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Crossing Problem for the Backward Cone and the Threshold
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Recent high-energy pion-nucleon experiments with large momentum transfer have made the backward
scattering problem attractive for theoretical investigation. In this paper we investigate the problem of
crossing for particular regions of the physical s channel, namely, the backward cone and the threshold.
Since the backward cone angle is a function of the energy, this is not a high-energy crossing problem alone,
but the crossing region extends to a minimum energy given by s = (M+1)8 in pion mass units, for which case
the cone extends from backward direction to forward direction.

INTRODUCTION
' 'HE difKi. culty in the application of the high- as

well as the low-energy Regge crossing to the
backward scattering of nonequal mass particles is con-

nected with the kinematics of such processes. This
problem has been discussed in detail in a separate
paper. ' The essential point is that the integral term in

the Regge expressions for the amplitude contains a
Legendre function and this term can be neglected in the
case of forward scattering since the real part of the order
of the Legendre function is ——,

' and for large values of
the argument the Legendre function goes to zero. But
large values of the argument correspond to the high-

energy region in the physical channel so that the ampli-

tude can be represented by a few pole terms of the form
s~&"P(t). Here s is the energy squared in the physical
channel, l the momentum transfer, and rr, P the position
and residue of the Regge pole. But we can show that
there is a region, to be precise, a cone around the back-
ward direction, which can not be reached with large
values of the argument of the Legendre function in the
u channel. The angle defming this backward cone is a
function of the energy. Moreover, for crossing into the

region outside of this cone, the mechanism is entirely
di6erent from the equal-mass case. Here there

is a curve in the Mandelstam diagram given by
cos8 =const )+1 which is asymptotic to the lines
u=0 and s= —21(1+cos8 )Lu—2(Ms+3/32)j. Here M is

the nucleon mass and m the pion mass which we shall

take to be unit from now on. As cos9„ increases, this

curve recedes to high-energy regions of the s channel
and approaches the N=O line. For the present energies
the value of coso„ is too small for the integral term in

the amplitude to be neglected. A numerical example for
8 BeV/c pion momentum at 8„=170' (which cor-

responds to u——3m2) is cos8„—3, whereas in the
forward direction t=0 at the same pion momentum

cosa~—57. As for the inside of the backward cone, this

region can be reached only with values —1(cos8„(+1.

CROSSING ONTO THE BACKWARD CONE

The relation between cos8„, u, and s is given by

(M' —1)'—uLu —2 (M'+1)g—2us
cosgu=

(M' —1)'+uLu —2 (M'+1))

E,+Mf;,8/2 P 8/2+ (W M)g 3/2

8mt/I/,

E,—3f
f 8,3/2 —

5 g 3/2+ (W +M)g 3/2)

8xR',

(3)

where E,= (s+M2 —1)/2W, is the total c.m. nucleon

energy and Wa= v's.

The invariant amplitudes A, 'I' and 8,'I' can in turn
be expressed as linear combinations of the invariant
Q-channel amplitudes Au'' A '" 8 '" and 8 '" by
making use of the crossing matrix

3/2 2g 1(2+ lg 3(2

g 8/2 2fl 1/2+ i/3 3/2

The u-channel invariant amplitudes can now be
written in terms of the u-channel fi and f2 amplitudes

by the inverse relations of (3)

W+M
E+M

t/t/'„—M
f u, r

E„—M

ur~ uiI

E„+M E„M—

Consider now 2r+P scattering. The elastic differential
cross section is given by

do/dQ=
i
fti'+

i
fsi'+(cos8, )(flf2*+fsfi*), (2)

where fr+ (cos8,)f2= spin nonflip amplitude and

f2 spin-flip——amplitude. For a well-defined isotopic spin
(as in the 2r+P(case), fi and f2 are pure isotopic spin
amplitudeS (f13(2 fOr the 3r+P CaSe).

8, is the c.m. scattering angle in the physical channel.

fl and f2 can be expressed in terms of the invariant
amplitudes A, ~' and 8,'I':

' I. A. Sakmar, Nuovo Cimento 40, 76 (1965). where I= —,', ~3.
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After these substitutions, the amplitudes fl' "' and
f2"/ areexpressed in terms of f "'/-' f "'/' f "'/' and
f2" '/' In. serting these expressions into the cross-section
formula (2), one obtains

do 1
L(E,+M)2(W —W,+2M)'

dQ W,2 (E„+M)'

+ (E —M)'(W +W,+2M)'+2(cos8, )
X (E '—M') (W '—(Wu+2M)2)fx

+ I (E,+M)2(W +W„—2M)'
W,2(E„M)'—
+ (E,—M)'(W —W,—2M)2+2 (cos8,)
X (EP —M') (WP (W„—2M—)')jy

+ L(E +M)'((W, —2M)' —W„2)
W,2(E '—M')

Thus one obtains the nice result that the differential
cross sections on the backward cone are determined
solely by the kinematical factors of the cross-section
formula, the amplitude squares being the same at all
energies. Given a certain energy s in the physical
channel the condition N=O determines an angle cose, :

cos8g= (M'+1 —2I (M'+ qg') (1+/.')y2}/2qg2. (8)

The cross section at a certain energy and angle is re-
lated to the cross section at a different energy and dif-
ferent angle, where the angles are given by Eq. (8). This
angle is the one which defines the width of the backward
cone. One may then conclude that the fl „and f2,„
amplitudes have the same values at all energies s, pro-
vided we are on the respective backward cones of these
energies.

