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where now the prime means that interior indices can-
not be equal to i. Summing this equation 6rst over
even n and then over odd n, we get two coupled equa-
tions, as before, which are

n=1, 3, ~ ~ ~
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from which we can get
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Consequences of the local commutation relations of vector and axial currents proposed by Gell-Mann are
explored: (1) A recipe for detecting and isolating Schwinger terms in the commutators, proportional to
derivatives of the s function, is discussed. (2) Under assumptions of smooth asymptotic behavior of form
factors for forward scattering of the isovector current from a proton, we show that the U(3)QXU(3) algebra
for the time components of the currents implies the U(6)Qx U(6) algebra for space components, at least for
spin-averaged diagonal single-particle states. (3) The derivation of the Adler-Weisberger formula for Gg/Gv
is sharpened by giving arguments that, at fixed energy, the forward ~-p Green's function satisfies an un-
subtracted dispersion relation in the pion mass. (4) A lower bound for inelastic electron-nucleon scattering
at high momentum transfer is derived on the basis of U(6)QxU(6). (3) The contribution of very virtual
photons to the hyperfine anomaly in hydrogen is shown to be related to an equal-time commutator of cur-
rents; this contribution is crudely estimated to be (4 parts per million (ppm). (6) The logarithmically
divergent part of electromagnetic mass differences of hadrons is shown to be proportional to matrix elements
of the equal-time commutator of the electromagnetic current with its time derivative. It is suggested that
this "divergent" part be identified with the Coleman-Glashow "tadpoles"; this suggestion is discussed in
the framework of a simple quark model. (7) The logarithmically divergent part of the electromagnetic
correction to the process n. ~ nv+e +r is, on the basis of the U(6)QxU(6) current algebra, shown to be
nonvanishing, and is computed. (8) A speculative argument is presented that the rate e++e ~ hadrons
is comparable to the rate e++e —+ y++p in the limit of large energies.

I. INTRODUCTION
' ' N this paper we apply the chiral U(6)QxU(6) algebra
~ ~ of current densities proposed by Gell-Mann' and by
Feynman, Gell-Mann, and Zweig' to various processes.
We propose a criterion for detecting and isolating
singular terms proportional to gradients of delta func-
tions. These Schwinger terms' have inhibited the use
of the full information contained in the algebra of
current densities. In particular, the behavior of matrix
elements of currents as the momentum q carried by the
currents approaches inanity can be determined in
terms of the current algebra. Some applications in-
volving electromagnetic corrections to hadron processes
have been found. The program of the paper is as follows:

Section II: We propose a criterion for identification
of Schwinger terms. The crux of the matter is that the

*Work supported by the U. S. Atomic Energy Commission.
'M. Gell-Mann, Phys. Rev. 125, 1062 (1962); Physics 1, 63

(1964).' R. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev. Letters
13, 678 (1964).' J. Schwinger, Phys. Rev. Letters 3, 296 (1959).

T product of currents used in making sum rules is in
general not covariant. This was recognized and dis-
cussed4 by Johnson in 1961.We give a rule for construct-
ing the 2 product from the corresponding covariant
amplitude. The difference of the two objects is the
Schwinger term.

Section III: The claims of Sec. II are illustrated for
the vacuum expectation value of the T product of two
currents. This section is essentially a summary of
Johnson's paper.

Section IV: We next take the T product of two iso-
vector currents between protons at rest and show that
the only Schwinger terms are in the disconnected
graphs, provided certain form factors behave reasonably
at in6nity. If this is the case, we can furthermore show
that if the time components of the current densities
satisfy a U(3)QxU(3) algebra, the space components
satisfy the U(6)QXU(6) algebra, at least for diagonal
matrix elements between single-particle states, spin
averaged.

4 K. Johnson, Nucl. Phys. 25, 431 (1961).



1468 J. D. BJORKEN

U(6)oxU(6), that to all orders of strong interaction the
radiative correction diverges logarithmically; in
particular

3n A.'
5R=SRp 1+—ln

4' M2

where BRp is the lowest order amplitude.
Section X: Finally we look at the process e++e

hadrons, and show that the total cross section satisfies
the relation

A

FIG. 1. Second-order weak-interaction S-matrix element.

Section V: In this section we show that the forward
m-p scattering amplitude for a virtual pion [whose
interpolating field is cj„j„(x)'"'"]satisfies an unsub-
tracted dispersion relation in the mass, for fixed
laboratory energy'. This allows one to sharpen the
derivation of the Adler-Keisberger formula' for

IG&/GvI by giving some justification for the analytic
continuations needed in that calculation.

Section VI: We look at the spin-dependent part of
forward Compton scattering of a virtual photon and
using the U(6)QxU(6) algebra derive an inequality for
inelastic electron-nucleon scattering:

lim lim q4E;„,
Q2 ~ 00 +liie ~ 00

dv

p v dq dv
Sxn' Gg

(1.1)
3 Gy

$

where v =E;,—Ef. We conjecture that

dg„mn$)
dq' q4

(1.2)

in the same limit.
Section VII: The results of Sec. VI are applied to the

hyperfine structure in hydrogen; it is concluded that
the contribution of very virtual photons (q'((—m, ') is
bounded by a few ( 4) parts per million (ppm) and

probably cannot explain the 20-ppm anomaly.
Section VIII: We show that the logarithmically di-

vergent part of electromagnetic mass di6erences is
proportional to matrix elements of the equal-time
commutators of the currents with their time derivatives.
On the basis of a simple quark model, we argue (but
cannot prove) that these matrix elements are finite,
nonvanishing, and have SU(3) octet transformation
properties. If the quark mass term in H is dominant,
many of the Coleman-Glashow "tadpole" theory results
emerge.

