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rejected with very high confidence. The additional
assumptions of the calculation (beyond those mentioned
in Sec. I) are twofold: (1) the assumption about
threshold behavior, and (2) the smoothness assumption
implicit in the numerical integration technique em-

ployed. A certain amount of independent evidence on

these questions is available. The threshold behavior of
the YLAM phase shifts can be examined in detail, and is
found to deviate noticeably from the monomial form at
25 MeV, particularly for high J. (The same is true of
the amplitudes arising from pole terms. ) For this reason
we have not tried to compute H (25 MeV). At higher
energies, however, the contribution due to this region
is rather small, and the approximation seems quite
safe. The smoothness assumption can also be checked
in part by comparison with similar computations using
the energy-dependent phase shifts. The agreement was
found to be satisfactory (see Ref. 22). The possibility
of rapid oscillations, which would invalidate all these
calculations, can only be ignored with horror.

I believe these assumptions are sound enough so
that a dynamical model which does not meet the tests
described in Sec. VI can be characterized as incompat-
ible with the simultaneous requirements imposed by
unitarity, analyticity, and the known experimental

phase shifts. It should be noted that unitarity is

incorporated here without any artihcial imposition of
elasticity beyond 310 MeV.

Although the remarks in the preceding section weigh
somewhat against the value of pole models, the simplic-
ity and clarity of the present situation more or less
behoove us to make the quantitative and qualitative
tests described in Sec. VI. The results of this work will
be published elsewhere. It is worth mentioning that
there is no reason in principle why the same ideas should
not be applied to x-E scattering as well.
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The hypothesis of charge independence is studied using a simple graphical method. This method is appli
cable in the common situation when a particle reaction can proceed through several charge channels but only
through two isospin channels. The branching ratios of the charge channels are plotted in a two-dimensional

diagram which is possible because only two of these ratios are independent. The triangular inequalities are
shown to be equivalent to a single inequality, and they determine in the diagram an elliptic boundary curve
of a physical region. The plot is also useful for studying isospin properties of intermediate states in the re-
action. The method is demonstrated with two examples, the reactions E+P ~ ENm. and wiV ~x¹

I. INTRODUCTION

'HE hypothesis of charge independence has proven
useful in various 6elds of nuclear science and

particularly in high-energy physics. In this paper we

shall study the consequences of this hypothesis using a
graphical method which we And very useful for this

purpose.
In the common situation when a particle reaction can

proceed only through two isospin channels, we can,
under the assumption of charge independence, analyze

the cross sections for the charge channels in terms of

only two amplitudes of definite isospin. From this it
follows that not more than three of these can be inde-
pendent, and these three furthermore must satisfy
triangular inequalities. '

If instead of cross sections we consider branching
ratios, we have the additional relation that the sum of
these must be equal to unity, thus leaving only two
independent. We can therefore plot these in a two-
dimensional diagram. We shall see that the triangular
inequalities are equivalent to one single inequality,

' D. Feldman, Phys. Rev. 89, 1159 {1953).
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which determines an elliptic physical region in the
diagram. In this way the diagram can be used for testing
charge independence.

If the reaction proceeds through a resonance, one of
the isospin channels dominates, and therefore definite
branching ratios are expected, which correspond to a
definite point in the diagram. Similarly, if the reaction
is mediated by an exchange of a certain particle, the
branching ratios can in many cases be computed, and
they correspond to another point in the diagram. In this
way the diagram can be used for studying intermediate
states in the scattering process.

We shall demonstrate the method with two examples,
the reactions E+p —& EJVrr and ir/7 —+ ir/V.

II. ISOSPIN CONSERVATION IN &+p~ &lVsr

Let us consider the reaction E+p —+ +1Vir, where one

pion is produced. We apply the isospin formalism to
this reaction, which can proceed through three charge
channels,

E+p +E+pn', —

E+p ~ E'prr+,

E+p ~K+r/7r+.

The initial state is a pure isospin state with T= 1 and
T3= 1. In order to satisfy isospin conservation the final
state must also have T=i. Because there are three
outgoing particles, there are two linearly independent
such states. ' In order to 6nd these states we can pro-
ceed in three diferent ways depending on the order in
which the outgoing particles are coupled.

