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The processes e++e--+ P+P, P+V, V+V, P+y (P=pseudoscalar meson, V=vector meson, y=
photon) are discussed in the context of a meson-pole model. 3f(12) symmetry with kineton corrections
Li.e., SU(6)w symmetryg is used to determine all the coupling constants. The total cross sections of all

these processes are given as functions of the total c.m. energy.

I. INTRODUCTION

V ARIOUS projects have been directed towards the
construction of electron storage rings, ' and hence

the feasibility of electron-positron colliding-beam ex-
periments seems imminent. The typical processes that
can occur following an e -e+ collision are

(a) e++e ~P+P,
(b) e++e -+ V+V,
(c) e++e ~ V+P,
(d) e++e ~P+y,

where P(V) stands for a pseudoscalar (vector) meson.
In the following we propose to use symmetry properties
of the strong mesonic interactions to determine the
cross sections of these processes.

II. FORMULATION OF THE MESON-POLE
MODEL

of the momenta k~ and k2. We have

Fs — grrt4 B (k)[M1A (h1)~2C (hs)

+ll7s~o(ks)Mtc (kr)j, (2a)
where

y. k,)+ i
1——

iy e V ', (2b)
nt; f

m being the central mass of the meson (6,6*) super-
multiplet (and is set equal to 0.6 BeV), g the dimension-

less coupling constant, and P, s and V ' the SU(3)
nonet matrices for pseudoscalar and vector mesons,

respectively:

xo—+ +-
42 +6 v3

In keeping with current ideas about the electromag-
netic structure of hadrons, we shall picture the processes
(1) to proceed through the following sequence

e++e —& virtual y —+ virtual vector meson
—+ final states (=PP, PV, VV, Py)

X'
——+ +-

v2 +6 v3

2 X'
rt+

+6 v3,

, (2c)

which is represented by the Feynman diagram in Fig. 1.
pt, ps are the four-momenta of the incoming electron
and positron, respectively; k&, k2 are the four-momenta
of the outgoing mesons. For the vertex A we have the
well-known electromagnetic coupling between electron
and photon. In the hadronic part 8, we can use the
M(12) invariant vertex function Fs„, which will then
have to be corrected for kinetic-energy eGects' with the
kineton p E, E being an arbitrary linear combination

ps+ co

p +Q)
V= p

~sita (2d)

K*'

The virtual vector-meson line in Fig. 4, including its link

*Work supported in part by the U. S. Atomic Energy Commis-
sion, Contract No. COO-264-305.

' Construction of storage rings is in progress in Stanford,
Frascati, and Orsay. See, e.g., R. Gatto, in Springer Tracts in
modern I'hysics, edited by G. Hohler (Springer-Verlag, Serlin,
1965), Vol. 39, p. 106.' S.Sardakci, J.M. Cornwall, P. G. O. Freund, and S.W. Lee,
Phys. Rev. Letters 13, 698 (1964); ibid. 14, 48 (1965);S. Sakita
and K. C. Wali, ibid. 14, 404 (1965);R. Delbourgo, A. Salam, and
J. Strathdee, Proc. Roy. Soc. (London) A284, 146 (1965);M. Beg
and A. Pais, Phys. Rev. Letters 14, 26'tr (1965).' P. G. O. Freund, Phys, Rev. Letters 14, 803 (1965);R. Qehme,
ibid. 14, 664, 866 (1965).

FIG. 1. Feynman diagram for electron-
positron and annihilation into two-meson
anal states. (p =photon; V =p', oP, or qf. ;
M =0 or 1 meson. )
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to the photon, is represented by

yr y k)
&(k) = 1y lp„Qe

Mo O' — M 1

where

(2e)

where

e
I'o„(o)=—Fo(k')o„p„ko„oo k)p,

m

(3) the vertex function for PV,

(4c)

2

Q=o 0
.0

0 0
—1 0

0 —1.

t' m' m' m'
Fo(k') =

gl + +
km, M m, m, m, M (3P—k')

M is the central mass of the vector meson, and yy is the
transition matrix element of the vector meson into the
photon in the intermediate state.

At this point it is necessary to discuss the kinetic-
energy eBects. These correspond to kineton emission to
all orders, or equivalently, to the decomposition of the

(6,6") representation of the rest symmetry U(6) X U(6)
into the reducible 35+1 representation of the collinear

group S,U(6) )r. There are four new types of terms to be
added to Fo„.

