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where now the prime means that interior indices can- and
not be equal to 4. Summing this equation first over 2 K )
even # and then over odd %, we get two coupled equa- ,,=lz,3:_... ()i K"(l_}—,,:;{,... (&")is)
tions, as before, which are +R8 Y (K™,
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Consequences of the local commutation relations of vector and axial currents proposed by Gell-Mann are
explored: (1) A recipe for detecting and isolating Schwinger terms in the commutators, proportional to
derivatives of the & function, is discussed. (2) Under assumptions of smooth asymptotic behavior of form
factors for forward scattering of the isovector current from a proton, we show that the U (3)QU (3) algebra
for the time components of the currents implies the U (6)QU (6) algebra for space components, at least for
spin-averaged diagonal single-particle states. (3) The derivation of the Adler-Weisberger formula for G4/Gv
is sharpened by giving arguments that, at fixed energy, the forward =-p Green’s function satisfies an un-
subtracted dispersion relation in the pion mass. (4) A lower bound for inelastic electron-nucleon scattering
at high momentum transfer is derived on the basis of U (6)QU (6). (5) The contribution of very virtual
photons to the hyperfine anomaly in hydrogen is shown to be related to an equal-time commutator of cur-
rents; this contribution is crudely estimated to be <4 parts per million (ppm). (6) The logarithmically
divergent part of electromagnetic mass differences of hadrons is shown to be proportional to matrix elements
of the equal-time commutator of the electromagnetic current with its time derivative. It is suggested that
this “divergent’’ part be identified with the Coleman-Glashow “tadpoles”; this suggestion is discussed in
the framework of a simple quark model. (7) The logarithmically divergent part of the electromagnetic
correction to the process 7~ — n+¢+7 is, on the basis of the U (6)QU (6) current algebra, shown to be
nonvanishing, and is computed. (8) A speculative argument is presented that the rate e*+¢~— hadrons

is comparable to the rate et-+e~ — p*--p~ in the limit of large energies.

I. INTRODUCTION

IN this paper we apply the chiral U (6)QU (6) algebra
of current densities proposed by Gell-Mann! and by
Feynman, Gell-Mann, and Zweig? to various processes.
We propose a criterion for detecting and isolating
singular terms proportional to gradients of delta func-
tions. These Schwinger terms® have inhibited the use
of the full information contained in the algebra of
current densities. In particular, the behavior of matrix
elements of currents as the momentum ¢ carried by the
currents approaches infinity can be determined in
terms of the current algebra. Some applications in-
volving electromagnetic corrections to hadron processes
have been found. The program of the paper is as follows:

Section IT: We propose a criterion for identification
of Schwinger terms. The crux of the matter is that the

* Work supported by the U. S. Atomic Energy Commission.

1 M. Gell-Mann, Phys. Rev. 125, 1062 (1962); Physics 1, 63
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2 R. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev. Letters
13, 678 (1964).
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T product of currents used in making sum rules is in
general not covariant. This was recognized and dis-
cussed* by Johnson in 1961. We give a rule for construct-
ing the T' product from the corresponding covariant
amplitude. The difference of the two objects is the
Schwinger term.

Section III: The claims of Sec. IT are illustrated for
the vacuum expectation value of the 7" product of two
currents. This section is essentially a summary of
Johnson’s paper.

Section IV: We next take the T product of two iso-
vector currents between protons at rest and show that
the only Schwinger terms are in the disconnected
graphs, provided certain form factors behave reasonably
at infinity. If this is the case, we can furthermore show
that if the time components of the current densities
satisfy a U(3)®XU(3) algebra, the space components
satisfy the U(6)QU (6) algebra, at least for diagonal
matrix elements between single-particle states, spin
averaged.

4 K. Johnson, Nucl. Phys. 25, 431 (1961).
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¥16. 1. Second-order weak-interaction S-matrix element.

Section V: In this section we show that the forward
w-p scattering amplitude for a virtual pion [whose
interpolating field is 8,j.(x)>!] satisfies an unsub-
tracted dispersion relation in the mass, for fixed
laboratory energy. This allows one to sharpen the
derivation of the Adler-Weisberger formula® for
|G4/Gv| by giving some justification for the analytic
continuations needed in that calculation.

Section VI: We look at the spin-dependent part of
forward Compton scattering of a virtual photon and

using the U (6)QU (6) algebra derive an inequality for

inelastic electron-nucleon scattering:

“dv d
lim  lim @B — (0pt02)
¢? > — ® Eipe = 0 Vv qde
8ma?|G 4
>—o1 1 —, (1)
Gv
where y= Ein.— Es. We conjecture that
dop ol
2 (1.2)
¢ ¢

in the same limit. :

Section VII: The results of Sec. VI are applied to the
hyperfine structure in hydrogen; it is concluded that
the contribution of very virtual photons (g*&—m,?) is
bounded by a few (~4) parts per million (ppm) and
probably cannot explain the 20-ppm anomaly.

Section VIII: We show that the logarithmically di-
vergent part of electromagnetic mass differences is
proportional to matrix -elements of the equal-time
commutators of the currents with their time derivatives.
On the basis of a simple quark model, we argue (but
cannot prove) that these matrix elements are finite,
nonvanishing, and have SU(3) octet transformation
properties. If the quark mass term in A is dominant,
many of the Coleman-Glashow ‘“‘tadpole” theory results
emerge.

