering: in one case, the exact Born
term is used with a cutofF and, in the other, the Born term is
approximated by poles. The two solutions are quite similar."We make this statement from experience with calculations of
the p meson in s-s scattering. The exact X/D p-wave equation is
singular and does not possess a solution; if the Born term is
approximated by poles, thereby eliminating the lns factor from
its asymptotic behavior, an exact solution is possible without the
need for a cutofF. Cf. Ref. 17.

problem to reduce the linear divergence in the J=2
wave to a logarithmic one by choosing fs=sk' rather
than s'k'. This comes about because the Born terms in
both the J=1 and J=2 amplitudes have the same be-
havior in both the low-energy region as well as in the
asymptotic region. Furthermore, we note that the point
S=O corresponds to the asymptotic limit of scattering
in the I channel and therefore the high-energy behavior
of the scattering amplitude is required in order to
investigate this point fully. For these reasons we choose

fs——sks in the calculations.
Finally we discuss the criteria by which poles were

chosen to represent the Born terms. For both p and
8 exchange, pole terms were chosen to reproduce the
exact Born term from threshold to an energy of about
2700 Mev with an average accuracy of 95%.We remind
the reader that threshold occurs at 922 MeV and that
8 mass is 1220 MeV. If we achieve this accuracy within
this energy region, the Born term will be given suAi-

ciently well for our purposes. In fact, we were able to
achieve an average accuracy of about 98% throughout
most of this interval with one pole for all Born terms
except the 7= 2 p-wave projection of p exchange, which
required two poles because of the zero in the Born term.
The largest errors occurred, naturally enough, at the
limits of the aforementioned interval. The expressions
we have obtained for the Born terms are the following:

p exchange:

0.2360
J=1, b '—(s)=yp

s—37.02
(4.9a)

45.0
J=1, b~' (s)=ys— (4.10a)

12.76
1=2, bgP (s)=y~-

s+21.57
(4.10b)

To illustrate the accuracy of the pole-term approxi-
mation, we present in Table II values of b, ' (s)/y, and
b,s (s)/y, given by the exact form of the Born terms
and by the above forms, Eqs. (4.9a) and (4.9b). We see
from the table that these Born terms are reproduced
according to the criteria stated earlier in the interval
froms= 43.65 to s =382,which corresponds to the energy
interval 922—2700 MeV. The p-exchange Born term in
the J=2 p-wave state has a sign change at s = 305. The
pole approximation for this term continues to follow
the exact Born term up to about s=1200, although
numerically it is about a third smaller above s = 305. We
would therefore expect that the repulsive effect of this
sign change would be underestimated in our solutions.

-0.3008 0.3618
2=2, b '-(s) =y, — (4.9b)

s—35 s+30

8 exchange:
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Bpt-(s) /sk2

Eq. (4.9a)
Exact pole

B 2(s)/sk2
Eq. (4.9b)

Exact pole

43.65
67.06
86.11

103.96
121.23
138.17
154.89
187.94
220.67
261.33
301.80
342.16
382.45
462.9
623.4
863.8

1229.
1664.
2465.
3265.