I'g„=A) Tr(y KC'„) Tr(M)Mo),
I'» A& Tr(p ——koM)) Tr(MoC„),
I'o„——Ao Tr(y krMo) Tr(M)C„),

and

I'4„=A4 Tr(y KC„) Tr(y koM() Tr(v. k)Mo).

XT (Q(P, V.)+Q«,P.&)

The T-matrix Tx for a process X of the type (1),
involving two mesons as final state in general can be
written as

1 -4 m'

—(27I ) 4E6 (oy(ool

X8(P )y„u(P )—I'o„.", (5a)
k2

where the index X means that the corresponding term
has to be extracted from the SU(3) trace in (4). It
follows that the differential cross section is

do. e' lkl
lMl',

dQ (64 r) oEo, r
(5b)

-(p» I'o„x'')(po, I'ox')],

k, E, are the momentum of the outgoing meson, and
the energy of the electron, respectively, in the center-of-
mass system. We have averaged over the initial
polarization states of both the electron and the positron;
the summation in lM l

indicates sum over all polariza-
tion states in the final state. Utilizing the vertices in

(4a), (4b), and (4c), we obtain the following formulas':

They are

(1) the vertex function for the two pseudoscalar
mesons,

(4a)I'o, "'——eF((k') (ko—kr) „,
where

Of these I'r„=F4„——0 because of C„being a pure SU(3)
octet. The terms I'2„and I'» violate charge-conjugation
invariance as they contain couplings involving three where
neutral vector mesons (p'p'p', popooo, (o(o(o,(o(ott, ppp), and
we are left with I'o„alone. We thus see that for the lMI'=+ L(l'o)x ' 'po)x ')(p»'p»
processes (1) the kineton corrections are identically sero

and the predictions of SU(6))r are identical with those of
—(p)„ I'o„x"))(po, I'o,x"))

M (lZ) symmetry.
We now expand (2), and separate it into three terms

Po —ro 0)+go (o)+I'o (o)

m t)' ko

F (k') = g
—

l 1+ l Tr( Ql P/, P]o);
mo k 2m)M Mo k')—

(2) the vertex function for V, V,

k'
yI'o„(') =eFo(k') —q„(o) oo)l 1+ l+3o)„(oo.k)

2m, o)

da (PP) n' kg '
=—

l
F) (k')

l

o sin'8
dQ 32 E,'

for the 6nal state of two pseudoscalar mesons;

do(VV) u' kr' E, '
=—lFo(k') l' 1g —(1+cos8)

dn 32 E,' m2

(6a)

where

3o»(c) 'k)+ (io(oy'k) (oo k), (4b)
m,2"

m2'

4E,o E,4)
+sin'8l 3+ +44 l, (6b)

l m, '&

m f yr
F2 (k') = g

—
l

»(QLV), Vo]), q =kl ko,'

M &Mo—ko
4 Some of them can be found in the paper of N. Cabbibo and

R. Gatto, Phys. Rev. 124, 1577 (1961).
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for the final state of two vector mesons; and

do (VP) u' ky' 1
=—

~
Fa(k ) ~

—(2—sin 8)
dQ 32 E 'm'

(6c)

for the final state of one pseudoscalar meson and one
vector meson, where k~(y~ denote the momentum of
pseudoscalar (vector) meson, P.„ the energy of the
electron in the center-of-mass system, and n=e'/4~
=1/137. We have neglected the terms of order m, /E, .

With the aid of the above formulas, we shall discuss
the results under various assumptions.

(a) e++e—~P+P,
M (e++e —+ ~'+~') =0

M(e++e ~ Ey+E2) =0,
M(e++e ~X+X)=0,

(7a)

(7b)

(7c)

M(e++e —& ~++m )=M(e++e ~E++E );
(7d)

(b) e++e —+ V+V,

M(e++e ~E*'+E*')=0,
M (e++e ~ p +p ) =0,
M (e++e ~ (o+(o)=0,

M(e++e——+ y+y) =0,

(Sa)

(Sb)

(Sc)

(Sd)

M(e++e —+ p++p )=M(e++e ~E ++E* )'
(Se)

(c) e++e ~ V+P,
M (e++e —+ p +n ) = (1/43)M (e++e ~ p +g)