Expressing E„,E, and O'„,W, in terms of I and s, the
powers of 8'„and 5', can be made explicit. Since I=0,
cose, is given in terms of s alone;

+(EN—M) ((Wg+2M) —W )+2(cos8)g

X (E.'—M2) (W.2+ W,2—4M2)$». (6)

—s'+2s(M'+1)+ (M' —1)'
COS88 =

s' —2s(M'+1)+ (M' —1)'

With these substitutions Eq. (6) becomes

(9)

Here x, y, and s are combinations of the I-channel
amplitudes

x= (1/9) I
fl" '/2

I
2+ (1/36) I

fl" 3/
I

2

+ (1/18) (f u, l/2f u, 3/2u+ f u, l/2uf u, 3/2)

y= (1/9) I
f2" "I'+(1/36) I

f2""I'
+ (1/18) (f u, l/2f u, 3/2u+ f u, l/2uf u, 3/2)

Z (1/9)(f u, l/2f u, l/2u+f u, l/2uf u, l/2)

+ (1/18) (f u, l/2f u, 3/2u+ f u, l/2uf u, 3/2)

+ (1/1g) (f u, l/2f u, 3/2u+ f u, l/2uf u, 3/2)

+ (1/36) (f u, 3/2f u, 3/2u+ f u, 3/2uf u, 3/2) (7)

All fl and f2 amplitudes are functions of u and cos8„
and they are the amplitudes expressed in Regge form,
that is, as the sum of an integral term and pole terms.

Let us now cross from the I channel into the s channel
by taking u= 0. According to Eq. (1),u= 0 corresponds
to cos8„=+1 and this represents a line in the physical
s channel of the Mandelstam diagram. u=O is the only
value of I which makes cos8„ independent of s. For all
other values of I, cos0„ is a function of s.

It is well known that fl and f2 have singularities at
8'„=0.But since the differential cross section is finite,
the coefFicients in the cross-section formula (6) which
contain powers of 5'„should cancel these singularities.

Now one may argue that the Legendre functions
appearing in the Regge representation are functions of
cos8„and the partial waves functions of 5', so that for
cos8„=1 and u= 0 there can be no s dependence coming
from them. The amplitudes fl, '/' '/' and f2 '/' '" are
assigned constant values which depend only on the
positions n, and residues P; of the Regge poles at u=0.

4u' s+ 2 (M' —1)
(x+y—z)

da

dQ (M2 —1)'

da/dQ =a+b/gs+ c/s,

where a, b, and c are constants. Since no approximations
have been made in this derivation, such a form should
be valid at all energies. The condition of being on the
backward cone is built in, therefore the angle does not
appear in Eq. (10). Some of the constants a, b, and c
may be zero. The above form is the most general mathe-
matical expression one can obtain without an explicit
knowledge of the amplitudes, contained in x, y, and s.
The 1/s behavior for high energies is predicted by Regge
theory, ' in which case a single pole is dominant. Experi-

' Virendra Singh, Phys. Rev. 129, 1889 (1963).

4ugu 4M(M' —1)
(x-y)

(M' —1)'

4u (M' —1)'—8M'Qs
(x+y+») . (10)

(M' —1)'

In this formula we have already set N=O in the de-
nominators where I appears as an additional term to
M' —1.Now the limit of this expression for I=0 should
be formed. As we remarked earlier, here x, y, and s are
functions of I and cos8„only in the Regge representa-
tion. They do have singularities at u=O which cancel
with the powers of u in the numerators of Eq. (10) since
the cross section is finite. Therefore the most general
form one can obtain will be
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TABLE I. ~+P differential cross section on the backward cone. '

s in m~~

p
pion lab
momentum
(BeV/c)

T.~
pion lab
kinetic energy
(MeV)

cosgg

do/dQ
(pb/sr)

92 110.94 115.56 126.82 143.68 154.94 185.85 209.35 216.23 246.96 287.34 431.68 816.82