2.799 X10 2

0.7864 X10 ~

0.4851 X10 2

0.3550 X10 2

0.2812 X10 2

0 2333 X10 2

0.1994 X10 2

0.1544 X10 2

0.1259 X10 ~

0.1021 X10 2

0.8565 X10 3

0.7373 X10 ~

0 6458 X10 3

0.5163 X10 &

0.3659 X10 3

0.2523 X10 3

0 1644X10 3

0.1211X10 3

o,787o X1o-4
0.5800 X10—4

3.560 X10 2

0.7856 X10 &

0.4807 X10 2

0.3526 X10 2

0.2803 X10 &

0.2333 X10 2

0.2002 X10 2

0.1564 X10 2

0.1285 X10 2

0.1052 X10 2

0.8912 X10 3

0./735 X10 3

0.6830 X10 3

0.5542 X10 3

0.4025 X10 3

0.2854 X10 3

0.1923 X10 3

0.1451 X10 3

0.9720 X10 4

0.7311 X10 4

2.631 X10 2

0.5812 X10 2

0.2873 X10 &

0.1712 X10 2

0.1114X10 2

0.7640 X10-3
0.5383 X10 3

0.2803 X10 3

0.1453 X10 3

0.5366 X10 4

0.0341 X10 4

—0.2583 X10 4

—0.4344 X10 4

—0.6090 X10 4

—0.6850 X10 4

—0.6364 X10 4

—0.5206 X10 4

—0.4323 X10 4

—0.3201 X10 4

—0.2536 X10 4

2.986 X10 2

0.5655 X10 2

0.2769 X10 2

0.1661 X10 2

0.1096 X10 2

0.7642 X10 3

0.5521 X10 3

0.2939 X10 3

0.1767 X10 3

0.8714 X10 4

0.3702 Xlo 4

0.0/13 X10 4

—0.1146X10 4

—0.3106 X10 4

—0.4250 X10 4

—0.4185 X10 4

—0.3485 X10 4

—0.2892 X10 4

—0 2123 X10 4

—0.1668 X10 4

TABLE II. Comparison between the exact form of the p-exchange
Born term and the pole approximation for the J=1 and J=2
P-wave projections.

with the first term in Eq. (4.9b); hence, the distant cut
contributes a rather strong repulsive force to this wave,
as evidenced by the existence of the second term in
Eq. (4.9b). A considerable difference in the solutions
obtained from each of these forms would be expected in
this case. Figure 4 also presents a plot of the pole term,
Eq. (4.13), representing the effect of the short cut of
p exchange.

The solution for the amplitudes a J (s) can be obtained
by algebraic means, when the Born term is expressed as
a sum of poles. If the Born term is written as

i s—n.'4

where the sum is over all poles, then we have the follow-
ing expressions for E(s) and D(s):

E(s) =Q L1+(a—n, )k~]
i s (xi

2m~2+2'~ —mp~ dlscb($~)
ds

(s' —s)(m 2 ~2) 2]m

By way of comparison, a second approximate form is
considered for p exchange. This is a pole, chosen to re-
produce the effect of the short cut only, representing the
long-range part of the total force. From the integral
representation of bq(s), Eq. (4.6), this force is given by
the equation

where k; is the solution of the following set of algebraic
equations:

(4.17)

p(s')ds', (4.18a)
s —8 s —o.; s —n~

If, for values of s in the physical region, we neglect the
variation of the denominator along the cut and evaluate
s' at the center of the cut s„we get

1
g;(s)=- p(s')

ds' . (4.18b)
(~'—~) (~'—') (~'—~)

2m ~2+2@2—m p2

b, (s) =
(m(g —p, ) /mp

ds' discb(s') (s.—s) . (4.12)

D(s~) =0, or ReD(sg) =0. (4.19)

The existence of a bound or resonant state at energy
squared sz is determined by the condition" '

A rough evaluation of the integral which neglects the
variation in s' of discb(s') along the cut and which
neglects terms of order p/m„gives, for either J=1 or
J=2, the result

0.3333
b, (~) =v.

s—32.55
(4.13)

We note that the residue one obtains is exactly the
residue of the pole in the static model. ' lt is interesting
to compare the two results we have for the p-exchange
Born term, Eqs. (4.13) and (4.9). For J=1, the two
forms are numerically quite similar near threshold, but
the form representing the complete Born term falls off
somewhat more sharply. The exact Born term for this
wave actually has a zero for s 6400; thus, the distant
cut, starting at s =0, contributes a weak repulsive force,
which is not effective at low energies. On the other hand,
the short-cut contribution for J=2 agrees rather closely

The 7i-par coupling constant is self-consistent if it satisfies
the condition

3 E(s)
(in) + (out)—

2 dD(s)/ds, =,s
(4.20)

while we have for the mBco coupling constant

3 1
y/ (in) —y~ (o«)—

2 s~ d ReD(s)/ds, =,~

E(s)
(4 21)

"The relation between the I3 width Fg and yg is

yg = 12~I.'g/mg'kg'.

Experimentally, the ~pcs coupling constant has the value
y,/4~= 0.35, while the m Jjcv coupling constant takes the
value y~ =3.08&10 ' for a 8-meson width of 125 MeV."

We proceed now to a discussion of the numerical
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TABLE III. Values of f'/4v and B width I z which give
a completely self-consistent p meson.

—x10&8 a
8w

QB mass
(MeV)

p mass
(MeV)g

769
859

f'/4n I'n

1 ~ 10 588 MeV
0,62 346 MeV

1400
f'/4sr I's
0.88 1210 MeV
0.51 785 MeV

1.5

1.0

400

From this table we see that the larger mass, representing
a smaller binding energy in the ~-~ system, requires
smaller values of f'/4rr and 8 width I'&, as would be
expected. On the other hand, the smaller value of m~
yields the smaller value of I'&, nearer the experimental
value, while the larger srs~ yields the value of f'/4rr more
consistent with the experimental value.

