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We discuss the hyperon nonleptonic decays in the broken chiral SU(3) XSU(3) symmetry scheme. We
obtain a new sum rule involving both the S- and P-wave amplitudes which is in rough agreement with
experiment. Also by using this group, together with the generalized Sugawara-Suzuki method, we are able to
prove octet dominance for these decays.

I. INTRODUCTION
' 'N this paper we shall investigate the nonleptonic de-

cays of hyperons in the chiral SU(3) XSU(3) sym-
metry scheme. ' Our motivation for using this particular
group comes from the fact that it is generated by the
weak currents and hence may be assumed to have a
special significance for weak-interaction processes.
Furthermore, the algebra of this group has been re-
cently' used to obtain the first good estimate of the
P-decay axial-vector coupling consta. nt.

The general method of treatment will be that of
perturbation theory. This would seem to be very plaus-
ible because of its success in SU(3) and because of the
close relationship between the algebra of currents ap-
proach and the group-theoretical approach. ' In a previ-
ous paper4 we have investigated the hadron currents of
the leptonic decays by this method and found a generali-
zation' of the Ademollo-Gatto theorem' which seems to
be in agreement with experiment.

We shall calculate the nonleptonic hyperon decays
in the first order of perturbation under which the
SU(3)XSU(3) symmetry is brought down to SU(3).
We find that the results obtained in this way are more
consistent than those obtained if the SU(3)XSU(3)
symmetry is taken to be exact. Since the masses
of a fundamental triplet must be zero in the exact
SU(3)XSU(3) limit' this might be interpreted as an
effect of finite masses for these supposed particles.

Two somewhat different though presumably compat-
ible approaches will be taken. The first involves the
construction of an effective Yukawa interaction having
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the appropriate SU(3) XSU(3) transformation prop-
erty. For the most reasonable choice of baryon and
meson representations, we find the following new
relation:

27.3=
8.8

(3)

where there are two possibilities on the right-hand side
because the fitting of the experimental data for the Zo+

decay is not unique.
Our second line of approach uses the method of

Sugawara and Suzuki' to obtain a reduced form for the
nonleptonic-decay matrix element. This "reduced"
matrix element is then evaluated by broken SU(3)
XSU(3). In this manner we are able to show with the
same choice of baryon representation needed to obtain
Eq. (1) that the usual AI=s and Lee-Sugawara' rela-
tions may be obtained from the current-current picture
without assuming octet dominance.

In Sec. II, the effective-Hamiltonian method is con-
sidered for our favored baryon representation. The
Sugawara-Suzuki method is discussed in Sec. III. Fin-
ally, in Sec. IV, we investigate other choices of baryon
representations.

' We used (in units of p 'f' sec-»') A (g o) =3.3X10-7, g(g 0)
= —24X10 ~, A(&0+) = —1.9X10, and B(ZO+) = —39X10 ' for
the upper case in Eq. (3), and A (Zo+}=—3.8X10 ~ and B(&0+)=—19X10 ' for the lower case. These numbers were computed
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A (h s) —B(A ') = (1/&3) t A (Z,+)—B(Z,+)1, (1)

where A and B are the (S- and E-wave) coeKcients in
the effective Hamiltonian,

II,tt= i gf(A+Bus)N, 7r.

It is interesting to note that Eq. (1) was derived from
the current-current picture mitholt assuming octet
dominance. There is rough agreement with experiment;
numerically we have' for Eq. (1):
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II. THE EFFECTIVE-HAMILTONIAN METHOD

The notation and nomenclature to be used has been
discussed in our previous paper4 so will not be repeated
here. The choice of baryon representation among

L(3,3~), (3a,3)j, L(8,1),(1,8)j, and L(6,3),(3,6)j was
also discussed and the 6rst was seen to be slightly more
promising. We shall use it in this section and later
observe that the choice of either [(8,1),(1,8)$ or

((6,3),(3,6)) would contradict experiment in first order
of perturbation. As for the pseudoscalar mesons, we shall
always use the nonet representation $(3,3*)-(3*,3).j
There are three reasons for this choice:

(i) Nine pseudoscalar mesons are observed in nature.
(ii) The Goldberger-Treiman relation is satisfied in

lowest order with this choice, as pointed out by Gell-
Mann '

(iii) Good agreement with the mass formula is
obtained. "

We shall assume the current-current picture of weak
interactions. Furthermore, we will also take the point
of view that the current transforms as the (8,1) repre-
sentation of SU(3) )&SU(3). In terms of a fundamental
triplet, this is of the form

(Jb') b= iy.Vb(1+Vs)A,

where a and b may take on the values (1,2,3).The weak
Hamiltonian transforms as the symmetric product of
two currents and hence only contains interesting terms
of the form (8,1) or (27,1). For the most part we shall
neglect the (27, 1) part in this section. This will be justi-
Ged in the following section.

Let us 6rst construct an effective nonderivative
Yukawa interaction which transforms according to
(8,1) and which takes account of an SU(3))&SU(3)
breaking like

A, B(Z~+) A, B(Z:—)=v2A, B(Zs+),

A, B(A ')+v2A, B(A,') =0,
A, B( )+V2A, B("3')=0;

and the S-wave Lee-Sugawara relation,

(7a)

(7b)

(7c)

A(A o)+2A(. —
) v3A(Zs+) (8

If we were to consider only the unbroken terms in
Eq. (4) we would obtain the following additional results,
which are in clear disagreement with the experiment:

A (Z++)+B(Z++)=o

A(Z -)+B(Z:)=0,
(9a)

(9b)

A(~ ')+ (~ ')=(—/46)A( "), (9)
A(=-=)+B(=-=)=+(4/&6)A(Z:).

Thus it seems that it is essential to take account of
the SU(3)

&&SU�(3)

breaking interaction.
Next we look at the effects of adding a (27,1) con-

tribution to B,ff. This will be of the form

ing to the unbroken case" and the S's are real coef-
ficients for the broken case. In terms of the SU(3)
XSU(3) meson tensors Ms" and Mq ', the pseudo-
scalar-meson" 6elds x&' are given by

iran'= (i/K2) (Mg"—Mg ') .

In terms of I"~ the effective nonleptonic Hamiltonian is
given by

H.ii = I'32+ I'23+ H.c. (6)

In four-component form the relevant part of the S~
term, for example, may be written4

(i/2&2)Sig„(1 —yb) X."irb'.

Using Eq. (6), we derive Eq. (1), the six AI=12-
relations,

Z (&."'+2''")
p=l

where
(I 3121+F2131)+H c (10a)

In the previous4 2-component spinor notation we write
for an (8,1) "Yukawa" form:

&b'= e.ebs" 1'b'{&1f""osgi "~b"

+Rf""~2gv ~b '+&sf 4rsgb"~b ")

3

+E (Slfs' &2gc'"~b +S2fc' o2gs'"~b

+Ssf„"osg Mb'+S4f4. &osg„3Eb'

+Sb&b"f; osgb '~"+Se»"fb"osgs"~"

+Sr&b"f„"osgb "M,'+Ssob"fb "osg,."3II.'), (4)

where the E.'s are arbitrary real coeKcients correspond-

»R. E. Marshak, S. Okubo, and J. Wojtaszek, Phys. Rev.
Letters 15, 463 {1965}.

3
I'w"= 2 (Kipb"f, osg ~s"+&b"f osg4"~~"

+bdI f„.'osg Mb'+bgi'f„"osg, Mb' )
+K2(8b&f, osg„'Mg'+84"f osg„'Mb'

+lb&f, 'osg„'3fq"+8q&f, 'asg„"Nb"j), (10b)

where K~ and K~ are arbitrary real constants.

"J.Iizuka and Y. Miyamoto, Tokyo University of Education
report (unpublished), have discussed the unbroken case on the
assumption of RP invariance. Here we investigate the broken case
using only CP invariance. We neglect, as usual, the eRects of final
state interactions. Thus our CP-invariant eRective amplitude will
be Hermitian if the over-all phase is properly chosen.