=-',M(e++e ~ co+a-') =@3M(e++e ~ co+q)
=M(e++e ~ p++~ )=M(e++e ~E~++E )
=M(e++e ~ p +~+)
= —~M (e++e —+ E*o+Eo)
=M(e++e ~E* +E+)
= —-',-M (e++e—~E*'+E')
= (-',+6)M(e++e—~ y+g)
= (1/+6)M(e++e —& p'+X)
= (—,'+6)M (e++e —+ (o+X)

=-,'v3M(e++e ~&+X); (9)

III. PREDICTIONS FROM SYMMETRY
AND MESON-POLE MODEL

In our pole-model scheme, M(12) has shown its
power by relating all processes which we consider here
with only one coupling constant g even after inclusion
of kinetic-energy effects Lbreakdown to SU(6)sf. In
extracting predictions from our model, we shall first
consider those predictions that emerge without the use
of full M (12) )SU (6)s ]but can be obtained from SU (3)
and charge-conjugation invariance alone. They are

TABLE I. The Clebsch-Gordan coefBcients C„C„,and C@ of the
form factors and the threshold energies of all processes.

(b)

Processes

7r+7r
E+E
+0+0

P P
+g+Qg-
++Og+0

Cp

1/2—1/2

1

—1/2

C

0
1/6
1/6

0
1/6
1/6

Cp

0
1/3
1/3

0
1/3
1/3

Threshold
(Z,) BeV

0.1396
0.4938
0.4978

0.7690
0.8910
0.8910

(c) (1) p w ~

(2) P'n
(3)
(4)
(5) E*+E-
(6) E*oX0.
(7) e~
(8) PX
(9) X

(10) yX

0
1/v3

1
0

1/2—1/2
0

K2/v3
K2/3&3

0

1/3
0
0

1/3&3
1/6
1/6
0
0
0
0

0
0
0
0

-1/3
-1/3
4/3+6

0
0—2/3'

0.4543
0.6589
0.4659
0.6658
0.6924
0.6944
0.7842
0.8640
0.8709
0.9893

1/3v2
1/Q6
1/v3

1/3v2 0 0.0675
1/9+6 —4/9+6 0.2744
1/9@3 2/9&3 0.4795

a The other charged states p+~, p 2r+(K+ K+,K+0K0) have the same
values as p07r0( or K~+K-,K*0K0),

FIG. 2. Feynman diagram for elec-
tron-positron annihilation into one
meson and one photon. (y=photon;
t/'=p co or p; 3f=03 meson. )

~ B. Barrett and T. N. Truong, Phys. Rev. 137, B679 (1965).' M. Gell-Mann and F.Zachariasen, Phys. Rev. 124, 953 (1961).

(d) e++e—~ P+y,
M(e++e —+ ~'+y) =v3M(e++e ~ q+y)

=(v3/242)M(e++e ~X+y). (10)

The processes of the type e++e ~ V+y are, of course,
forbidden by charge-conjugation invariance to lowest
order in electromagnetic interactions and will, therefore,
not be considered here. It should be remarked that for-
biddenness of the processes (7a), (7c), (Sb), (Sc), and
(Sd) is due to charge-conjugation invariance. However,
we shall show later that the processes (7b) and (Sa),
e++e ~Eq+E~ and e++e ~E*+E*,which are
not forbidden by charge-conjugation invariance will be
allowed' if we introduce the SU(3) breaking splittings
of the positions of the vector-meson poles.

Now we shall utilize full M(12) invariance of the
vertex 8 to calculate explicitly the cross sections of all
processes (1).We shall use the physical masses of p, P, co

and their finite widths in the vector-meson pole factors, '
and we shall use the physical masses of mesons in the
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FIG. 3. (a) Total cross sections for e+je
P+P processes as a function of the energy of
the electron in the center-of-mass system
from (1—6 BeV). (b) Total cross sections for
e++e —+ P+P processes as a function of the
momentum of the meson P in the c.m. system
(0—1 BeV/c).
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interaction and in the phase-space calculation. But we
shall consider all meson masses as degenerate in
evaluating the coupling constants. The form factors in
(4a), (4b), and (4c) then become

mph
2mp m$

F,(k') =g; Cp +C„+Cq, (11)
m '—k' m„'—k' mq2 —k2

Ft(0) =g(m/ms) =g=1.