0.5-

3. The B Meson

Calculations similar to the above are performed for
the 7=2 p-wave amplitude in order to determine self-
consistent parameters for the 8 meson. First, taking the
physical masses for the p and 8 mesons as input and
varying fs/4rr from 0.0 to 1.40, we determine the value
of ys/Ssr which gives a resonance at the position of the
8 meson. Three values of cutoff are considered, as
before. Figure 8 shows the results when the entire
p-exchange Born term is approximated by two poles,
Eq. (4.9b), while Fig. 9 presents the same results when
only the short cut is kept for p exchange. Equation
(4.10b) is used in both cases for 8 exchange. The differ-
ence between these two cases is now quite striking.
When the entire p-exchange Horn term is used, the force
is effectively repulsive, as we can anticipate from the
strong repulsive pole term in Eq. (4.9b). Output 8
widths, which are somewhat larger than the experi-
mental values, are nevertheless considerably smaller

0 I I I I I I

0 .20 .40 .60 .80 1.00 1.20 L.40
f Z4~

than the input values needed to produce a resonance at
the 8 mass. Some numerical results are presented in
Table IV. On the other hand, when the short cut only is

TABLE IV. Input and output values of I'~ in MeV, to
produce a resonance at 1200 MeV in the J=2 P-wave amplitude.
mp=769 MeV.

0.0
0.35
0.70

X=800
P&(in) P&(out)

1072 214
1290 293
1500 389

X=1600
p&(in) P&(out)

803 165
1044 242
1290 334

X=6400
F (' ) I"g('"t)

522 113
815 193

1090 281

FIG. 8. Values of yz/8s' versus f'/4v which produce the B meson
with a self-consistent mass of 1220 MeV, for the case in which the
entire p-exchange force was used in the calculation. m, = 769 MeV.

—x10)B 2
Sw

0.6—

0.5-

0.4—

0.5-

0.2—

—mP =769MeV
--—m =859 MeVP

~B =1220 MeY

m8 =1400 MeV

mB =1220 MeV

B =%400MeV

maintained for p exchange, a completely self-consistent
8 meson is obtained for each cuto6 value. Again, this
situation is indicated by the dashed curve in Fig. 9. For
A, =6400, we obtain a self-consistent 8 at 1220 MeV
with a width of 180 MeV, in reasonable agreement with

experiment; the input p parameters are given by their
experimental values.

We also consider the effect of varying the mass of the
B. Several values of mass, for which the Born terms are
approximated by the pole parameters given in Table V,
are taken as input at constant ys/Ssr. The output masses

TABLE V. Parameters of the pole terms for B exchange in
the 7=2 p-wave state, where bs' (s) =ps'/(s —a).

0 I t I I l I I

0 .20 .40 .60 .80 1.00 1„,20 3..40
f Z4~

FIG. 7. Comparison of values of pz/8~ versus f /4r, which
produce the p meson with a self-consistent mass, for two values of
p mass and for two values of B mass. A single cutoff at 6400 was
used. X indicates complete self-consistency for the p meson,

B mass (MeV)

1040
1150
1280
1400

—6.96—16.61—31.90—39.18

8.06
10.98
15.14
19.12
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TAnLE VI. Input and output values of ys/8~ to produce a
resonance in the J=2 p-wave amplitude with a self-consistent
mass. m, =769 MeV and /r/4r=0. 35.

170-
SR

150-

8 mass
(MeV)

1150
1220
1280
1400

0.0100
0.0080
0.0060
0.0040

p&(in)

(MeV)

542
815
980

1360

ye (alit) /gs

0.0024
0.0019
0.0015
0.0012

P (out)

(MeV)

130
193
245
410

130-
Ch
LLI
0'

110 "
CP
CO

90-
X

l

.Ooi2
yB] 8' =.oo4

at which resonances occur for these parameters are
presented in Fig. 10. Also shown are the output values
of y~/Ss- when the mass is self-consistent. We note, as
mentioned previously, that the output widths are
smaller than the input widths, but are still larger than
the experimental width. These results are summarized
in Table VI.