Section IX:Ke examine the radiative corrections to
p decay of a pion, and show, on the basis of chiral

' S. Adler, Phys. Rev. Letters 14, 1051 (1965); W. Weisberger,
ibid. IL.4, 1057 (1965).

dq'q'0 „,(q')

= 16ir'~' (OI [g, (O,x),[H,j,(0)]j I
0)d'x, (1.4)

where q' is the square of the total center-of-mass energy.
Using the toy Hamiltonian of Sec. VIII, we find a

quartic divergence in the right-hand side, suggesting
that within logarithmic factors

a$.$(q')-a'/q' as q' —+ ~ .

II. THE SCHWINGER TERMS

(1.5)

[j,(O,x),j(0,x')]=CV8(x—x'), (2.1)

where j„(x)is, say, the electromagnetic current density.
That such a term is present can be demonstrated by
manipulation of the vacuum expectation value. In
constructing sum rules such terms get in the way; what
we shall endeavor to do is to give a recipe which
identifies and isolates these contributions.

We argue that the existence of Schwinger terms is
demanded by locality and Lorentz kinematics alone,
and indeed may be isolated by using only this informa-
tion. We illustrate what we mean by considering the
isovector M=O currents j„+ defined by the P-decay
interaction satisfying

LQ",Q ]=2Qs,

[Q,Q ]=~Q.,

Q+= d'x j,+(x,O) . (2 2)

We center our considerations on the time-ordered
product'

cV„.(q, ) = i d4x—
&«"'(~

I
2'(j.+(*)j (o)) I &) (2 3)

6Throughout this aper, we norma1ize single-particle states
such that (p'I p)= (z M)(2$$)'s$(p' —p').

The Schwinger terms'4 are singular terms in the
commutator of current densities. Specifically, Schwinger
showed that
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and the absorptive parts

dqo
( s . . .)—p„„(qo )3„„qo,% ''

co
qo (2' )

p„„, = d'x e'o *(A
l
j„+(x)j„-(0)lB,pop(q, ' ' ') = d x e'

= d'* -".
&~l j;(0)j.'+ x)lB),p„,(q, )= d xe-' d'x 2 l[j„+(O,x),j;(0,0)gl )e- ' . (2.6)

gp

.,=2 (2 )'~'(q+P. -P.)PIJ V=

x(&lj. (0)l )(.Ij;(0 B,
„,=Q (2')'84(q+Pg P.)—Pyv=

ulti le commutator rs ofr terms involve m ip'"'""""" ' h. -.'"-'.the currents with FI; e.g., e

(
' )+p (qo', —a, " )l7P PV 9P &~~

gp 2m

X(alq„(0)l~-)(~lq„+(0 B .
0 B . 2.7d'xe 'o'*(Al [[j„+(O,x),Hjj, (0)]lB . 2.

2

g q) d~ p(~)gPgV
—

gy Vg

g2 0 2

(3.3)

(3.4)

mmutator, we mayate the equal-time comm, ma
(2.3) b t .~ & and integratetake q„

is that in general,1 for
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' t ral'over p.
h leptoil curren

3.2)

uoes

2'„„=
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-oideied pI'oduct vanishes as qp ~time-or

H do in one way or ano0
'h i lbefore confronting t e

numbers):

m„,(q, " )=
dip

o (2m-)

d'x(~
I [jo'(O,x),j. (0)11Be "*q&iVo„= d x o

do'p(~')
=[ (n q)~.+q—

( 'a" ) p"(qo', —a, "~ ~ ~
PglV gP )

qo+ qogp
—

gp

(2.5)
= (O, a)

do'p(o')
(3.5)

roduct 3f„„fromct the time-ordered proThu, e
RIll lltude 3Ep„the covariant p
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' '

anAxe Q, i

a 1 o) as
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observe athat the term 0 qp

1 atorproportional to the equa-gp ~ 'x) is

win er. If we use (2.6) a,ndis the result of Schwinger.

conserved currents, althoug e
s not depend upon this.Sc wingin er terms does no

nstan, t "mass8 Any extra cons
~„„,cf. Eq. (3.4).
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evaluate the term 0(1/qp) from (3.2) and (3.4), we
arrive at the same conclusion. It may also be obtained

by directly evaluating (2.5); here the Schwinger term
arises because the polynomial projection operator
(q„q„—g„„q') depends upon the integration variable q,'.

as qp ~ i ~ (v ~i ~; q' ~ —~ ), no other Schwinger
terms will be induced. These are reasonable assump-
tions, which we hereafter accept. Then M„„ is given
by (4.2), with Mp omitted and D„„—+ D„„.Taking the
divergence, we find

IV. EXPECTATION VALUE BETWEEN PROTONS q"M =q'P Mp+q M4

(P +2q.) q'
+ Fl p F2 p +q&D„„. (4.5)

M

1
q"M„,= Pd'—a(P~

l Ljp+(o,x),j„-(0)g
l
P~)c-'p *

81
M,.=-2 d4*c" (P~l T(i.+(&)j. (o)) I»)

S =P(Ps
l
j„'(0)

l
Ps)+ (disconnected piece)