where i =1, 2, 3, g~= 1, g2= 1, g3= 3, and mv= mv
+sl'~/2 (V= p, u, p). We use the experimental values'
of m, '= 0.769 BeV, m„=0.7827 BeV, m~ = 1.0195 BeV,
F,=0.112 BeV, F„=0.009 BeV, and F&——0.0031 BeV.
The values of C„C„,C~ for each process are listed in
Table I. The conservation of charge requires the form
factors for e++e ~ s++s. and e++e —+ E++E
processes to be normalized to one at k'=0. Hence

We note that it is necessary to consider masses as
degenerate, m2 ——m, in evaluating the kinematical
factors apples, ring in the M(12) expression for the
coupling cor)stants. Otherwise, one comes into conflict
with the conservation of charge. This explains the simple
numerical values of g; in Eq. (11).

From (6a), (6b), and (6c) we have

7TQ kg'm '
(I I') =

~
F,(u')

12m„' E,'

X'A kv'm '
~(VV) = (-;) ~F,(e) ~s

12m.
' g 5

160 E,2 176 E,4

(X 4+—+
3 my 3 m]

-3I
lp

Ip

-33
Ip

C0

lA

D IO
O

-33
IO

Ip36

I("
II

l:.(X

lj
Ij,

I

———cr(p'p )
~ ~~~o~ g (K )

Po Oo
~———p(K K )

I I I I

Z ~ 4 5 6
Ee Energy (BeI/)

FIG. 4. Total cross
sections for e++e —+

V+V processes as a
function of the energy
of the electron in the
center-of-mass sys-
tem.

7/Q kv'2m '
(vr)= ~F,(u) )

12m~2 E,' m'

(&v)=(-, , IIJ' (&')I',(, ),
e

(13)

where k~ is the momentum of the photon in the center-
of-mass system and

I
P i~')I' =&I

—
) ( )

mp 2 m (jg
2 m$ 2

XC, — +C- —+C~-
m 2 k2 m 2 k2 m 2 k2

For the e++e —+ P+y processes, we assume the real
photon is also coupled through a vector-meson pole as
shown in Fig, 2. The cross section is then

A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L.
Bastien, J. IQrz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965), fp '/47r =2.
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FIG. 5. Total cross sections for e++e ~ V+I' processes as a function of the energy of the electron in the center-of-mass system.

The values of C„C„,C~ are also listed in Table I. We
have plotted these cross sections for the 1.9 processes
which we have discussed in Figs. 3—6.

We observe certain features which are peculiar to our
model. For processes where the thresholds are below the
masses of vector mesons (see Table I), i.e., e++e
P+P and e++s ~ P+y, there is a factor mv'/I'v'
(=50 for p, 7100 for &c, 10' for p) of enhancement in
total cross sections when the total energy of the system
is equal to the mass of the vector meson. At E,=-',m„
o (s+s.—) = 1.4 Iib, o (s.y) = 0 6 Iib, and o (rip) =0.2 Iib, and
at E,=saws, a(E+E )—3 Iib, o(EtK&) 2.5 pb, and
o.(t)7)~1 Iib. At higher energy and away from the poles
the cross sections drop very rapidly. For example, at
E.= 2 BeV o (s.+s. ) becomes 1.8X10 "cm' a factor of
10 ' down from the peak value. We wish to emphasize
particularly that by using the physical masses of the

vector mesons a(Eras) and o (E*'E*s) ar'e no»nger
zero as in the exact-symmetry-limit case but have
comparable values with other processes at the resonance
peaks. At high energy they also drop but do not conform
to the exact symmetry limit, as can easily be seen from

Eq. (11).
Throughout our work the a&-p mixing angle is fixed by

SU(6) as expressed in (2b), and the cross sections of
some processes are sensitive to its values. In particular,
the o (E*+E* ) are suppressed by a factor of 100 with

respect to the a (E*'E') because of destructive inter-
ference among p, &c and p mesons. With a diferent &c-P

mixing angle, we would expect quite diferent values
from those we have got. To say it in other words, the
e+—e colliding-beam experiments oRer a chance to
determine the quantities mr, I'i, and the &o-P mixing

angle to a high degree of accuracy.