Finally we note that the same calculations as those
of Fig. 8 are performed with m, =859 MeV. The results
are essentially identical vrith those given in Fig. 8 for
vrhich m, =769 MeV. The entire driving force due to
p exchange, Eq. (4.9b), in our model is effectively re-
pulsive in the 1=2 p-wave state and therefore a larger
I'& is needed when p exchange is enhanced by increasing

y,/4rr, in order to get the output m~ at the experimental
value. This behavior arises from the sign change of the
p-exchange Born term at s= 305. We mention once again
that Eq. (4.9b) reproduces the actual Born term closely

up to s= 1000, as is shown from Table II.
On the other hand, the driving force coming from the

short cut of p exchange is attractive in this state, as is
clear from Fig. 9, and this force gives a completely self-
consistent 8 meson at the experimental mass, but with
a somewhat larger width. This explains vrhy calculations
based on the static model'4 or on the low-energy
behavior of the Born term'' give resonant solutions
containing the parameters associated with the J3 meson.

ys

1.0

0.5

0 l I I

0 .20 .40 .60 .SO 1 00 1 20 1 40

f /4~

FI:G. 9. Values of y~/Sx versus f'/4~ which produce the 8 meson
with a self-consistent mass of 1220 MeV, for the case in which only
the short cut arising from p exchange was considered. m~ = 769MeV.

0
. 70-

O

.0

ys /8m =.006
50-

ye

so
30 50

y& /Sm =.008
I I I I I

70 90 %10 150 %50

INPUT MASS SQUARED (p )

FIG. 10.Output mass squared versus input mass squared for the
B meson, for several values of ys/gs. . A single cutoff at 6400 was
used. The output values of ys/8~, when the mass of the B meson
is self-consistent, are also indicated on the graph. m, = 769 MeV.
The entire p-exchange Born term was considered in the calculation.

V. DISCUSSION

In this section, we review and discuss the main results
of the present work, in the light of the experimental
status of the 8 meson, vrhich is by no means clear today.
Recently, Goldhaber et a/. ,' in a study of the co's in the
decay of J3-+ sr+re, speculated that the 8 may not be
a resonance in the m-co system. They considered the
possibility that the 8 may be either a four-pion reso-
nance or a resonance between a pion and a three-pion
state with J~@1. , but no evidence could be found to
support these conjectures. It has also been pointed out'4
that the 8 can be explained on theoretical grounds as a
kinematic enhancement of the m-co system in the re-
action s.+p ~ p+ro+s. , according to the Deck mecha, -

nism. " Recent analyses"" of the experimental data,
however, have not produced conclusive results.

In the present work we 6nd that the parameters of
the 8 meson depend quite critically on the manner in
which p exchange is treated. If the nearby cut, repre-
senting the long-range part of this force, is kept and the
distant cut neglected, parameters for the 8 are found
in close agreement with experiment. However, the
distant cut which does not appear in a nonrelativistic
calculation is e6ectively repulsive and strong in our
model, thus requiring a large 8 width and favoring a
small +pcs coupling constant to produce a resonance at
the experimental position of the B. Output widths are

"' U. Maor and T. A. O'Halloran, Phys. Letters 15, 281 (1965).
'5 R. T. Deck, Phys. Rev. Letters 13, 169 (1964).
"M. A. Abolins, D. D. Carmony, R. L. Lander, N. Xuong,

and P. M. Yager, in Proceedings of the Second Topical Conference on
Recently Discovered Resonant Particles (Ohio University, Athens,
Ohio, 1965}.

'~ S. U. Chung, M. Neveu-Rene, O. L Dahl, J. Kirz, D. H.
Miller, and Z. G. T. Guiragossian, Phys. Rev. Letters 16, 481
(1966); 16, 635(E) (1966).
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comparable with the experimental value but are not
self-consistent. In this work we adopt the existence of
the 8 meson and try to explain the p and a 2 p-wave
8 as a reciprocal bootstrap in the m--co system. The
possibility that the 8 does not exist as a ~-co resonance
is not excluded, however, from our numerical calcula-
tions. We remark once again that the 1+ assignment for
the 8 meson is ruled out from the discussion given in
Sec. I.

Thus, we find two alternative interpretations of these
results. From the solutions we have obtained when the
complete p-exchange Born term is considered, we might
conclude that the 8 meson does not exist as a x-co reso-
nance. If this conclusion is borne out experimentally,
one might have some trust in the qualitative results of
relativistic calculations which take single-pa, rticle ex-
changes to provide the forces. If, on the other hand, the
8 meson remains as a bona 6de resonance as described
in this paper, one might believe the qualitative results
of nonrelativistic calculations, where applicable, or of
relativistic calculations which consider only the forces
of longest range. In either event, as emphasized earlier,
some assessment of the importance of multiparticle and
higher mass states, which are usually nelgected (due to
our lack of knowledge) in discussions of the low-energy
resonances, must be Inade before reliable quantitative
calculations can be performed.