"The scalar mesons are given by S4'=(1/v2) QI4"+&4").
Presumably their masses are too high to permit them to take
part in nonleptonic decay processes.
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In writing Eq. (10a) we have not assumed the exist-
ence of neutral currents. Also we have not subtracted
the trace since this part was calculated in Eq. (4).
With this additional contribution we find that Eqs.
(7) and (8) do not necessarily hold but that, interestingly
enough, Eq. (1) is still valid.

Finally, we investigate the situation when it is as-
sumed that the effective Hamiltonian is of derivative
coupling'4 type, i.e.

We find that an appropriate SU (3)XSU (3) form
cannot be constructed in the unbroken case for deriva-
tive coupling. In the broken case only the AI= —',

relations are obtained.

III. THE SUGAWARA-SUZUKI METHOD

Using the assumptions of

(i) partially conserved axial vector current,
(ii) current-current form for the weak Hamiltonian

with the currents transforming as (8,1)

Sugawara and Suzuki' have shown that the matrix
elements for nonleptonic hyperon decays,

(2k )'~'(1P(p'),.(u) IH (0) Ix(p)&

where
p= pion mass,

C= 2M—gyp'/V2g,

gg= 1.18,
g'/4s. = 14.7.

Bp is the axial-vector "charge" previously' defined
and the extrapolation of the pion mass to zero has been
neglected. The first term on the right-hand side of Eq.
(12a) (the original Sugawara-Suzuki term) contributes
to S-wave decays and the second term to P-wave de-
cays. Using Eq. (12) as well as the assumption of octet
dominance, a reasonably good fit to all the hyperon
decays in terms of four parameters has been obtained. "
Furthermore, these four parameters can be related to
other processes with fair agreement.

Here we would like to point out that in the broken
SU(3)XSU(3) scheme it is not necessary to assume
octet dominance in order to obtain the above results.
The reason is that when the baryons are assigned to
I (3,3*),(3*,3)$ and only first-order breaking of SU(3)
XSU(3) is allowed the (27,1) part of either Hs (0) or
Hw'(0) has no matrix elements between baryon states.
We may see this by noting that (27, 1) does not occur
in the product

(3'3)X(3'3)XI:(3*,3)+(3 3")j
For the (8,1) part of (1PIHs (0) I1V& we have, to first
order of perturbation,

may be expressed in terms of matrix elements taken
between one particle ba-ryon states of a quantity Hs '(0)
transforming under SU(3)XSU(3) according to the
same representation a,s Hs (0):

where
(S3'+Sp')+H. c. , (13a,)

P'(P') IH~'(0)
I &(p)&.

It has been shown' that this "reduced" matrix element
must be a true scalar because of CP invariance and
hence contributes only to S-wave decays. The argument
has been extended" to P-wave decays by using the
method of Nambu and Shrauner. "The result obtained
1s

—P'(P') IH~(0) I&)(~I&~'I&(p))j,
H '(0)=l&"(~=0),H (0)~,

(12a)

(12b)

"In comparing Eq. (11) with Eq. (2) we use the relations

~=(~,—~f)~', a= —yr, +~,)a'.
"Y.Hara, Y. Nambu, and J. Schechter, Ref. 9."Y.Nambu and E, Shrauner, Phys. Rev. 128, 862 (1962).

(c/u')(» )'"&'((P') ~'(&) IH~(0) l&(p)&

='P'(p') IHw'(0) I&(p)&

I (&'(p') I» l~&(~IH~(0) l&(p)&
m =baryon octet

+Cga„ge"'"'"'8„ fg i'a2g„"), . (13b)

where the C's are arbitrary real constants. In four-
component form we have, as required, "

(iv'IH IÃ&=D(D, +D, )+z(I', +z,'), (14)

where D and Ii are arbitrary constants and D& and Ii &

have been previously de6ned. 4

Thus if II~ is written as

Hs ——Hs (27,1)+Hs (8,1) (15)

only the second term contributes on the right-hand side
of Eq. (12a) and hence to the nonleptonic hyperon
decays in general. The trick used in proving this state-
ment of octet dominance was the elimination of the pion
according to the Sugawara-Suzuki method. We note
that this argument does not depend on the SU(3)
XSU(3) assignment of the pseudoscalar mesons.