-30
IO

FIG. 6. (a) Total cross sections for
e++e —+ I'+7 processes as a function of
the energy of the electron in the center-of-
mass system (from 1 to 6 BeV). (b) Total
cross sections of e++e —+ P+y processes
as a function of the momentum of the
meson I' in the center-of-mass system
(from 0 to 1 BeV/c).
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CONCLUSION

In high-energy electron-positron colliding-beam ex-
periments the two-meson production processes o6er a
chance to test the M(12) and SU(6)tr symmetries as
applied to the vector-meson pole model of the hadronic
matrix elements of the electromagnetic current. The
kinetic-energy effects which break M(12) symmetry are
included without changing the general form of the
interaction vertex, and the only coupling constant, g
itself, is fixed by the normalization of the form factor,
Fi(0) =1.These is no adjustable variable in the whole
formulation. Our fit is a zero-parameter fit. The cross
sections are very sensitive to the masses and widths of

the vector mesons. There is an enhancement of a factor
nt&'/I'&' when the total energy of the e+—e pair equates
to the rest masses of the vector mesons. We have
neglected higher order terms in the electromagnetic
interaction where spin 2+ (e.g. , f') resonances could
possibly play a role. 8
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Asymptotic Behavior of the Inelasticity Parameter
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We examine the asymptotic behavior of the inelasticity parameter p under the assumption that an
infinite number of 2-particle channels open up as energy becomes in6nite. We investigate in detail three
specific models, which can be handled analytically, and find that in general n(~l = 1 in these models. We
speculate that this may in fact be the general asymptotic behavior of g in the physical situations. We also
observe that a purely imaginary elastic-scattering amplitude can be realized even as q ~ 1.

I. INTRODUCTION

ECENTLY, dynamical calculations based on
partial-wave dispersion relations have played an

important role in many discussions on the strong inter-
actions. In such discussions the problem of inelastic
scattering is usually handled either by a coupled set of
partial wave dispersion relations in the form of matrix
E/D equations' or through the Frye-Warnock equa-
tions. '' The latter procedure has the advantage that
unlike the matrix 1V/D equations one is not limited only
to two-body production channels. On the other hand
the partial-wave dispersion relations of Frye and
Warnock involve the inelasticity parameter st (where
rt =e "') inside the integrals on the right and it becomes
pertinent to require the asymptotic behavior of p at
at infinity. Many calculations dealing with the solutions
of the Frye-Warnock equations use the experimental
values of g for known energies and then extrapolate it
smoothly to some constant value between 0 and 1 (since
1)st) 0) at infinity. e The reason for doing this is based

' J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960}.' G. Frye and R. L, Warnock, Phys. Rev. UO, 478 (1963).' The two procedures are not always equivalent. The coupled
A /D system can do more drastic things than the Frye-Warnock
equations. See e.g. , M. Bander, P. Coulter, and G. Shaw, Phys.
Rev. Letters 14, 270 (1965).

4 See e.g., P. W. Coulter, A. Scotti, and G. L. Shaw, Phys. Rev.
136, B1379 (1964); P. W. Coulter and G. Shaw, ibid. 138, 81273
(1965).

on the reasonable belief that even though the contribu-
tion to (1—rt) from an individual inelastic channel goes
to zero, an infinite number of channels open up as we go
to infinite energy and may yield rt (~)(1.The purpose
of this paper is to examine this statement closely. The
general infinite-channel problem, of course, is much too
complicated to deal with analytically and we shall look
at models which are suKciently interesting and yet
simple enough to investigate. We examine three models,
all of which are systems of E coupled two-body
channels, where E is allowed to be an arbitrary function
of energy. In particular, E may become infinite as an
arbitrary power of the energy. ' In our first model we
take a factorizable form for the scattering amplitudes,
and the various quantities of interest are explicitly
exhibited in detail. As a specific example of this model
we discuss the Zachariasen model in the Appendix. For
our second model we assume only that the reaction
matrix is either positive- or negative-definite (the first
model is a specific example of this type). In the third
model we examine the consequences of a random-phase
approximation' to the reaction matrix.

We observe that in our model rt(~)=1, and we
speculate in conclusion that it may generally be true.

' If we assume E fundamental thresholds (we have in mind the
possibility of producing numbers of mm, EX, EE pairs, etc.), then
X(s) behaves as s~/' as energy becomes large.' See e.g., M. Bander and G. Shaw, Phys. Rev. 139,B956 (1965).