+ (Schwinger terms)

%e now consider the same commutator between
proton states of the same spin and momentum, and
averaged over, spins. ' (The spin-dependent terms will

b co id dlt .)Thi 'sthe co id dby F l l „tt, „ lt, „p t f,
Adler, who has derived fixed-momentum-transfer sum (2 2) and (23)
rules. " The general form of the covariant amplitude

3f„„is then

= (P,/M)+ (disconnected piece) .=P~„pi(q', v)+ (P„q„+P,q„) Sp(q', v)

+q q p, (qp v)+& p, (qp „) „q.p/M —(4 1) Equating (4.6) and (4.5), we have

(4.6)

q2

1—Ii 2— Ii 2which we rewrite as
M3 ——

Mq'

(4 &)

qp3Mg —& 0,
qp3M2-+ 0,

qP, (
(4.8)

2(P„+ q„)(P„+ q,) — q-

M(q'+2M v) 4M' Thm as qp~i ~, everything comes from M3.

M"~ ~&.p +~ Pv Zu.n P)/Mqo—, . (4.9)
(Fi„+Fp„)', (4.3)

2M (q'+2M v) and aside from the Schwinger term in the disconnected
part" we find

ill„„=P„P,M p (v) 4M2

+Lq'P.P. (q P) (q.p—.+q P.)+(q P)'gv. )Mt(q', v)

+(q.q g"q')M (q—', v) M4 ——— pi„— p„
+ (q„P„+q„P„g„„qP)Mp(q—', v)

2M 4M'

+&»M4(1~v)+~»+D» (4 2) We find an interesting result in the case that

8„„is the Born term and D„„the disconnected covariant
amplitude, identical to (3.2)."

q'Mg ~0,
q'M2-+ 0)

q I'M3-+0)
M4 —+0,

(4 4)

'The same calculation goes through for any single-particle
state.

'0 S. Adler, Phys. Rev. 143, 1144 (1966).
&' Within a factor (2n)'(E/3E)b'(0).

where FJ„, and F2„are the Dirac isovector form factors
normalized to 1 and (~v—aii), respectively.

For q'(0 (spacelike), the absorptive parts of 3II„„are
confined to the conserved pieces M~ and M2 which

satisfy Axed q' dispersion relations in p. Thus Mp, M3,
and M4 are polynomials in p for Axed q'.

In constructing 3f„„from M„„we see that we will

obtain a Schwinger term from D„„,as well as lose Mp

completely. However, provided

1
d'x c-' *(P~l Lj„+(o,x),j„-(0)llps)

2
r)„p„+rl„p„g„„rlP—

(4.10)

This is what is expected from quark currents, e.g.,

Lj'(0,x),j'(0)3= 2jo'(0)&'(x) (4 11)

Thus it appears that the theory which is "as smooth
as possible" is that for which the current algebra is
chiral U(6)QxV (6).

The Adler sum rule" is obtained, by demanding that
the coefficient of (P„q,+P,q„) in M„„satisfy an un-
subtracted dispersion relation; we need not go into

'~In fact, we may choose g=O; there is, in that case, no
Schwinger term at all.
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detail here, as it has been discussed considerably From the dispersion relation, valid for spacelike q as
elsewhere. " is the case here, we find, assuming the Born terms

vanish rapidly for large q',

V. THE ADLER-WEISBERGER FORMULA

As an application of some of these ideas, we sharpen
the derivation of the Adler-Weisberger sum rule' for
the axial-vector renormalization in P decay. We consider

M(q', )= s—d'* c"'(P
l
T(D'(~)D-(0))

I
P) (5 1)

Here
i P) is a proton state of momentum P and

v ee dv&podd(q2 v&)
~odd ~

22r „, (v"—v')
(5.7)

p 2M
(5.8)

But the threshold pp in the dispersion integral is

~ qpi 2/2M for large qp, therefore

D+(z) = 8jv(x)exist+/8&v ~ (5 2) Thus~ as qp ~ 1 no

For spacelike q', M satisfies a dispersion relation in p,
the even part we subtract once, and the odd part we
leave unsub tracted in accordance with the Pomeranchuk
theorem.

v "dv'p' '(q' v') BA(q' v) I

M —+— (5 9)
av

Ke conclude that

M(qs, v) =B(qs, v)

"d ' "(q',")
+even(q2 v) (5 3)

2' p p 2 p2

8 is the Born term. The rigorous formula, from the
current algebra, is that

(8A/clv) i
„„p=—(rl/Bv) (cV 8)„,p

—1—G~2. ——(5.4)

Ep BA(q', v)
d3g e

—'t q ~ x

M Bv, „p&' —"q2

X(P( [D (O, x),D (0)])P). (5.10)

Thus, A'(q', 0) satisfies an unsubtracted dispersion rela-
tion provided the commutator exists." If D+(x) is
proportional to a canonical pion field, the commutator
vanishes. If it is bilinear in Fermi fields, e.g.,

A (q2 v) Lg2~4/(q2 ~2)2]A (v) (5.5)

To relate this to pion scattering, one argues that the
continuum amplitude A is dominated by the double-

pion pole for small values of q'.

v=p

Icl
as q' —+ —~ .