(a) We can first couple the kaon and the pion to an
intermediate state of either T=-,' or T=~ and then
couple the nucleon in such a way that we obtain a three-
particle state with T=1. Suppressing the space and
spin part we find the following states:

I Ei/s& = —(v's)
I
E'p~'&+(v's)

I
E'p~'&

I
Es/s&= —(V'e) IE'P~'&

-(&—:,) IE'p-'&+(&l) IE"-'&

where IEz& denotes a final state which has an inter-
mediate isospin T in the Ex system but an over-all
isospin of unity. In general the final state is a linear
combination of these states:

IE/t'7r, T=1, Ts=1&=&i/slE»s&+&s/slEs/s&~ (Sa)

where the coefficients a~ are the amplitudes of the two

2 Using group-theoretical methods we can see this by reducing
the product of the representations of SU2, which correspond to the
E, E, andm. .

DI /2 XD1/2 XD1=DP+ D1+DI+D2~

where the subscript refers to the isospin. We see that D1 occurs
twice. The representations D2 and Dp are excluded by isospin
conversation (Do also by charge conservation).

isospin channels. This representation of the 6nal state
is useful when studying resonances in the E~ system.
Then one of the amplitudes a~/2 or a3/2 is expected to
dominate.

(b) In a quite analogous way we obtain the states

I
~'i/s) = —(v's) IE+p '&+6/-') IE+& +), (6a)

I
EVE, T=1, Ts 1)—51 /sl /Vi/&s+5 sQ/I /Vs2/& ~ (Sb)

This representation is useful when studying resonances
in the i'm system.

(c) The third way of coupling the particles is first to
couple the nucleon to the kaon and then the pion to the
KE system. In this way we find the following states of
definite isospin 0 and 1 in the EE system:

I Yo&=+(Cl) IE'p '&—(&l&IE" (7a)

I
Yi&= (v'sr)

I
E—+p~'&+sr

I
E'p~+&+is

I
E+~~+& (7b)

The representation of the final state is in this case

I
E/t'rr, T= 1, Ts = 1 &

= ce
I Yo)+cr I Yi& . (Sc)

The states in (4), (6), and (7) are related to each other
by Racah coe%cients. For example, the states in (6) and
(7) are related to those in (4) by

I /Vi/s& = s I Ei/s&+5~1Es/s&

I
/Vs/s& =Y~ I

Ei/s)- s I Es/s&,

I Yo& = s I Ei/s& (v's ) I Es/s& ~

I Yi)= (V's) IEi/s&+(v's) I Es/s&

These states span the same two-dimensional subspace of
the three-dimensional space spanned by I

E+prr'&,
I
E'prr+&, and IE+nrr+) The state. s in this subspace all

have T=1. Orthogonal to this is the state with T=2,
which is not allowed if isospin is conserved:

IE/V~ T=2 Ts=1)=(Q-')IE+p~s)
+s I

E'p~+&+-'
I

E+ir~+) (9)

We can now write the expressions for the amplitudes
of the charge channels in terms of the amplitudes az,
br, or cr. Substituting the expressions (4), (6), and (7)
into (Sa), (5b), and (Sc), we find

~"'= -(v'l)~ / -(v'l)~
= —(V's)bi/s —(Qk)bs/s= —(gs')ci, (10a)

l~".&=-(v'l)IE p-)
+(v'l)IE'p +)—(v'")IE+ +), (6b)

if instead we first couple the nucleon to the pion and
then the kaon to the 7r/V system.

I 1Vr) thus denotes the
final sta, te with an intermediate isospin T in the A'm

system. In this case we find the following representation
of the final state in terms of two amplitudes b&/2 and b3/2.
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sections for definite isospin in the E~ system, and the
third quantity (16) is an interference term. Taking the
square of this term we find the inequality

(+ Re(31/2{33i2*)'=(2
I 13»21 I(33isl cos~.)'

~Z l{31isl'Z(l(23isl' cos'3 )
&&Zl~tisl'Zigsisl', (17)

where q, is the phase angle between the amplitudes cj/2
and (23i2. In (17) we have used the Schwartz inequality
and the condition

cos p~~+1.
Substituting the expressions (14)—(16) into (17) we
obtain an inequality which can be written in the form

where
X(2g{'& g(2) g{3))&0

X(x,y,s) =x2+y'+ 2'—2xy —2xs—2yz. (19)

~ "'=(V'3)~»2 —(V 1'2)(33{2

= (V'-„')bsi2 ——(/2') Cs+ 2Ct, (10b)
A (3) = (+4)(23i2

=(g;)f„, (V —,,)f„,= —(v —,)c,+-,'c„(10c)
where the superscript refers to the three processes (1),
(2), and (3), respectively. The corresponding cross
sections are

(11)~(i) —P I
g (i)

I

2

Fzo. 1. The graphical method applied to the reaction
E+p ~ EÃx. The quantities y('), y('), and y('} are the branching
ratios for the three processes E+p —+ E+p7f', E+p ~ E'pm+, and
E+p —& X+23~+ In the r.ight corner, points from data (Refs. 4 and
18) on total cross sections at different beam momenta (0.86, 0.96,
1.20, 1.36, 1.58, 1.96, and 3.0 GeV/3) are plotted.