Section IX: We examine the radiative corrections to
B decay of a pion, and show, on the basis of chiral

5 S. Adler, Phys. Rev. Letters 14, 1051 (1965) ; W. Weisberger,
ibid. 14, 1057 (1965).
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U(6)QU (6), that to all orders of strong interaction the
radiative correction diverges logarithmically; in
particular

3 A?
E)TZ%E}TZO{I—I——— ln——~} , (1.3)
dr  M?
where 91, is the lowest order amplitude.
Section X: Finally we look at the process et+e~—

hadrons, and show that the total cross section satisfies
the relation

/ dg*q*ocr(g?)
=167"2°‘2/<0| [7:(0,x),[H,7.(0)]1|0)d’x, (1.4)

where ¢? is the square of the total center-of-mass energy.

Using the toy Hamiltonian of Sec. VIII, we find a
quartic divergence in the right-hand side, suggesting
that within logarithmic factors

orot()~a?/@ as @— ». (1.5)

II. THE SCHWINGER TERMS

The Schwinger terms®* are singular terms in the
commutator of current densities. Specifically, Schwinger
showed that

[70(0,%),i (0,x) ]=CVé(x—x"), (2.1)

where j,(«) is, say, the electromagnetic current density.
That such a term is present can be demonstrated by
manipulation of the vacuum expectation value. In
constructing sum rules such terms get in the way; what
we shall endeavor to do is to give a recipe which
identifies and isolates these contributions.

We argue that the existence of Schwinger terms is
demanded by locality and Lorentz kinematics alone,
and indeed may be isolated by using only this informa-
tion. We illustrate what we mean by considering the
isovector AS=0 currents j,* defined by the B-decay
interaction satisfying

I.-_Qin—:]: 2Q3 ’
[0%,0x]==+0%,

Q= / Bx jit(x,0). (2.2)

We center our considerations on the time-ordered
product®

M, (g,--)= —i/d‘*x
Xeir=(4| TG (%)~ (0)) | B)  (2.3)

6 Throughout this paper, we normahze single-particle states
such that (¢'| Y= (5/30) 2r)eh (0 1)
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and the absorptive parts

pun(gy )= / dh o0 +(A] ji (=) (O)| BY,

()= f dh v+ 4 | (04 ()| B,

p,n=§ (2m)%ot(q+Pa—Pn)

X{4] jut(0)[n)n] ;- (0)| B),
ﬁw=>; (2m)'6*(g+Pp—P.)

X{A4] ji=(0) [n)(n] §5+(0)| B).

The main point of this section is that in general, for
kinematical reasons alone, tke time-ordered product is not
a covariant amplitude; i.e., it does not transform as a
second-rank tensor. This will be shown below by con-
sidering the vacuum expectation value; however, before
delving into the arithmetic, we note that there always
does exist a covariant amplitude, defined by the
second-order weak matrix element shown in Fig. 1.
The covariance of the S matrix demands that the
amplitude 7,, which multiplies the lepton currents
does transform as a second-rank tensor.

We now rephrase the problem of Schwinger terms in
the following way: Given (phenomenologically) the
covariant amplitude ,,, how do we construct the
time-ordered product? We want the 7" product, because
we can then use the Fubini-Furlan technique to con-
struct sum rules.

We propose that M, and M,,, considered as analytic
functions of go, have the same absorptive parts p,,
and p,, [considered in coordinate space this means
M,,(x)=M,,(x) for x,%07]. Therefore, M,, and M,,
differ at most by a polynomial in ¢o [in coordinate
space, this means terms &(xo), &’(xo), - -+ |. Finally, the
time-ordered product vanishes as go— c, as seen from
expanding (2.3) and truncating the intermediate-state
sum (as we will eventually do in one way or another
before confronting the theory with experimental

(2.4)

numbers) :
Myu(g,- ) o
ny q). .. pd —
o (2m)
P V(q ,:q)' . ) Py ( ,7~q;' * ‘)
x[ e 0 ] (2.5)
go—qo gotgqd

Thus, we construct the time-ordered product M, from
the covariant amplitude M7,, by letting go— = at
fixed q, identifying any polynomial in ¢,, and sub-
tracting it off.

It is useful also to observe that the term O(1/qo) as
go—> o is proportional to the equal-time commutator
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of the currents

1 qu,
My, — _f Lour(g0,9,* + ) —pw(gd’,— ;- -+ )]
© = g (2m)

i
z?/ @x(4|[5(0,%),5,7(0,0)]| Byeiax.  (2.6)

The higher terms involve multiple commutators of
the currents with H; e.g., the next term is

1 dQ(),

”_2 Z_QO,EPW(QO’;‘L' : ')+ﬁm(q0,:—q7' . ')]
qo T

1
=;—2/de e XA | L7 (0x),H]7,-(0)1|B). (2.7)

III. VACUUM EXPECTATION VALUE

For completeness, we consider briefly the previous
case with |4)=|B)=0), although this is treated in
Johnson’s paper.* The absorptive part p,, has the form

ur(9) = Pou(Q) = (¢uq»— gwg*p (¢) (3.1

and we take the covariant amplitude” as obtainable by
a dispersion integral® over p:

wGv— guwnq?) [do?p(a?
- (gp—s q)/ ) (32

M,,=
* 2T

q2 —o2

To obtain M,, we let g.=qm. and let go— =
[17”'= (1’01070):] :

_ da®o(a?)
M, oo : (ﬂnﬂv_gw')/

(3.3)

™

This is the Schwinger term; the time-ordered product is

d0'2 0'2
ASRNN
27

M;u::MuV“' (77#771'_ gw)/

To evaluate the equal-time commutator, we may
take g,M ,»* and integrate (2.3) by parts.

it [ ot Lo 00,301 Bl
do?p(0?)
= [_ (77 : q)nv"l‘QV]/ P

2
do?p (o?)
=(0,q) / : .