We remark in passing that ambiguities similar to
those encountered here, when a division of the singu-
larities arising from single-particle exchange is made,
have been seen in the calculation of the E* in ~-&'lt

scattering. "The short cut of nucleon exchange is, by
itself, not sufhcient to produce the Ã*; however, when

the distant singularities of nucleon exchange are also
considered, the E* is obtained as a bound state, indi-

cating that the total force is actually too strong to
produce the physical E*. Somehow, the effect of these
cuts must be suppressed. In our calculation of m-co scat-
tering, the total force of p exchange is weakened by the
addition of the distant cut. If the same situation as that
of ~-~V scattering holds as to suppressing the single-

particle exchange force by the short-range type of force
coming from higher mass exchanges which we do not
know how to handle, the possibility of having the 8
meson as a x-co resonance is somewhat remote.

Turning to the calculation of the p meson, we And

that p exchange has a very small eRect on itself and, if
taken alone, it cannot reproduce itself at its physical
mass. On the other hand, the exchange of the physical
8 meson is not strong enough to bind the ~-co system at
the p mass, but, if enhanced somewhat, this force does
give rise to a self-consistent p meson at its experimental
mass but with an output +pcs coupling constant larger
than the experimental value. "We therefore conclude

' A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 {1963).
39 R. Blankenhecler and R. Sugar, Phys. Rev. 142, 1051 {1966),

found in their calculation of the p meson in Vr-7r scattering that
the effect of the higher mass ~-co channel had to be greatly exagger-
ated in order to produce the p with its physical parameters, for
small values of the cutoR parameter.

that the p meson cannot be considered primarily as a
dynamical bound state in the x-co system. The force froin
8 exchange in the 1 amplitude is nevertheless strong
and attractive and could play an important role in
producing the p in a calculation which couples the x-~
and x-co channels.
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APPENDIX

We present in this Appendix several formulas which
supplement material in the text.

i+aj i cos8+ij—k sin8
+ — 0

V2 vz

8' „k 8' „k
o (i sin0+k cos0),

mQ) PS') BSQ) 5$Q)

(i ij—
, 0

k W2 (
z coso—ij—0 sine

v2

These expressions are derived by assuming that the
incident momentum of ~ meson is in the s direction. We
thus have the following momentum vectors:

Particle

k= (kk, W), k'= [ik sin0+kk cos0, W7,

p= (—kk, E), P'= $ ik sin8 ——kk cos8, E7.

Here, W= (k'+m~')'t', E= (k'+p')'" and i, j, k are
unit vectors along the x, y, s directions, respectively.

(2) Relation between t&,„~+ and t~~(L ~ L') for J= 1, 2

We state the relation between helicity amplitudes of
given total angular momentum and parity and orbital
angular-momentum amplitudes:

t&-(1 ~ 1)=t,+'-,
t'+(0~0)=-'t ++-'t ++-'t

t'+(0 ~ 2) = ~~~2t+ ~+—~~&2t+0~+—~~v2t, a+

t~+(2 —+ 2) = ~ t++'+ t+o'++ 3t00'+.

(1) Polarization Vectors for Helicity States

Helicity amplitudes are readily obtained from the
general expression for the invariant amplitude for m-co

scattering, T(s, t,e), given by Eq. (2.2) by use of the
following polarization four-vectors:

Helicity state
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t'+(2 ~ 2) =t„~'—,
t'—(1~ 1)= —,'t~~'++-,'V3t+o2++-'too'+

t2 (1~ 3)= +6t++2+ v2t+02+ ——+6to(2+

t2-(3 ~ 3)=-;t++'+ ', V3—t+-0'++ ;,t„'—+.

(3) Partial-Wave Amplitudes for y and 8 Exchange

V/e present here the partial-wave helicity amplitudes,
t~„s+ for p and 2 P-wave 8 exchange in the 5=1 and

J=2 states and for the exchange of a i+ s-wave meson,

denoted by A, in the J= 1 state. In these equations,

Q~(a) is the Legendre function of the second kind and

2m„'+2p' —ma' —s

where R stands for the p, 8, or A particles.