D+(X) = Cgysr+P, (5.11)

(5.12)

where a is a constant related to the pion-decay ampli-
tude. The pole dominance (5.5) is plausible, if A satisfies
an unsubtracted dispersion relation in q'. One knows'4

that for fixed v, A is analytic in the cut q' plane, with
branch point at 8.5 p' for v 0. Now, on the basis of
reasonable commutation relations, we shall show that 3
indeed satisfies an unsubtracted dispersion relation
in q', strengthening the argument (5.5). Although this
is a fine point in the AS=0 sum rule, it may be of some
significance in understanding why the AS=1 sum
rule" works at all.

We return to (5.1) and let qp-+i~. The term of
order 1/qp is odd in v, and has the form /see (2.5)
and (2.6)]

dpi' c-*2 *(Pi pD+(O, x),D-(0)) iP). (5.6)
Q0 ~Ze42

q

"N. Cabibbo and L. Radicati, Phys. Letters 12, 697 (1965);
S. Adler, Ref. 10.

'4 To all orders of perturbation theory.
'5 C. Levinson and I. Muzinich, Phys. Rev. Letters 15, 715

(1965); D. Amati, C. Bouchiat, and J. Nuyts, Phys. Letters 19,
59 (1965); L. Pandit and J. Schechter, ibid. 19, 56 (1965); %'.
Weisberger, Phys. Rev. 143, 1302 (1966).

Lj„(0,x),j„(0)]= 2ie„„,.i—l"j;(0)bs(x)
+ (gradient terms), (6.1)

where

jJ ltvl Q
i u'= km»vQV=

(2/9)kepis

A+ sA sv.Q&
and

r'2

Q= 0.0
0 00, eppes= 1.
0 1

34

(6.3)

The general structure of the antisymmetric part 3f„„& &

"This is required on experimental grounds; the success of the
Adler sum rule for the even pion-nucleon amplitude LS. Adler,
Phys. Rev. 137, 81022 (1965)) demands that this commutator
be small. See also K. Kawarabayashi and W. Wada, Phys. Rev.
146, 1209 (1966).

VI. SPIN-DEPENDENT VIRTUAL
COMPTON SCATTERING

We apply these ideas to the antisymmetric part of
the virtual Compton amplitude from a proton, assuming
quark structure for the electromagnetic currents j„.
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of M„., defined as in (2.3) with j„replacing j„,is given Upon identification of this with the asymptotic behavior

by of G1 and G2 we find that

M„„~= —', g([y„,q]P„—[y„,q]P„+[y„,y„]P q) 44G, (q', )

+l~([~,q]q.—[~.,q]q +[~.,~ ]q') ~G~(q', v) (6 4)

Gg —+ —2Z/Mq',

0(1/qo') ( o )
(6.11)

From crossing symmetry,

M & '(q .)=/M ( )(—q
. .)= —M & &(—q

.)

On the other hand, we may evaluate G& by using an
unsubtracted dispersion relation

G&(q', —v) =G&(q', v),

G2(q', v) = ——G2(q', v) .
(6 5)

2 "d v'v' ImGr (q' v')
Gr(q', v) =-

v"—v'

and as qp ~ 200

(6.12)

We assume unsubtracted dispersion relations for both
G1 and G2.

For q'=0, M„„( & is related to the spin-dependent
part of the forward Compton-scattering amplitude;
for q'(0, the absorptive part of M„„t."& is related to the
spin-dependent part of inelastic electron-proton scat-
tering. Specifically,

dp —7rz
ImGt (q', v')

q2 -+ —oo ~q2I
0 V

Using Eq. (6.6) as F.~ gg atfixed q'

(6.14)

2 dp
G&(q', v) =— ImG&(q', v') =Gr(q', 0), (6.13)

7l p V

dq'dE' dq'dE' q'E'
q2E do tt do~~

ImG (q' )
ScP3f dq2dv d'q'd'v

(6.15)

X[M(E+F.' cos8) ImGr+q' ImG2], (6.6) and we find

e' ImGg ——(1/2M) [o»—g 4t], (6.7)

where da tt is the cross section when the spins of electron
and proton are parallel and along the direction of motion
of incident electron, and do-~~ is the cross section for
antiparallel spins. E, E', and 0 are energies and scatter-
ing angle of the electron, q'= 4FF'sin'(8/2), —and
p =E—E'. We have set m, equal to 0.

The photoproduction cross section for q'=0 is given

by the optical theorem:

lim lim
q& —v —oo g -+ ao

d p do. ~~ dg & t —Sxn2Z
(6.16)

v' dq'dv' dq'dv' q'F.

It will be a long time before these cross sections are
measured. Furthermore, we do not know the value of Z,
although SU(6) predicts Zv= 5/9 and Z„=O. However,
if we take the difference between proton and neutron
we know from (6.2), assuming always the U(6)QxU(6)
current algebra, that

where 0-t~ is the cross section for photon and proton
spins aligned. The Born terms are given by

1 Gg)
Z„—Z =- —l.

3 Gv)
(6.17)

Q Born
1

Q Born—
2

—2q'F g (Fr+Fe)

M (q4 —4M'v')

—2vF2(F 4+F2)

q4 —43Pp'

(6.8)

Thus,

p dqdv
8trn' Gz)—

X[g„tt—g 4t —g„tt+g„4t]~ —
l
. (6.18)

3q4Z G,i
We extract a useful result by considering the limit
qe~i ~ of M„„& &. Using (2.6) and (6.1) we find