This is the result of Schwinger. If we use (2.6) and

3.5)

7 We assume conserved currents, although the existence of the
Schwinger terms does not depend upon this.

8 Any extra constant “mass” term ~g,, is removed in forming
My, cf. Eq. 3.4).



1470 J. D.

evaluate the term O(1/qo) from (3.2) and (3.4), we
arrive at the same conclusion. It may also be obtained
by directly evaluating (2.5); here the Schwinger term
arises because the polynomial projection operator
(gug»— guvg®) depends upon the integration variable go'.

IV. EXPECTATION VALUE BETWEEN PROTONS

We now consider the same commutator between
proton states of the same spin and momentum, and
averaged over, spins.? (The spm-dependent terms will
be considered later.) This is the case considered by
Adler, who has derived fixed-momentum-transfer sum
rules.® The general form of the covariant amplitude
M,, is then

M,.,=— 5 [ es(ps] TG0 O P9
+ (Schwinger terms)
= P,P,F1(¢ )+ (PugstPogu) Fa(¢,)
+0,0,F3(¢ )+ 8 Fa(¢), v=q-P/M,

which we rewrite as

M,=P,P,Mo()
+[PPuPy— (¢ P)(quPrt+g:Pu)+ (- P)’gur IM1(¢%v)
+ (QuQV_ gﬁ"‘qz) M2 (112, V)
+(quPr+qoPu— guq- P) M s(¢v) _
+ M (@) +ButDyy.  (4.2)

B, is the Born term and D,,, the disconnected covariant
amplitude, identical to (3.2).1

Q(Pn+29n> (Py“l‘z‘ZV)r N __sz :I
M(@+2My) L

(qugv— 8ur®)
2M (¢*+2Mv)

4.1)

=

(Fro+Fa), (4.3)

where Fy, and Fs, are the Dirac isovector form factors
normalized to 1 and (xp—«x), respectively.

For <0 (spacelike), the absorptive parts of 1, are
confined to the conserved pieces M; and M, which
satisfy fixed ¢? dispersion relations in ». Thus M,, M,
and M are polynomials in » for fixed ¢*.

In constructing M, from M, w, We see that we will
obtain a Schwinger term from D,,, as well as lose M,
completely. However, provided

¢My—0,

sz 2—0 ’

¢-PM3;—0,

Mi—0,

. 9tThe same calculation goes through for any single-particle
state

105, Adler, Phys. Rev. 143, 1144 (1966).
1 Within a factor (27r)3(E/M )82(0).

(4.4)
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as go— i (v—1iw;¢*— — ), no other Schwinger
terms will be induced. These are reasonable assump-
tions, which we hereafter accept. Then M,, is given
by (4.2), with M, omitted and D,,— D,,. Taking the
divergence, we find

¢*M = *P M s+q,M 4
(P39, ¢
+——2—[F1v2——p2v2]+qu1),,,. (4.5)
M A

From local commutation relations,! we expect, from
(2.2) and (2.3),

1
ey §/ Fa(Ps| Lot (09,4, (O)]| Ps)esv=
= @(P s| 7,2(0) | Ps)+ (disconnected piece)

= (P,/M)+ (disconnected piece). (4.6)

Equating (4.6) and (4.5), we have

1 ¢
—J1-{p-pas it
Mg 4M2

1 ¢?
M=~ Pi=pt].
2M 4M2
We find an interesting result in the case that
9°M1—0,
903M 2—0 s
q2F¢ < o,

M=

4.7)

4.8)

Then as go— i, everything comes from M3:

Mﬂl‘_) (nqu'i"’lqu—'gpﬂ]'P)/Mqo, (49)

and aside from the Schwinger term in the disconnected
part? we find

1
2> / @z o =(Ps|[j+(0,%), - (0)]| Ps)
_ﬂva+7lan_guv77 P

M

(4.10)

This is what is expected from quark currents, e.g.,

L7:(0,%),7:(0) 1= 2¢*(0)3°(x) . (4.11)

Thus it appears that the theory which is “as smooth
as possible” is that for which the current algebra is
chiral U(6)QU (6).

The Adler sum rule? is obtained by demanding that
the coefficient of (P.g,+P.q,) in M,, satisfy an un-
subtracted dispersion relation; we need not go into

2In fact, we may choose q=0; there is, in that case, no
Schwinger term at all.
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detail here, as it has been discussed considerably
elsewhere.®

V. THE ADLER-WEISBERGER FORMULA

As an application of some of these ideas, we sharpen
the derivation of the Adler-Weisberger sum rule® for
the axial-vector renormalization in 8 decay. We consider

M(¢v)= —i/d“x ¢ P|T(D*(x)D—(0))| P). (5.1)

Here | P) is a proton state of momentum P and

D* (x) = aj“(x)axiali/axu . (52)

For spacelike ¢%, M satisfies a dispersion relation in »;
the even part we subtract once, and the odd part we
leave unsubtracted in accordancewith the Pomeranchuk
theorem.

M(q,»)=B(g»)
v 2 dvpdd (@)

(=)

+Meven (). (5.3)

27!"0

B is the Born term. The rigorous formula, from the
current algebra, is that

(04/0v)| gyr—0=(3/3v) (M — B) ggmpmo=1—G4*.  (S.4)

To relate this to pion scattering, one argues that the
continuum amplitude 4 is dominated by the double-
pion pole for small values of ¢

A(¢y) =L/ (@—1w) 1A (),

where @ is a constant related to the pion-decay ampli-
tude. The pole dominance (5.5) is plausible, if 4 satisfies
an unsubtracted dispersion relation in ¢%. One knows'
that for fixed », 4 is analytic in the cut ¢? plane, with
branch point at ~8.5 u? for »~0. Now, on the basis of
reasonable commutation relations, we shall show that 4
indeed satisfies an unsubtracted dispersion relation
in ¢%, strengthening the argument (5.5). Although this
is a fine point in the AS=0 sum rule, it may be of some
significance in understanding why the AS=1 sum
rule'® works at all.