(a) p Exchange

J=i
1—(s) 1~ {lk2Q~(a) (k2+2m 2+it 2)Q2(a)+((9/5)k2+m 2+p2 s)Qi(a) (k2+1m 2+jp2)Qo(a)}

'+(s) =-,'yp{ —g'(k'+m ')Q3(a)+(k'+ —'m '+—'p' ——,'s)Q2(a)

((9/5)k2+4m 2+p2)Q1(a)+(k2+am 2+ap2 as)Qo(a)}

1s—m-'+p,t""()=~, - —:(Q,( )-Q( ))+- (Q.( )-Q.( )),
3s+m '—t'

8
tpo'+(s) = —— (Q3(a)—Q~(a))

5 (s+m„'—t ')'

J=2
t++'+(s) = le.{—(8/35)(k'+m-')Q ( )+(k'+lm-'+lt '—l )Q (a)

—((11/7)k'+(4/7)m„'+p')Q2(a)+(k'+3m '+-'p' —-,'s)Qy(a) —-'(k'+™„')Qo(a)}

v3 8 2 2 s m 2+t2
t+o"()=—v, -' —Q()-—Q()—Qo() +- (Q()—Q())

2 35 21 15 Ss+m '—p'

2y pm„'s 24 20 4
too'+(s) = — —Q4(a)—Q.(a)+—Qo(a),

(s+m '—
t ')' 35 21 15

t++' (s) = 2v, {(8/35)k'Q4(a) —(-:k'+km-'+st ')Q~(a)

+((11/7)k'+m-'+t '—s)Q2(a) —((7/5)k'+5m-'+5p')Q~( )+ak'Q5o( )}g.

(b) Z p-WaveBExchange
Here we use the notation

»——me'(ke'+m. '+t '——,'me' ——,'s)
P2= m~ 2

r8 ——'ke'+-'m '+2p-' ,'me' ',—s)—)——
Z4 ———(me' —m '+p')

ke2 (1/4mB')t me2 (m +p)2jLme2 (m p)27

t++' (s) = ——:v m '{(1/k')Q (a)»+l(Q (a)—Qo(a))~ }
t++"(s)= —lveme'{(1/k')(3Q2(a)+3Qo(a))»+(5Q3(a) —kQ~(a))5'~} ~
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1 (s—m„'+p') F3+s$4)
(e.( )-eo( ))I ~+~' Iil(e.( )-Q.( ))~. ,

3k' s+m '—p' )

s+m '—p'

Q()
(—4sFq+4s'Fq+ (s—m„'+p')'F3+ 2s(s—m '+ p, ')&4)

(s+m~' —p, ')'

(s m—.'+q') F&isF,~
~."()=-v. - (le.( )i!e())~+—(le.( )+le.(.))l ~.+»'

k'

'+(s) = —v2eme'{(1/k')(-'Q()(a)+Se~(a))5i+((8/35)Q4(a) —(3/7)Q2(a)+leo(a))Ps},

1 (s—m„'+p') F,+sF4) p 4 1 1

t+ '+(~) =&~V ~ ' (()s(~)—Qi(~))»+(' l+~l
—Q (~)—Q (~)——() (u))S

5k' ) 'E35 21 15s+m~ —y'

t
12 11 2 i 1 ~ (s—m„'+(((')Pq+sP4)

&oo"( ) = —v '
I

—
Q ( )+M ( )+—

Q ( ) I&+—(le ( )ilQ ( ))I &+2&'
)(35 21 15 ) k' s+m„'—p'

Q2(a)i (—4sS)+4s P~+(s—m~'+p')'Fa+2s(s —m 'ip')5'4)
(s+m~' —p')'

t'(s) = ——',v,arne'{ (1/0') Q~(a) &i+ s (Qs(a) —Qi(a) )&s} ~

(c) 1+ s-Wave A Exchange

~,.-( ) =—:v.{(1/~ ) "e.( )+-:(e.( )-e ( ))},
'+( ) = —lv {(ii»)(e.(a)+4Q ( ))+( "/» )(e.(a)+2e (a))-Q (a)}

1 m~' s —m„'ip')
~,o'+()=v. -'. (e ( )-Q ( ))+- + l(Q ( )-Qo(a)) I,

3 P2 s+m 2 p2)

(s+m '—p')'

1 m~' s—m '+p' (s—m„'+p, ')'—4sm~'
too +(s) = vg s(2Q&(a)+3QI(a))+ — +2 (2Q2(a)+Qo(a))+ Q&(a)

3 /c2 sim 2 y2