Something may be salvaged from this worthless equa-
tion by constructing an inequality':

qp ~ f ao

We deine

lj;(0) lp)

—2z&pvxoq

&Pl j'(0) I»
q2

(6.9)

lim lim q'E
q& -+ —ao Q -+ ao

dv da'& d0 „
v dqdv dqdv

Smn' Gg
(6.19)

3 Gy

(Psl j4 (0)(Ps)=Z44yey 44= —Zs . (6.10)
"Compare Kqs. (5.7)-(5.9).
IS gy —0'~t I+0
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Aside from the factor 1/v in the dispersion integral,
this is similar in form to the Adler sum rule" for
neutrino processes

r do do. G'
lim lim

~"Edq2 dq' 2r

(6.20)

where e4/q4 replaces O'. We suspect the factor 1/v' is
due to our inefliciency in using only the spin-dependent
amplitude, and conjecture that a "practical" inequality
for electron scattering is

do.„gn
lim lim

q& -+ —ao P -+ oo de q4
(6.21)

Inserting (6.9), and doing the spin algebra, we find

in direct analogy to the result for neutrinos.

VII. HYPERFINE INTERACTION

The asymptotic part of the spin-dependent Compton
amplitude (6.4) will also contribute to the hyperfine
interaction and has not been included in previous
analyses, '2 for which the asymptotic behavior (e.g.,
Born terms) is more rapid than 1/ko. The second-order
Inatrix element for the spin-dependent part of forward
electron-proton scattering asymptotically (ko —v i oo )
approaches

5K(@=—ie4 uy&ky "NM„„~'&(P,k) . (7.1)
(22r)'k'

In order to be consistent with the absence of
Schwinger terms and with a chiral U(6)QxU(6) current
algebra, we demand, aside from the disconnected
graphs D„„, that M„„~O(1/qp') as qo

—+i~. This
means

352 —+ 0(1/q p'),

M2 —+ 0(I/qp'),
(8.2)

as gp ~ i~ . We assume the Born terms m ay be ignored
in this limit, which is satisfied if

VIII. ELECTROMAGNETIC MASS SHIFTS

The same methods may be applied to any process
where high-momentum (spa.celike) virtual photons are
involved, in particular, to radiative corrections to
processes involving hadrons. The most interesting are
the electromagnetic mass shifts of hadrons and the
radiative corrections to weak interactions. We survey
first the mass shifts. We consider the expression (4.1)
for 3I„„,with electromagnetic currents replacing isospin
currents, and spins averaged. To be explicit, we consider
the proton, although our results will be general. Then
the analog to (4.2) is

M„,= [q'P„P„(q P)—(q„P„+q„P„)+(q P)'g„„j

X~~(q', q P)+. (q„q, g„.—q')M2(q', q P).
2

+8 ——Fg ' — F2v' +D„„. (8.1)
M 4'

+n2Z d4k
m(2) =- +y"7~y "N&pvt aS

2m-2 k'
(7 2)

F2v ~ O(1/q'),

F2.~ o(1/q')

as g

(8 3)

= +3@Z'Q"r2sg

Av 9n (Zv~ nz,Mv-
p 2x pp m

(7.3)

Choosing Z„1and m'=mp we find an answer

where m' is some eBective lower cutoG. Comparing with
the first-order term, we find a correction

We concentrate our attention on the divergent part
of the electromagnetic mass shift which we calculate
according to Cottingham. "This comes from the terms
associated with M~ and M2, since the Born contributions
have been evaluated" in terms of measured electro-
rnagnetic form factors and found to be convergent.

—ie' de
bM= [~,"(q,P)—D."1

2 (22r) q'

Ap—-3.5X10 '=—3 5 ppm
P

(& 4)

d4q
[(q2+2v2)~2~1(q2 v) 3q2~2(q2 v))

g2

+ (Born terms), 3fv= q P. (8.4)

This appears to be too small by nearly an order of
magnitude to account for the anomaly'9 of 20 ppm,
and we conclude that within the general picture we have
taken [convergent dispersion integrals and chiral
U(6)QxU(6) current algebraj that the large k' region
is probably not a major contributor to the hyperfine
anomaly.

'~ C. K. Iddings, Phys. Rev. US, 3446 (1965); this contains
references to earlier work.

Following Cottingham, " we rotate the qp integration
contour to imp and then express M~ and 352 in terms
of dispersion integrals over v, which we leave
unsubtracted. "

"W. Cottingham, Ann. Phys. 25, 424 (1963).
2'M. Cini, E. Ferrari, and R. Gatto, Phys. Rev. Letters 2, 7

(1959).
"The case where subtractions are necessary is interesting and

deserves study; it, in particular, has implications for inelastic
electron scattering at high g'.
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2 " dv'v' ImM;(q', v')
M.(q', v) =—

"min

(8.5)
or (8.8). Then

d'x[[j;(O,x),Hs ],j;(0)]= —4itPt[rr, rr'; —fi;,rr V]Q'P,
From this dispersion relation, we know (because the
threshold v~;~ —+ ~ like q'/—M) that, for q'= —)'s'

s =ik cos8, cos8&i, d'x [[j,(O,x),Hsr], j;(0)]= gM—Q'pb,;, (8.11)

M;(q', v) ~ M, (q', 0) as k ~ oo.