We return to (5.1) and let go— . The term of
order 1/qo is odd in », and has the form [see (2.5)
and (2.6)]

(5.5)

1
M———| dx e_iq"(P] [D+ (O,X),D_(()):l | P) .

go 1 qo

(5.6)

13 N. Cabibbo and L. Radicati, Phys. Letters 12, 697 (1965);
S. Adler, Ref. 10.

1 To all orders of perturbation theory.

15 C, Levinson and I. Muzinich, Phys. Rev. Letters 15, 715
(1965); D. Amati, C. Bouchiat, and J. Nuyts, Phys. Letters 19,
59 (1965); L. Pandit and J. Schechter, ibid. 19, 56 (1965); W.
Weisberger, Phys. Rev. 143, 1302 (1966).
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From the dispersion relation, valid for spacelike ¢* as
is the case here, we find, assuming the Born terms

vanish rapidly for large ¢,
o 7./ odd(,2 .,/
apean 2 [P
2r S, (V2—?)

(5.7)

But the threshold »¢ in the dispersion integral is
~ | qo|%/2M for large qo; therefore

V| g0l
—|Z—>1. (5.8)
v 2M
Thus, as go— ¢
v [edv' et () 9A(¢)
M—— =v , . (5.9)
27 J o 2 3 lmo
We conclude that
Ep 04 (q2,v) 1
—_ —/d“x et
M v =0 @2 - —» q2
X{P|[D*0,x),D—~(0)]| P). (5.10)

Thus, 4’(¢%0) satisfies an unsubtracted dispersion rela-
tion provided the commutator exists.!® If D*(x) is
proportional to a canonical pion field, the commutator
vanishes. If it is bilinear in Fermi fields, e.g.,

D+ (x)=Cystty, (5.11)
then
94 |C|?
— = as ¢g—o —o, (5.12)
dv y=0 lf

VI. SPIN-DEPENDENT VIRTUAL
COMPTON SCATTERING

We apply these ideas to the antisymmetric part of
the virtual Compton amplitude from a proton, assuming
quark structure for the electromagnetic currents j,.

L76(0,%),5,(0) 1= — 2ieunon*j5 (0)8°(x)

+ (gradient terms), (6.1)
where
ju': 1171'"@\1/, (6 2)
i =Preni Q= /vy b+ v v,
and
2 0 0
Q= [0 -3 0] , €nn=1. (6.3)
0 0 —3

The general structure of the antisymmetric part M,

16 This is required on experimental grounds; the success of the
Adler sum rule for the even pion-nucleon amplitude [S. Adler,
Phys. Rev. 137, B1022 (1965)] demands that this commutator
be small. See also K. Kawarabayashi and W. Wada, Phys. Rev.
146, 1209 (1966).
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of M,,, defined as in (2.3) with 7, replacing j,%, is given
by

ﬂ’[“,,“‘) = %’IZ{ [’Yy,q:]P,,_ [w,q]Pr’r [’Yp,'Yv:]P' q} MGl(QZ,V)
30 [v»,919s— (Vw910 [y uyy» 1 uGa(g%v) . (6.4)

From crossing symmetry,
M (g, )=+ M@ (=g, )= = M@ (=g, )

and
Gl (q27 - ”) = Gl (QZ,V) )

5
Caldy— )= —Gald ). (6.5)

We assume unsubtracted dispersion relations for both
G1 and Go.

For ¢*=0, M,,'? is related to the spin-dependent
part of the forward Compton-scattering amplitude;
for ¢2<0, the absorptive part of M, is related to the
spin-dependent part of inelastic electron-proton scat-
tering. Specifically,

dott 4o

dott

d@dE  ddE' @R
X[ M (E+E’ cosf) ImG1+¢ ImG, ],

(6.6)

where do'1 is the cross section when the spins of electron
and proton are parallel and along the direction of motion
of incident electron, and d¢'t is the cross section for
antiparallel spins. E, £, and 6 are energies and scatter-
ing angle of the electron, ¢*=—4EE’sin?(6/2), and

v=E—FE'. We have set m, equal to 0.
The photoproduction cross section for ¢?=0 is given

by the optical theorem:
¢ ImG1= (1/2M)[ott—o't], (6.7)

where o't is the cross section for photon and proton
spins aligned. The Born terms are given by

—2¢°F, (F1+F2)
T G-
- 14
(6.8)
—29F3(F1+F»)
G2Bom=__________ .
¢*—4M22

We extract a useful result by considering the limit
qo— 1% of M@, Using (2.6) and (6.1) we find

- 21.6‘“,0,
lim M@= (P| 5 (0)| P)
go — 1% qo
—21¢ v;\;q" .
=———P|jzO)|P). (6.9
q
We define
(ps|7s"(0)| ps)y=Zarysy'u=—Zs°. (6.10)
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Upon identification of this with the asymptotic behavior
of Gy and G we find that

Gi— —2Z/M¢,

. . (6.11)

Ga— 0(1/qe")  (go— i),

On the other hand, we may evaluate G, by using an
unsubtracted dispersion relation

2 r°dy'y ImGi(g%,v)

g [0

wJo y'2—?

and!” as gp— ¢t

(6.12)

’

2 r°dy
Gilg== [ = ImGi) =G0, (619)
0

™ 14
or
© dy’ —nZ
— ImGy(g?y") —— ——. (6.14)
0 V’ @2 — —» 2
Using Eq. (6.6) as E— o at fixed ¢
¢E [dott  dott
mGy(¢%,) — ] 6.15)
Sa2MLdgtdy dg?dv
and we find
© 4y’ dott  dott —8ma?Z
lim lim —[ }= . (6.16)
¢m-wi=elo yldpdy deay] ¢