In the case where we consider differential cross sec-
tions with definite values of the momenta and spins
of the particles, there is no summation in (11).In this
case the phase angle between the amplitudes a&/2 and a3/2
can be computed. We obtain the relation

(6dg "&—3dg "'—dg "')'
cos pg=

Sdg('&(3dg ('&+3dg "'—dg {3))
(2o)

where da &" denotes the differential cross sections. Similar
relations are obtained for the phase angles between b~/2
and b3/2 or co and c~.

Let us consider the branching ratios for the three
charge channels:

where the summation is performed over final states that
have different space and spin parts and that are included
in the cross section.

The amplitudes A (') are related. We 6nd

x(i) —ir(i)/((r{1)+g{2)+g (3))

These are related by

x (1)+x (2)+x (3)

(21)

(22)
v2A ('&+A (')+A ('& =0. (12)

From this the well-known triangular inequalities follow,
which are

V'(2g'") &~ v'(~"')+V'g"'
d(g"') ~&4(2g'")+v'(g"') (13)
V'(~(") & (2g"))+4(g")).

By squaring these three inequalities twice one can easily
verify that they are equivalent to one single inequality

I see (19)below). We shall here derive this result directly
from Eqs. (10) and (11).From these equations we can
compute the following quantities:

P I
(31i2 I

2—g (1)+g (2) rg(3) (14)

(15)

g Re(3&isasis* ——(Q2') (2g {'& g('& 'g ('&—) . (—16-)

Similar relations are obtained for the amplitudes b~
and cz. The quantities in (14) and (15) are the cross

This relation allows us to plot the three branching
ratios in a two-dimensional diagram. In Fig. 1 we have
used an equilateral triangle and the fact that the sum
of the perpendicular distances from an arbitrary point
to the sides is a constant. The sides of this triangle cor-
respond to the situation when one of the cross sections
is zero. In the corners only one of the cross sections is
different from zero.

We observe that the inequality (19) also holds if the
0(')'s are replaced with the x&')'s. This inequality which
is of second degree in the x("s corresponds to the
condition that the physically allowed points in the
triangle must lie inside the outer ellipse shown in Fig. 1.
The three triangular inequalities also correspond to the
same condition. Loosely speaking each of these tests,
in one corner of the triangle, whether we are inside or
outside the ellipse.

Let us now consider the particular cases when one of
the amplitudes a]/2 83/Q 6$/Q 63/2 co or c~ is zero. Then
the final state is given by one of the states IÃti2),
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IE'3/3& I&&/3» l&3/3» I
I'3» or

I
I'&). For these cases

definite branching ratios for the three processes (1),
(2) and (3) can be computed I

see Eqs. (10) and (11)j.
These correspond to definite points in the diagram. In
Fig. 1 these points are labeled by the same symbol as the
corresponding final state. Thus, e.g. , the point E~/2
corresponds to the situation when the final state is
given by IEi/3).

These points are useful when studying resonances
produced in the reaction. If the reaction proceeds pre-
dominantly through a resonance in the Ex, g~, or ES
system, it is expected that the branching ratios should
correspond to a point close to one of these points.

For example the resonances E*(878) (T=1/2) and
E*(1238) (T=3/2) are known to be abundantly pro-
duced in this reaction in the 3-GeV/c region. ' 4 Thus if
the branching ratios are computed in the resonance re-
gions of the Dalitz plots, we expect to obtain points
close to the points K&/2 and Se/2, respectively.

Let us finally consider some other features of the plot.
For the case that the interference term g (33/3(33/3 is

zero, the branching ratios lie on the line through the
points Ei/3 and E3/3 Similarily if p bi/sos/3 ——0 they
lie on the line through Xi/3 and /V3/3 and if p cpci ——0
on the line through Vo and I'~.

The quantities in Eqs. (14) to (16) can be related to
distances which are obtained by a simple geometrical
construction. We find

2 I
(33/31'/a =Es/3& ~

2 I
(33/31'/a= Ei/3~,

(23)

(24)

where
Reiig/3(33/3 /0 —A D

a —g (i)+g (3)+g (3)

(25)

cos 3p, = &A J3/CB,

where the sign depends on which side of the line joining
E~/2 and E3/2 the point A is on. Analogous results are

3 M. Ferro-Luzzi, R. George, Y. Goldschmith-Clermont, V. D.
Henri, B. Jongejans, D. W. G. Leith, G. R. Lynch, F. Muller,
and J.-M. Perreau. Nuovo Cimento 34, 1101 (1955).