The divergent part of bM is therefore

(8.6)

d'x[[j, (O,x),Hr ],j;(0)]=4g/t[rr;B, —b,,rr B]QQ.

CK

Qfdiv-
Sx

k2dk2

)&[sM'Mi (—k' 0)—3Ms (—lP,O)]. (8.7)

In this model, we see that the "divergent" part of
the mass splittings transforms, in the SU(3) limit, as a
unitary octet, since the matrices Q' and Q'M can be
reduced to linear combinations of 1, X3, and X8. As an
instant generalization we have the theorem:

We see that bM~' depends upon the term 0(1/k') in
M;(k,0). It is precisely this term which is determined
by the equal-time commutation relations of the currents
with H. According to (2.7), we have" as qs ~ i ro, q= 0:

1 1
M..~—-2 d'x(P~I [[j„(0,x),Hl, j,(0)] I P~)

q2 2 s

while from (8.1) and (8.6)

M„„~[P„P„&.P(~„P„+~—„P„)
+ (rl P)sg„„]qsMi(q', 0)

+ (r)„rl,—g„.)q'Ms(q', 0), (8.9)
where q„=g„go.

To proceed, we need a model for the strong Harnil-
tonian H in order to evaluate the double commutator.
The results appear to be quite model-dependent. Within
the framework of a quark model, however, we can
plausibly argue that the double commutator will not
vanish. To illustrate —and only to illustrate —the
situation we consider a simple quark model for which

H=Q d'x iP, t(x)

(4/q )(psI p, (o)Q, ~.p. (0) I p.)(g„„&„~„)—
(4~o'"'/q') —(g.. n,n.) (8 1—2)

q'Mt~0,
Ms —& —4mptv'/q'

as g

(8.13)

Thus, within these simple-minded assumptions, the
electromagnetic mass of the proton diverges if the bare
quark masses and mo(~) are nonvanishing, and is given
by"

Theorem: If the part of H which depends upon quark
fields P is bilinear in P and Pt and contains no off-
diagonal SU(3) matrices" (i.e., only 1, Xs, Xs), the
divergent part of the electromagnetic mass splittings
transforms as an octet [in the SU(3) limit].

We have not shown that the matrix element is non-
vanishing, and cannot, in fact, do so. However, some-
thing can be said about the mass term H~ and hereafter,
in the spirit" of static SU(6), we ignore the other two.
With this reservation, we find from (8.11) and (8.8)

&&[—~ V+P~,+gP~„B (x)]g,(x)+H~
3(x

"
2~

dk2 3o, A2

==m, () ln
k' 2m k;„'

(8.14)

=Ho+Hsr+Hr+Ha. (8.10)

The f; are quark fields and B&(x) is a neutral-vector,
SU(3)-singlet field. Hrr is the Hamiltonian of the B
meson, including possible self-interaction terms. The
only virtue of this H is that it has a simple algebraic
structure and a chiral U(6)QxU(6) current algebra.

The commutator (8.8) can now be computed. Only
space components of j„and j„need be considered,
because r)„M&"=O(1/qs'), as follows from either (8.9)

"Notice that, were chirai U(6)QxU(6) an exact symmetry,
the commutator would vanish.

If H commutes with isospin, then mr ——ms in (8.10), and
the isospin-dependent part of the mass splittings is
given by

dk2
m, =—m, (p I it (0)T,p(0) I p)2' k2

2 This assumption is scarcely needed; were there such matrices,
they would lead to other charged fields to which the quarks are
coupled. But these 6elds would contribute to the currents, in
contradiction with our original assumptions.

s' We mean (ptmp)«Q tpp)
2'For free quarks, the contribution of the (here neglected)

kinetic energy term reduces this by a factor 2.
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with
rl p
p 1

3 2.0 0

0'
0
0.

~ ~

and matrix indices suppressed. The same calculation tude for m-p decay.
may be done for any particle state and the same factors k;p

amp dk'

2Ã P
(8.16)

aV, = (m, —m, )(P ~yI'lt
( P) (8.17)

Thus

3
I'= 0

0

0
0
2
3 J

(8.18)

bMs n ( m, (p~It (0)Tsp(0)
~ p) dk'

(8 19)
m, 2~I,~, ~, (P~lt(0)l y(0)~P) k

For meson octets and the decuplet, the ratio of the
matrix elements is simply a Clebsch-Gordan coeKcient.
For the baryon octet, the ratio depends only upon
the f/d ratio in the octet mass formula.

From the form of (8.19), we find the general results
of Coleman and Glashow that:

(1) The electromagnetic splittings are octet.
(2) The f/d ratio of the electromagnetic splittings

is the same as for the octet splittings.
(3) The ratio of electromagnetic splittings to octet

splittings is universal, i.e., independent, within Clebsch-
Gordan coefficients, of the particle in question (to the
extent that the logarithm

is independent of the particle in question).

"S.Coleman and S. Glashow, Phys. Rev. 134, B671 (1964);
S. Coleman and H. Schnitzer, ibid. 136, 3223 (1964}.

2 Although this looks like perturbation theory, we may obtain
the same result by using the Fubini-Furlan technique, keeping
only the pole contributions, and ignoring the dispersion integrals.
S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A, 1171
(1965).

will appear; only the reduced Inatrix element

(Pllt(0)& 4(0) IP)

will vary from particle to particle. Of course, for mesons
83fs is replaced by (8p') s.