Strictly speaking, two points need to be clarified for
the 8-wave term of Eq. (12b). The first is whether we
should sum over the baryon octet or the baryon nonet
in the intermediate states. If we sum over the nonet we
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find" that the amplitude for Z++ is zero. Thus we must
sum over the octet. This is justified if the singlet has an
appreciably different mass from the octet members of
$(3,3*),(3*,3)].The second point is whether or not we
should also evaluate the matrix element (1P

~

Bs'
~
X) by

SU(3)XSU(3). If we do so, we find' that it is only split
into an arbitrary mixture of D-type and F-type terms
as required in second order of perturbation. However,
the first (or zeroth)-order result of pure D-type is not
far from the experimental situation.

A (Z:)= —B(Z:), (16b)

as well as the d I= —,
' rules and the S-wave Lee-Sugawara

relation. Equation (16b) seems to contradict experi-
ment. Under the identical circumstances with derivative
coupling, we obtain in addition to the AI= —, rules the
bad relation,

A'(Z~+) =B'(Z +), (17a)

as well as the difference of the S- and P-wave Lee-
Sugawara relations:

[A'(A ') —B'(A ')]+2LA'(:)—B'(:)]
=ALA�'(Zs+) —B'(Zs+)]. (17b)

If we attempt to use the baryon representation
L(8,1),(1,8)] in the Sugawara-Suzuki scheme we find
that (1P

~
Hs

~
N) vanishes to first order of perturbation.

To second order of perturbation it contains both (8,1)
and (27,1).

IV. OTHER POSSIBILITIES

In this section we shall discuss the results obtained
with the baryon representations $(8,1),(1,8)] and

$(6,3),(3,6)].Both the methods of Secs. II and III will

be treated. We shall always work to erst order in the
SU(3)X SU(3) breaking interaction and always use the
(3,3*)-(3*,3) assignment for the pseudoscalar mesons.
We 6nd that these choices of baryon representation
lead to a contradiction with experiment for each case
treated.

First, let us consider the baryon assignment ((8,1),
(1,8)]. We can not construct an effective Yukawa in-
teraction in the unbroken case. In the broken case with
nonderivative coupling, we have, assuming octet
dominance,

A (A )—B(A ') = —(1/v3)$3A (Zo+)+B(Zo+)], (16a)

Assignment of the baryons to L(6,3),(3,6)]'r and the
assumption of an effective nonderivative Yukawa
interaction gives the results

A (Z,+)= —~B(Z,+), (18a)

B(Zs+) =A (Zs+) —(4/3&2) A (Z~+), (18b)

A(~ ')=+B(~ '), (18c)

A (=":)=+B(=:), (18d)

A (:)+A (A ') = ——,'43A (Zs+)+ ('s+6)A (Z++), (18e)

as well as the DI= 2 rules and the S-wave Lee-Sugawara
relation. Octet dominance was assumed in deriving
Eqs. (18) but they hold in both zeroth and first order of
SU(3)XSU(3) breaking perturbation. (The first-order
breaking does not give anything new. ) Their agreement
with experiment is not remarkable. Finally if we use
the L(6,3),(3,6)] representation in the Sugawara-
Suzuki scheme we note that (1P

~
Hs

~
E) contains both

(8,1) and (27, 1) to first order of perturbation.
It is interesting to observe that the L(3,3*),(3*,3)]

baryon representation gives good results to irst order
in the methods of both Secs. II and III.

We may also consider the possibility of assigning
baryons to the representations L(b,a), (a,b)] instead of
$(a,b), (b,a)]. It can be seen that the final results only
differ by a reversal of sign for all the p-wave (B)
amplitudes. It is amusing to note that we obtain better
agreement for Eq. (1) by using the baryon representa-
tion L(3*,3),(3,3*)].Equation (3) is then replaced by

23.6
20.7 =

13.2
(3')

However, the use of P(3~,3),(3,3*)] leads in the exact
&U(3)X&U(3) limit to a P-decay weak current of the
form pyi(1 —ys)e instead' of 7iyi(1+ps)e The rep. re-
sentations L(8,1),(1,8)] and $(6,3), (3,6)] lead to the
more nearly correct P-decay interaction in the sym-
metry limit.
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