P. Sallstrom, P. Otter, and G. Ekspong, Nuovo Cimento
(to be published).

and where E~/28 E3/28 and AD denotes the distances
obtained in the construction shown in Fig. 1.

From the expression for coss(g, LEq. (20)], we find
that a constant Icos(/.

I
gives equations which are

quadratic in the differential cross sections or in the cor-
responding branching ratios. Therefore we find that a
constant

I
cos&p,

I
corresponds in Fig. 1 to ellipses. These

pass through the points Ej/2 and E3/2. In Fig. 1 the
ellipse for Icos(/), I

=-', is drawn with a dashed line. The
ellipse corresponding to

I
cos3),

l
=1 coincides with the

boundary curve. The quantity cosy can be obtained
from the distances AB and CB in the diagram. We find

found for the phase angle between b&/2 and b3/2 OI cp

and cj..

A+ =A (3r+p ~ 3r+p) =A 3/3 &

A =A(3r p ~ 3r p)= 3A3/3+3A3/3,

(26)

(27)

A' = A(3r—p ~ 3r'n) = —-'3%2(A 3/3
—A 3/3) . (28)

The corresponding cross sections are

a+=PIA+I', a =PIA I', and a'"=PIA'"ls (29)

where the summation is again performed over final
states with different space and spin parts.

The seven other cross sections, which are more
difFicult or impossible to measure, are related to these:

a(3r n~ 3-r-n) =o+,

o (~+n —& 3r+n) =o—,
(30)

(31)

a(3r+n ~ 3rpp) =a(3rpp ~ 3r+n)

=o(3r'n ~ 3r p) =o'" (32)

0 X' ~7l =0 7l /'L~X'S
= -'(o++o-—o'*)=a' (33)

The amplitudes A+, A —,and A'" are related by

A+—A-—V2A'"=0, (34)

and as consequence the cross sections must satisfy the
triangular inequalities

4(a+) &~v'(a )+V'(2a-),
V'(a ) &V'(a')+V'(2a'"),

V'(2a'") & (a')+V'(a )

which we find, in a similar way to that in the previous
case, are equivalent to

X(a'+,a,2a'") & 0 (35b)

Let us consider the crossed channels mm —+ EX and
3r&-+~X. The crossing relations imply that these
channels can be described by the same amplitudes as
the reaction xN ~mS. We can therefore introduce the
hypothesis of charge independence in any of these three
channels. In this way we find in addition to (26), (27),

III. CHARGE INDEPENDENCE IN mN~ mN

As another example let us consider elastic and charge-
exchange pion-nucleon scattering. These reactions can
proceed through two isospin channels, T=-,' and T=—,'.
Under the hypothesis of charge independence the matrix
elements are independent of the third component T3.
As a consequence all the ten different charge channels of
this reaction can be described in terms of only two ampli-
tudes A&/2 and A3/&. Experimentally, three of these
channels are better known than the others. The ampli-
tudes of these, expressed in terms of A&/2 and A3/2 are
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gg
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FIG. 2. Charge independence in
elastic and charge-exchange pion-
nucleon scattering. The curve in-
side the circle is obtained from
data on total cross sections. The
numbers along the curve are the
beam energies in units of MeV
or GeV.

and (28)

A+= Vs)Ao'+2A~'= 2A»2"+2A2/2" ~

A—= (g-', )A, '—-', A 2' ——A 2/, ",
A'"=(+-2, )A&' ———',v2(A$/2 A3/2 ) ~

(36)

(37)

(38)

where Ao' and A~' are the amplitudes of definite iso-
spin T=O and T=1 in the /, channel (2r2r —+ EE) and
A &~&" and 33~&" are the corresponding quantities in the
I Channel (7rÃ ~ 2rg).

The amplitudes A&, A&', and Az" are related by
crossing matrices. Expressing A~' and A~" in terms of
the A~ we find

A o' ——2+6(A 2/2+ 2A 2/2),

A $ —
2 (A 2/2 A3/2) )I

A 2/2" ———-'2 (A $/2 4A 3/2) )

A 3/2 2 (2A 1/2+ A 3/2) ~

(39a)

(39b)

(40a)

(40b)

Let us now turn to the graphical method. We define
the following "branching ratios"

where
y+=0+/0. , y

—=0—/0, y-=0'"/0,

0'= 0' +0' +0'

(41)

These satisfy the relation

y'+y +y-=1 (42)