We recognize from (8.15) a strong similarity to the
Coleman-Glashow" "tadpole" picture of electromag-
netic splittings. In particular, in the SU(3) limit for the
matrix elements (p ~QTgk ~P) we find that the splittings
transform as an octet. Furthermore, the electrornag-
netic splittings can be related to the octet splittings of
the SU(3) multiplet in question":

n my ) dk'
(8 20)

2a. m —ng, l k'

Numerically the left-hand side of (8.20) varies from
+0.017 to +0.038, and when nontadpole contributions
are removed, a best value of about +0.035 results.
Therefore,

dk'm1
=30.

mg —m3 k'

It is curious that, contrary to the naive picture, the
isosinglet quark here has the smallest bare mass.

All this is highly speculative, but we draw from this
calculation the following conclusions:

(1) The contribution to the electromagnetic mass
splittings from a quark mass term in the Hamiltonian
is divergent.

(2) It is unlikely tha, t such a contribution would be
cancelled by others.

(3) Under fairly general assumptions on the structure
of H, the divergent part of the mass splitting transforms
as an SU(3) octet.

(4) Assuming that the quark mass term is the
dominant source of this splitting, many results of the
Coleman-Glashow "tadpole" theory follow.

IX. RADIATIVE CORRECTIONS TO
WEAK INTERACTIONS

Next we consider the divergent part of the radiative
corrections to 7r+ I3 decay. "We shall be able to show
that, for a U(6)QXU(6) current algebra, the first-order
radiative correction diverges, to all orders of the strong
interactions, and we compute the coefficient of the
divergent logarithm.

We begin the calculation by considering the invariant
amplitude, illustrated in Fig. 2, for the process

2' N. P. Chang, Phys. Rev. 131, 1272 (1963). G. DaPrato and
G. Putzulu, Nuovo Cimento 21, 541 (1961).

In connection with this last result, we find in the
Coleman-Glashow notation )their Eqs. (9) and (10)j
K' K+ Z —Z+ n —p—
E—

m
—g ™—Z Z —g
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x= —+n.o+e +v+y+y', where y and p' are virtual
photons of momenta k.

We shall write down the asymptotic part of this
amplitude, all terms 0(1/k'), and then tie together the
photons and integrate to obtain the radiative correction.
By 6rst considering this amplitude, we can check that
the result is gauge-invariant.

The amplitude of Fig. 2 is composed of three terms,
illustrated in Fig. 3. We let the neutrino be virtual.

The amplitude 5K„„( ) is perturbation theory and can
be written down instantly. (We ignore the form-factor
dependence in the pion vertex. )

5R„„& )=Ge'P u y„—
p+0—m

FIG. 3. Decomposition of the amplitude of Fig. 2.

Assuming unsubtracted dispersion relations for the C;
and F(k') a,nd carrying out an argument similar to
(6.13), consistency with the U(6)QxU(6) current
algebra as ko —+i ~ demands, as in Sec. IV,

We record also the divergence of SY„„():

Cg(k' 0) ~ O(1/k4),

C2(k', 0) -+ O(1/k4),

C3(k', k P) ~ k PO(1/k4),

F(k') ~ 0.

(9.6)

Then all the contributions of F„+ to the radiative
correction gg „' ' will be finite except the term

p —k-m '
JM V

The hadronic piece of 5R„„&~' is proportional to +=~ Vo'(~)
k'

P k„+P„k g„P k-
+2 (9.7)

where j + is the total weak current (V—A) and'0

which follows from the U(6)QxU(6) current algebra.
So we take for BR„„&'& the approximate expression

P k„+P„k g„(P k)—
(9 4) BR„„&'&——Ge'

k'
The general form of I'„+ is, consistent with (9.4),

Lorentz covariance, and isovector current con-
servation, "
l'„+=[O'P„P (k P)(P„k +—P k„)

+(k P)'g„]Cg(k', k P)

+(k„k —g„k')C2(k', k P)

+e„p,Ppk, C 3 (k', k P).
(P„,'k„) (P ', k )———-

—242 F2(P)
k' —2k P

1—F'(k')
+v&(P k„+P„k g„P k)—

1
+ g.«F'(k') (9 5)—

v2

We need the term O(1/k) in I'„+;this is determined by
the equal-time commutation relations, as in (4.6).

"See Footnote 6; the pion propagator is 2(q' —p') ', and
occasionally we set p, = 1.

"See Sec. IV.

Its divergence is given by

P k„+P„k g„(k P)—
+Ge'

Finally, we come to 5K„„&'~. Here the wave-function
renormalization is a little more delicate than that of the
electron line, which is mere perturbation theory. To
cope with this we go back to the Fubini-Furlan method32

and consider

T„„(P,q) = i d'x—
&«"*( IT(j. (*)j+(0))l~ &, (9 1o)

"S. Fubini, G. Furlan, and C. Rossetti, IAEA, Vienna
(unpublished). Similar calculations have been carried out by
R. Norton (private communication). See also Footnote 28.
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repared to evaluate the radiative cor

ro ortional to (1/k')(g»+Xk„k„/k'), and integrate.

the QZp multiplying the amplitude from the re uction
formula. The contribution is

considered to all orders of electromagnetism. Taking

(~-l j;(0)l~o)=(1/va)Z(P„-+P. )„

we find as q
—+0

o(q') =q q T""=2q P+i( IL~"j. (0),Q'jl )