It will be a long time before these cross sections are
measured. Furthermore, we do not know the value of Z,
although SU (6) predicts Z,=5/9 and Z,=0. However,
if we take the difference between proton and neutron
we know from (6.2), assuming always the U (6)QU (6)
current algebra, that

Z—Z 1<GA> (6.17)
» 7‘—3 GV . .
Thus,
°dy d
o vV dgtdv
[ o] _SMQ(GA) (6.18)
XMt —optt—aptttott]— B .
v 3¢°E \Gy

Something may be salvaged from this worthless equa-
tion by constructing an inequality?8:

© dV dU,, do'n
lim lim q“E/ —l: + :I
¢—- -2 E>w o v Ldgdv dg¢dy

8ma?|G
>__.._
3

A

(6.19)

v

17 Compare Egs. (5.7)-(5.9).
By =o'pTT+apN.
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Aside from the factor 1/»” in the dispersion integral,
this is similar in form to the Adler sum rule® for

neutrino processes
dé do\ G?
lim lim (_____>g— ) (6.20)
@— —0E—> dq2 dq2 T
where e%/¢* replaces G2 We suspect the factor 1/’ is
due to our inefficiency in using only the spin-dependent

amplitude, and conjecture that a “practical” inequality
for electron scattering is

dop ma?

lim lim —2
qz—y—wE—>oodq q4

(6.21)

in direct analogy to the result for neutrinos.

VII. HYPERFINE INTERACTION

The asymptotic part of the spin-dependent Compton
amplitude (6.4) will also contribute to the hyperfine
interaction and has not been included in previous
analyses,”® for which the asymptotic behavior (e.g.,
Born terms) is more rapid than 1/ko. The second-order
matrix element for the spin-dependent part of forward
electron-proton scattering asymptotically (ko— i)
approaches

d*k
M® = —iet | ———ayrky'ubl,, @ (Pk). (7.1)
(2m)*k®

Inserting (6.9), and doing the spin algebra, we find

+a?Z [d*k
M = —'zi'y“’y)"y "U€uineS d
2m? k¢
o g5 (7.2)
=43 Zuyssu | —

where 72 is some effective lower cutoff. Comparing with
the first-order term, we find a correction

Av| 9a |Zp|meM
—|== [ "] : (7.3)
v 2 up m?
Choosing Z,~1 and m?=m,? we find an answer
Ay
—|~3.5X107%=3.5 ppm. (7.4)
14

This appears to be too small by nearly an order of
magnitude to account for the anomaly® of ~20 ppm,
and we conclude that within the general picture we have
taken [convergent dispersion integrals and chiral
U(6)QU (6) current algebra] that the large %* region
is probably not a major contributor to the hyperfine
anomaly.

19 C. K. Iddings, Phys. Rev. 138, B446 (1965); this contains
references to earlier work.
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VIII.

The same methods may be applied to any process
where high-momentum (spacelike) virtual photons are
involved, in particular, to radiative corrections to
processes involving hadrons. The most interesting are
the electromagnetic mass shifts of hadrons and the
radiative corrections to weak interactions. We survey
first the mass shifts. We consider the expression (4.1)
for M,,, with electromagnetic currents replacing isospin
currents, and spins averaged. To be explicit, we consider
the proton, although our results will be general. Then
the analog to (4.2) is

M,,=[¢*P,P,— (¢- P)(q.P+q.Pu)+ (¢ P)’gur ]
XM1(¢,q* P)+ (qugr— gug) M (g%, .P)

ELECTROMAGNETIC MASS SHIFTS

Bur ¢
+Buv~'A}<F1p2—4—]lﬁF2p2>+Dﬂy . (8.1)

In order to be consistent with the absence of
Schwinger terms and with a chiral U (6)QU (6) current
algebra, we demand, aside from the disconnected
graphs D,,, that M,,— O(1/¢s*) as ¢go— ¢. This
means

Mi1—0(1/9",

M>y— 0(1/qd"),
as go — i . We assume the Born terms may be ignored
in this limit, which is satisfied if

1p > 0(1/42) )
Fap—0(1/¢%)

as @@——o,

8.2)

(8.3)

We concentrate our attention on the divergent part
of the electromagnetic mass shift which we calculate
according to Cottingham.? This comes from the terms
associated with M ; and M, since the Born contributions
have been evaluated® in terms of measured electro-
magnetic form factors and found to be convergent.

— 12

2 (2m)*

/ M0, P)— D]

—ia

/ U (2N ()M )]
+ (Born terms), My=gqg-P. (8.4)

Following Cottingham,® we rotate the go integration
contour to igo and then express M and M, in terms
of dispersion integrals over », which we leave
unsubtracted.?

2W. Cottlngham, Ann. Phys. 25, 424 (1963).

21 M. Cini, E. Ferrari, and R. Gatto, Phys. Rev. Letters 2, 7
(1959).

22 The case where subtractions are necessary is interesting and
deserves study; it, in particular, has implications for inelastic
electron scattering at high ¢2.
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M,-(qz,y)=—

™

. (8.5)

’2 2

2 /‘” av'v' ImM ;(g2,v")

‘min vei—vy
From this dispersion relation, we know (because the
threshold wmin —  like —¢?/M) that, for ¢*=—k2,
v=1k cosf, cosf<1,

Mi(@v)— Mi(®0) as k— . (8.6)
The divergent part of 6M is therefore
o 0
OMv=— [ Rk
8w
XEMM,(—F,0)—3Mo(—£2,0)].  (8.7)

We see that M4 depends upon the term O(1/k%) in
M ;(k2,0). It is precisely this term which is determined
by the equal-time commutation relations of the currents
with H. According to (2.7), we have® as go— 1%, q=0:

11
M= 23% / @a(ps| [Lu(0.%),H1,5,(0)][ p5)  (8.8)

while from (8.1) and (8.6)

Mpv_) [Pan_"]'P(ﬂMPv'I""lqu)
+ (- P)’guw 1¢*M1(¢,0)
+ (ﬂum“‘gnv)sz2 (42,0) ) (89)
where g,=1,g0.