In a way similar to that used in the previously con-
sidered example we can plot these branching ratios in a
two-dimensional diagram. It is of some advantage to
choose the coordinate system in such a way that the
boundary curve of the physical region becomes circular.
This can be achieved if instead of an equilateral tri-

y'= '/~= l(y"+y —y'"), (43)

which is related to the (unmeasurable) elastic cross sec-
tion for neutral-pion —nucleon scattering Lcompare Eq.
(33)j.This is zero along the line tangent to the circle in
the point M~, and the distance to this line is propor-
tional to y'. The cross sections of the remaining charge
channels [Eqs. (30) to (32)] are equal to 0.+, 0. , or 0'",
and therefore their corresponding geometrical inter-
pretation is also the same as that of y+, y, or y' .

Let us now turn to some particular cases. If the re-
action proceeds entirely through the T=-,' or the T= ~

channel (i.e., A3/2 or A&/2 is zero), we expect to obtain
definite branching ratios. These correspond in the
diagram to definite points, which in Fig. 2. are marked
by S&~& and E3/& respectively. For example, in the reso-
nance region of the N*(1238) the branching ratios are
close to 9/12, 1/12, and 2/12, which are the coordinates
of the point E3~~ in Fig. 2.

On the other hand, if we consider the cross sections de-
scribed in terms of amplitudes of definite isospin in the
crossed channels, we find that the points 3EO and M~
correspond to the situation when A 0' or A &', respectively,
is dominating, while the points I'j~~ and P3~~ correspond
to the situation when A&~&" or Ae~&", respectively, is
dominating. For example if the process is mediated
predominantly by a T=0 meson exchange, a point close
to /V0 would be expected. (The converse of course need
not be true; there are more complicated processes which
also give the same point).

angle we use a triangle with heights related as 2:2:3
(See Fig. 2). The sides of the triangle correspond to the
situation when one of the cross sections is zero. The per-
pendicular distances from a point to the sides are pro-
portional to y+, y, and y'". The condition (35) is
equivalent to the condition that only points inside the
circle are allowed. Let us also consider the ratio
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0-+= 4m a3',

o
—= 4tr-', (2at+ as)',

o'"= 4n (2/9)(ar —a,) .

(44)

Samarayanake and Woolcock'4 give the following
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In Fig. 2 we have plotted the branching ratios ob-
tained from data' —"on total cross sections for the
channels tr+p —+tr+p, tr

—p~n —
p, and tr

—petr'tt at
different beam energies. "In this way we obtained the
curve inside the circle shown in Fig. 2. From this, many
of the well-known isospin effects of pion-nucleon scat-
tering can be seen. We observe that in the first reso-
nance region (N*(1238)) the curve passes very close to
the point Ã3/2 Here the experimental data give a few
points which lie outside the circle, but the deviations are
smaller than the errors (see also Ref. 13). At higher
energies the oscillating behavior is due to the other reso-
nances. The T=~~ resonances tend to bring the curve
downwards while the T= ~3 resonances tend to bring it
upwards.

In the high-energy limit the curve approaches the
point Mo, where the charge-exchange cross section is
zero and 0-+=0.—,as the Pomeranchuk theorem implies.

Again at very low energies, below the E33* resonance
region there are experimental data from direct measure-
ments down to 20 Mev. At the zero-energy limit the
scattering can be described in terms of the S-wave scat-
tering lengths a~ and a3, if charge independence is
assumed,

numerical values, obtained from dispersion relations:

at —as ——0.292&0.020, at+2as ———0.035%0.012

(in units of c=u= ttt = 1).These data are consistent with
those of Donald et aL" obtained from analysis of low-
energy cross-section measurements. They correspond
in the diagram to the point marked S-W. The earlier
calculations by Hamilton and Woolcock" give the point
marked by H-W. We observe that both these points lie
close to the point 3f&. This is a consequence of the
smallness of at+2as. Hamilton et al." explain this as
due to an accidental cancellation of three different con-
tributions: a short-range repulsive interaction, a T=O
zw —+ SE eBect, and rescattering. The quantity a&—a3,
which is due to the 1=1 srtr —+ NX channel, is mostly
p-meson exchange.

IV. CONCLUDING REMARKS

The graphical method can be applied to a great num-
ber of di6erent reactions. The form of the physical re-
gion varies from case to case and is determined by the
Clebsch-Gordan coefficients which follow from coupling
the isospins of the interacting particles. Unmodified,
the technique is restricted to reactions with two isospin
channels.

The same technique can also be used for studying
invariance under other SU2 subgroups of unitary sym-
metries, e.g., U spin. This work will be continued by
applying the method to other data and other reactions.
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