OF CURRENT DF NSITIESCH I RAL p(6)Qx U(6)

d' "*(~-iT(a~j„-(x)a"j„+(0))i~-). (9.11)

dk
ORi.i=GP.uq. (1—~,) ——(1+X)

We extract the Born terms from the last term, using A.'—=——(1+X) ln—ORp.
Sx m'

(9.17)

h l h ntinuum terms are obtained by replacingwhile t e con inuu
e electro-B„j„y ie„'„+ b ~' 3 j + and contracting out t e e

2Tnagnetic e6 ld We obtain to lowest order in e,
d4k 1 Xk~k"

gp p+
(2~)4 k' k'

5K&'&——ie'

(9 12)
(= (Z/%2)(up' —u ') '

From (9 g) and 9 we o ain
diagrams (b) and (c)

Z'(u —'—uo')'
O(q') = 2q. P+constant+

(q +2q'P+p uo )——
P k„+P„k g„P k—

uV.—V (1—Vb)G
k'

e' d4x e"*D""(x)(7r I T(j„(x)j„+(0))

iver

), (9.13

where D„„is the photon propagator. Keeping the term
P get a I'ubini-Furlan (Weisberger-linear in q, we ge a

Adler) formula

n 5 1%,) A'
=——+-

I
ln—ORp,841 m

ie' d4k 1 / Xk"k" 8
OR"=—— —

i
g'"+

a. )ab

(9.18)

(9.14)
e' 0 d4k

(1—Z')P =— D&"(k) T„„(P,k q)—
2 Bq (2x)' P„k„+P„k„g„„(Pk)—

uy (1—pb)G

8 dis lacing the origin in k spa, ce, we ca,n put theisp
differentiation onto D„,(, ;
1/k' and allows us to keep only terms of order in
T„„.These terms, however, are know
in Sec. III, within the same assumptions about asymp-
totic behavior of inelastic form factors.

Q A.~

= ——(1+&) ln—ORo
8x m'

(9.19)

Therefore, to leading order in o., p'n the ion P-decay
amplitude has the structure

P~k.+ ~ ~ gy. —Pk — „Pk
T„„(P,k) =2— 3n A2

OR=GP uy (1 yb)u 1+——ln-
8z m'

(9.20)

8 P„k„+Ppk„g„„Pk-
—Ny 1—y5,

k'
(9

m (')—Ge'
Bk

k m„„& )=-—re~
P k„+P„k g„(Pk)—

uV (1—
Vb)

Putting a t is oge11 h t ther we find that the contribution
~ ~

5K &'& isof the renormalization terms to 5K„„ We conclude that a chiral U(6)QxU(6) current
1 ebra im lies serious difhculties in making a con-

sistent theory of radiative corrections o
le tonic processes, i cu i, O'K Ities which cannot be blamed
u on our ignorance o s rf t ong-interaction form factors.

t ff A' 1/G the correctionHowever, even or a cu o
(9.20) is only about 1%.

Putting (9.2), (9.9), and (9.15) together, we find the
consistency check

X. ELECTRON-POSITRON ANNIHILATION
INTO HADRONS

k (OR ii+OR ~bi+OR ii&=0.
In this section we apply the same kind pind of s eculations

(9.16) as in Sec. oVIII t the vacuum expectation value of
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electromag

'„0)
I
0) (2' 484 (P„q—o

I j„(0)I ~)(~ I j„(0 )

= (q.q —g"q')~(q .= q, .—,' '). (1o.1)

1478 e, in 31),. We define, as innetic currents. e or divergesuble commutatorthat the dou eIt is clear
quartically.

d'x(ol [j;(x),[HO, j, o)]]lo)

section for the processthe total cross sec i
q2 0

P(g is
+~ —& hadrons as at center-o -rne+ e

10,5)d k dm pi('78

«.~(q') =
16ir n p (q ) i is p to Ol Q'3' IO) whichproportional to 0The mass term is p

is related to

d integratingrn E . (10.1) by E„=go an8 multiplying q.
e 6nd, assumingover go, we n,

exists,

x '„, '„0)]]
I 0)

dg
A (q')(nH g") -2

.. . „-o .. o&-(oly{. ,f. ,(oI[Q.*",~.j;(0).*]
ypo o pfinite if we use

d saturate theaxial-vector cserve

first term, and we con

dq'q'~. ,(q') = ~ . (1o.7)

q'0„,(q') . (10.2)
$6~2~2

rniltonian (8.10) and the
on e c r (8.11). Already

d ces difhculties.
evaluation

term producesthe kinetic energy

d'*«I U'( ),[&o,jd x ';, '
0)]]lo)

4i 0 n;, —;nw +Io)= —4 (olp (,v,—~„w)

r, ,—" k)Q'S(k), (10.3)Tr(y, k,—5;,y.
(2m.)'

and.

S(k) =i
dm'[Ap, (m') y p, (m')]

k2 —m 2

dm'pi(m') = 1 pi 0.&o. (10.4)

rmahzedro agator orro ag f the unrenormwhere S(k) is the propag
quark fields

like Eq. (10.5), divergeat E . (10.7), like q, iver e
fi d that wit inquartica y,1

' -1/q' as q ~
heor result.

t 1 thld be approximate y
nconsi erf lk1ore we c+- ieldis o "; a

ort (but certainly no p o

h . R .Ltt6.21);c .t. J.Bjorken, Phys.
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