To proceed, we need a model for the strong Hamil-
tonian A in order to evaluate the double commutator.
The results appear to be quite model-dependent. Within
the framework of a quark model, however, we can
plausibly argue that the double commutator will not
vanish. To illustrate—and only to illustrate—the
situation we consider a simple quark model for which

H= Za Bx it (x)

i=1
X[t V+Bmi+gy,B (%) Wi(x)+Hp

=Hyt+Hy+H;+Hsp. (8.10)
The ¢; are quark fields and B*(x) is a neutral-vector,
SU(3)-singlet field. Hp is the Hamiltonian of the B
meson, including possible self-interaction terms. The
only virtue of this H is that it has a simple algebraic
structure and a chiral U (6)QU (6) current algebra.
The commutator (8.8) can now be computed. Only
space components of j, and j, need be considered,
because n,M**=0(1/¢.), as follows from either (8.9)

% Notice that, were chiral U(6)QU(6) an exact symmetry,
the commutator would vanish.
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or (8.8). Then

/ P20, Hy 1,j5(0) 1= — 49 TasV— 61 VIO,

/ &x[[5:(0,%),H ], j;(0) 1= — 44 M Q%5 5, (8.11)

/ 2070, Hr 7,j5(0) 1= bt LBy BIOW

In this model, we see that the ‘“divergent” part of
the mass splittings transforms, in the SU(3) limit, as a
unitary octet, since the matrices Q2 and Q*M can be
reduced to linear combinations of 1, A3, and N\s. As an
instant generalization we have the theorem:

Theorem: If the part of H which depends upon quark
fields ¢ is bilinear in ¥ and ¥ and contains no off-
diagonal SU(3) matrices®* (i.e., only 1, \; \s), the
divergent part of the electromagnetic mass splittings
transforms as an octet [in the SU(3) limit].

We have not shown that the matrix element is non-
vanishing, and cannot, in fact, do so. However, some-
thing can be said about the mass term H; and hereafter,
in the spirit® of static SU(6), we ignore the other two.
With this reservation, we find from (8.11) and (8.8)

My — (4/¢)ps l Ur (0)Qw*mip(0) [ £5)(gur—,1,)

= (4mo @ /¢?) (gur—mum») . (8.12)
Therefore, from (8.9)
¢M,—0,
My— —dmy® /gt (8.13)

as @@— —w.

Thus, within these simple-minded assumptions, the
electromagnetic mass of the proton diverges if the bare
quark masses and m,® are nonvanishing, and is given
by26

3a dk? 3a A?
M y=—m® | —=—m, @ In (8.14)
2r B 2r Bmin?

If H commutes with isospin, then m;=m, in (8.10), and
the isospin-dependent part of the mass splittings is
given by

S s =—m(p| $(0) T (0)] >/d—kj (8.15)
3—Zrm1 P B4 p = .

2¢ This assumption is scarcely needed; were there such matrices,
they would lead to other charged fields to which the quarks are
coupled. But these fields would contribute to the currents, in
contradiction with our original assumptions.

2 We mean (Y lToy )<< i8y).

% For free quarks, the contribution of the (here neglected)
kinetic energy term reduces this by a factor 2.
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with

and matrix indices suppressed. The same calculation
may be done for any particle state and the same factors

amy (dR?

(8.16)
2r J R?

will appear; only the reduced matrix element

PO T (0)]p)

will vary from particle to particle. Of course, for mesons
8M 3 is replaced by (6u?)s.

We recognize from (8.15) a strong similarity to the
Coleman-Glashow? ‘“tadpole” picture of electromag-
netic splittings. In particular, in the SU(3) limit for the
matrix elements (p|¢Ts|p) we find that the splittings
transform as an octet. Furthermore, the electromag-
netic splittings can be related to the octet splittings of
the SU(3) multiplet in question?®:

4 M= (m1—ms){p|PY¥|p) (8.17)
an
10 0
Y= [o 1 0}. (8.18)
0 0 -2
Thus
?ﬁ;i( m \<p|f(0)T3¢(0)|p>/d_lf. 5.19)
SMs 2m\mi—ms (p|FO) Y ¥ (0)|p))

For meson octets and the decuplet, the ratio of the
matrix elements is simply a Clebsch-Gordan coefficient.
For the baryon octet, the ratio depends only upon
the f/d ratio in the octet mass formula.

From the form of (8.19), we find the general results
of Coleman and Glashow that:

(1) The electromagnetic splittings are octet.

(2) The f/d ratio of the electromagnetic splittings
is the same as for the octet splittings.

(3) The ratio of electromagnetic splittings to octet
splittings is universal, i.e., independent, within Clebsch-
Gordan coefficients, of the particle in question (to the
extent that the logarithm

ar?

k?
is independent of the particle in question).

27 S. Coleman and S. Glashow, Phys. Rev. 134, B671 (1964);
S. Coleman and H. Schnitzer, 7bid. 136, B223 (1964).

28 Although this looks like perturbation theory, we may obtain
the same result by using the Fubini-Furlan technique, keeping
only the pole contributions, and ignoring the dispersion integrals.
%ig};%?mi’ G. Furlan, and C. Rossetti, Nuovo Cimento 404, 1171
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F1c. 2. Radiative ampli-
tude for 78 decay.

In connection with this last result, we find in the
Coleman-Glashow notation [their Egs. (9) and (10)]

K—K* 3—3+ n—p E-——5
K—m E-N E-3 3Z-N

0[( my >
2 m1—ms

Numerically the left-hand side of (8.20) varies from
+0.017 to +0.038, and when nontadpole contributions
are removed, a best value of about 40.035 results.
Therefore,

ar

(8.20)

mi dk?
—=30.
Mmy— M3 k2

It is curious that, contrary to the naive picture, the
isosinglet quark here has the smallest bare mass.

All this is highly speculative, but we draw from this
calculation the following conclusions:

(1) The contribution to the electromagnetic mass
splittings from a quark mass term in the Hamiltonian
is divergent.

(2) It is unlikely that such a contribution would be
cancelled by others.

(3) Under fairly general assumptions on the structure
of H, the divergent part of the mass splitting transforms
as an SU(3) octet.

(4) Assuming that the quark mass term is the
dominant source of this splitting, many results of the
Coleman-Glashow “‘tadpole’ theory follow.

IX. RADIATIVE CORRECTIONS TO
WEAK INTERACTIONS

Next we consider the divergent part of the radiative
corrections to =+ B decay.?® We shall be able to show
that, for a U(6)QU(6) current algebra, the first-order
radiative correction diverges, to all orders of the strong
interactions, and we compute the coefficient of the
divergent logarithm.

We begin the calculation by considering the invariant
amplitude, illustrated in Fig. 2, for the process

2 N. P. Chang, Phys. Rev. 131, 1272 (1963). G. DaPrato and
G. Putzulu, Nuovo Cimento 21, 541 (1961).
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7~ — 7%+e+v+v++’, where v and 4’ are virtual
photons of momenta 4.

We shall write down the asymptotic part of this
amplitude, all terms O(1/k?), and then tie together the
photons and integrate to obtain the radiative correction.
By first considering this amplitude, we can check that
the result is gauge-invariant.

The amplitude of Fig. 2 is composed of three terms,
illustrated in Fig. 3. We let the neutrino be virtual.

The amplitude 91,,® is perturbation theory and can
be written down instantly. (We ignore the form-factor
dependence in the pion vertex.)

1

m,‘,<a>=Ge2Paqz{w—————7v
pt+k—m

1

+vs
p—k—m

1
(1=, .1
p—m
We record also the divergence of 917,,(® :

1
BN, @ =GP ity y———— 9.2)

p—k—m

v*(1—7s).
The hadronic piece of 9,,® is proportional to
Tyt =i / die o +(a0] T(iu() ) [7), - (9.3)

where j,t is the total weak current (V—4) and®
et = ("] jot(0) |7~ )=PV2. 9.4)

The general form of Tt is, consistent with (9.4),
Lorentz covariance, and isovector current con-
servation,®

Tuot=[F2P,Po— (b P)(PukotPak,)
+ (k- P)?g,0 101 (B2, k- P)
+ (buba— guak®) D2 (B k- P)
+ €uapy Pok D5 (B2 k- P)
(Pu—3ku) (Pa—%ka)

—2V2 F2(k2)
B2—2k- P

1—F2(k2):|

+V2(Pokyt Puko— gueP- k)l: o

1
-I-Egyan (#). (9.5)

We need the term O(1/k) in T',,t; this is determined by
the equal-time commutation relations, as in (4.6).

% See Footnote 6; the pion propagator is 2(¢2—u?)~!, and
occasionally we set u=1.
3 See Sec. IV.
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(a) (b) (c)
F16. 3. Decomposition of the amplitude of Fig. 2.

Assuming unsubtracted dispersion relations for the ®;

and F(k?) and carrying out an argument similar to

(6.13), consistency with the U(6)QU(6) current

algebra as ky— 70 demands, as in Sec. IV,
@1(k2,0) - 0(1/k4) )
<I>2(k2,0) - 0(1/k4) ’

&;3(k%k- P) — k- PO(1/FY),
F(?) — 0.

(9.6)

Then all the contributions of T,,* to the radiative
correction MN7,,» will be finite except the term

\/ZPak,.—{—P,,ka— GuaP R

9.7
B2

=Tha™,
which follows from the U(6)XU(6) current algebra.
So we take for 917,,(? the approximate expression

Pyt Puka— gua(P- k)} )
uyy
k2

muv(b)g_‘ GCZI:

1 n> Y
S
p—k—m ko —*k
Its divergence is given by
1
B, D = —GePity,————a(1—"s)
pP—k—m

Pakv‘l"kaa_gva(k'P)
kZ

+Gez[ :Iﬂv“(l—%)- 0.9)

Finally, we come to 91,,(?. Here the wave-function
renormalization is a little more delicate than that of the
electron line, which is mere perturbation theory. To
cope with this we go back to the Fubini-Furlan method??
and consider

T (Prg)=—i f dh

X eiw (x| T(j ()35 (O) |7, (9.10)

3G, Fubini, G. Furlan, and C. Rossetti, TAEA, Vienna
(unpublished). Similar calculations have been carried out by
R. Norton (private communication). See also Footnote 28.



148

considered to all orders of electromagnetism. Taking
(m=1 3 0) |7 = (A/N2)Z(P Py
we find as ¢— 0

0(g®) = qug»T**=2q- P+i(zx—|[0*7,=(0),Q0"]|=~)

i f g 60| T~ ()54 O) | 7). (9.11)

We extract the Born terms from the last term, using

—i(r~| 9,5u=(0) | 7%)= (Z/V2) (¢*+2¢- P)
= (Z/V2) (ud—p-2)

while the continuum terms are obtained by replacing
d,Js= by Zied,j* and contracting out the electro-
magnetic field. We obtain, to lowest order in 2,

ZZ (#_2_#02)2
(¢°+2q- PHupl—pd)

(9.12)

0(¢*)=2q- P+ constant+

e / dix e4<Dw () (| TG ()3 @) ), (0.13)

where D,, is the photon propagator. Keeping the term
linear in ¢-P, we get a Fubini-Furlan (Weisberger-
Adler) formula

e2 6 d*k

(1—Z2)P,=

D#* (R)T (P e— . (9.14
Y (W) T (P k—¢q) » (9.14)
By displacing the origin in % space, we can put the
differentiation onto D,,(k); this makes D,, of order
1/k® and allows us to keep only terms of order 1/k in
Tyy. These terms, however, are known from the work
in Sec. III, within the same assumptions about asymp-
totic behavior of inelastic form factors.

TI-”‘ (P’k) =

Puley+Polu— Pk
( : )-I—O(l/k?).

Putting all this together, we find that the contribution
of the renormalization terms to 9, is

0 Py, +Pky—gu,P-k
My O Ge? l: £ e :lﬂ’Y"(l—’Ys),
0k~ k?
(9.15)
Pakv+kaa_gva(P'k>
k“m“,(”)%—Gf[ pr :Id'y"‘ (1—7s).

Putting (9.2), (9.9), and (9.15) together, we find the
consistency check

RH {9, @491, (D 4910, (0} =0. (9.16)
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We are now prepared to evaluate the radiative cor-
rection. We multiply by 1D,,(k)d%/(2r)*, with D,,
proportional to (1/k?)(g.,—+MNk.k,/k?), and integrate.
Diagrams (a) must be handled with care to account for
the 4/Z, multiplying the amplitude from the reduction
formula. The contribution is

« dk?
ETTZ‘“QGPQM“(1~75)[~—-(1+>\) / —]
8T k2

A2

E_i(1+>\) In—9M,. 9.17)
& m?

From (9.8) and (9.15) we obtain the contributions of
diagrams (b) and (c)

a1 AE#E?
s S )
(2r) B2 72

PokytPuka—guaP k7 R
X[ :lz'm——v“(l—w)G
k2 k?
5 A A?
=_( +- )ln———‘mo, (9.18)
8 4 m?
/ d*t 1 )\k*‘k" i}
m(c)‘ _— < )“‘—
2r)t B2 k? / ok~
PukyAPoky—gu, (P k) .
X :|1Z’y“(1—75)(1
k2
a A?
= ——(14\) In—91,. (9.19)
& m?

Therefore, to leading order in o, the pion B-decay
amplitude has the structure

AZ

3a
mgGP,,ﬂya(l—vs)u{ 1+— ln—} . (9.20)
&r m?

We conclude that a chiral U(6)QU(6) current
algebra implies serious difficulties in making a con-
sistent theory of radiative corrections to weak semi-
leptonic processes, difficulties which cannot be blamed
upon our ignorance of strong-interaction form factors.
However, even for a cutoff A2~1/G, the correction
(9.20) is only about 19%.

X. ELECTRON-POSITRON ANNIHILATION
INTO HADRONS

In this section we apply the same kind of speculations
as in Sec. VIII to the vacuum expectation value of
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electromagnetic currents. We define, as in (3.1),
2= (0] 7u(0) [n){n| 7,(0) [ 0} (2m)*8* (Pn—1q)
= (qug—gwe)p (). (10.1)

o(g?) is related to the total cross section for the process
et+e= — hadrons at center-of-mass energy 4/¢:

167%a’p (%)
Ttot(g%) = -,

q
By multiplying Eq. (10.1) by E,=¢, and integrating
over ¢o, we find, assuming that the double commutator
exists,

/ 0] 100, CH, (0)1]0)
d 2
= (01— Gu») / 2—qq2p @

(ﬂn’ﬂv guﬂ)

—qlos(g?).  (10.2)
1672 / 77

We go back to the quark Hamiltonian (8.10) and the
evaluation of the double commutator (8.11). Already
the kinetic energy term produces difficulties.

[ 0] it it ;0110
= —4i(0 ¥ (¥~
da*k
4 /
(2m)*
where S(k) is the propagator for the unrenormalized

quark fields
dm2 kp]_ m2 +p2 m2

B2—m2

dijes V)R | 0)

sy K)Q2S (), (10.3)

Tr(yiki—

and

f dmpy(m2)=1 p;>0. (10.4)
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It is clear that the double commutator diverges
quartically.

/ 0] Ljs(e),[Ho,,(0)1]0)

~ / &k / dm?py(m2).  (10.5)

The mass term is proportional to {0]|$Q*My|0) which
is related to

0][Quz*,0,5u™ (0)az [ 0)~ 0|t {7, M} }¥|0)  (10.6)

and is finite if we use the hypothesis of partially con-
served axial-vector current and saturate the inter-
mediate states with a pion.!

Unfortunately, the interaction term is less amenable
to analysis; again, however, it is unlikely that it
identically cancels off the quartic divergence from the
first term, and we conclude

/d92940tot(92)= o (10.7)

If we demand that Eq. (10.7), like Eq. (10.5), diverge
quartically, we find that (within logarithmic powers)

arot(@®~1/¢¢ as (10.8)

which is the perturbation theory result. The idea that
the total hadron yield from colliding beams of given
energy should be approximately the same as, say, the
wr-p~ yield is folklore®; we can consider this calculation
as support (but certainly not a proof) of this point of
view.*

Note added in proof. We have succeeded in verifying
(6.21); cf. J. Bjorken, Phys. Rev. Letters 16, 408 (1966).

¢ — >,
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3 A similar argument on the charged current vacuum expecta-
tion value leads to the conclusion that for large W-meson mass,
the branching ratio for W —leptons is comparable to
W — hadrons.