1.76 2.08 2.5 4 8

340 533 698 873 990 1311 1555

+1 —0.0278 —0.1578 —0.3829 —0.5816 —0.6650 —0.7981 -0.8524 —0.8642 —0.9028 —0.9327 —0.9737 —0.9934
11630 418 141 142 321 529 707 60 208 38 90 19 8

a All data have been interpolated to the backward cone angle cosmos. All data given in T„are taken from Jerome A. Helland, Thomas J. Devlin, Donald E.
Hagge, Michael J.Longo, Burton J. Moyer, and Calvin D. Wood, Phys. Rev. 134, 1062 (1964),except Tsr =340 MeV which was taken from the table given
by G. Hoehler, G. Ebel, and J. Giesecke, Z. Physik 180, 430 (1964).p =1.76 and 2.08 Bev/c data were taken from F. E. James, J. A. Johnson and H. L.
Kraybill, Phys. Letters 19, 72 (1965).p =2.5 BeV/c data are from V. Cook, B. Cork, W. R. Holley, and M. L. Perl, Phys. Rev. 130, 762 (1963).Finally
p =4 and 8 BeV/c data are from W. R. Frisken, A. L. Read, H. Ruderman, A. D. Krisch, J. Orear, R. Rubinstein, D. B. Scarl, and D. H. White, Phys.
Rev. Letters 15, 313 (1965).

mentally the same behavior has been suggested recently'
as consequence of recent high-energy backward scat-
tering experiments. At such high energies the backward
cone is very narrow and close to the backward direction.

Even though the high-energy data are in agreement
with this formula, the low-energy data seem to be in
disagreement (see Table I). One explanation which
comes into mind is that the amplitudes may have in-
determinacy points at I=0 and cos0„=1. The indeter-
minacy apparently arises because of ratios which have
independent variables in both the denominator and the
numerator, so that the limit for zero is not determined.
Thus it appears that u and cos0„are not the proper
variables of f~ and f2 for crossing onto the backward
cone. These amplitudes are, rather, functions of
(1—cos8„)/u or, remembering the expression for s', the
proper variables should be u and s. In view of the dis-
agreement with experiment it seems one is forced to the
conclusion that the Regge representations of f~ and f2
break down completely on the backward cone and one
can not use this kind of crossing.

CROSSING TO THE THRESHOLD

An interesting point to cross from the I channel is the
threshold of the physical s channel. For this point
s= (M+1)' and u= (M—1)' in pion mass units. Since
all curves cos0„=const. pass through this point, when
crossing from the I channel to this point the I-channel
amplitudes should be cos0„-independent. If we write

f~(u, cos8„) and f2(u, cos8 ) in Regge representation,
the integral terms have the form

P jul(2 (cos8~)&Psyy/2 ( cos8~)
+1/2 dJ,

cosm J
where fs+~/2' ' are even or odd continuations of the
partial waves. P' are the derivatives of the Iegendre

3A. L Alikhanov, G. L. Bayatyan, E. V. Srakhman, G. P.
Eliseev, Yu. V. Galaktionov, L. G. Landsberg, V. A. Lyubimov,
I. V. Sidoriv, F. A. Yetch, and Q. Ya. Zeldovich, Phys. Letters
19, 345 (i.965).

This can be written as

1.e.,

//M —1 '
2 f u, l/2+ kf u, a/2

I

2
I f s, 3/2

I

2

(M+1

0.54s(d /dn) (~-p -p) I.=(~ »

$0
(n+p ~ m+p) —. . (13)

dQ s= (M+1)

functions. For the pole terms the amplitudes are re-
placed by the residues. Now since the cross section
expressed in terms of the I-channel amplitudes should
be cos0„-independent we should try to make both the
pole terms and the integrals cos0„-independent. This
can be achieved by choosing for the pole terms the de-
rivatives of the Legendre functions as Po', P'1', P 1',

and P 2'. Thus the values of the nucleon, 1238-MeV Ã*,
and 1512-MeV S* Regge trajectories at 8'„=M—1

maybe identified with the values n= (0, 1, —1, —2)+-', .
The integral term contains J as the integration variable
and the vanishing of the integral implies certain sym-
metry properties of the partial waves with respect to the
real axis in the complex J plane.

Let us evaluate the differential cross section for m+p

scattering.
E„—M

f2~ L
———A~'"+ (W +M)B~"] (11)

8m%„
Here

(E„—M)/S~W = (u+M' —1—2M lu)/167ru. (12)

At s-channel threshold u = (M—1)'. This makes
f2" r=0. From Eq. (7) it follows that y=0 and s=0.
Only x is different from 0. Evaluating the differential
cross sections from Eq. (6) for u = (M—1)2 and
s= (M+1)' we find

do M —1
I I (1/9) I

f~" '"I'+(1/36)
I
A" '"I'

dQ M+11
+ (1/1g) (f u, l/2f e,3/2*+ f u, l/2+f, 3/2)Q
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The s-channel threshold is s=(M+1)'—59trt '. The
pion total lab energy 8 is found from s =M'+ 1+2E M
tobeE =1m .Pionlabkineticenergyis T =E —1=0.
At s= (M+1)'

forward or p differential cross section at st= (M—1)'.
By a similar procedure one can also obtain the analytic
continuation of the forward sr+p differential cross
section for s= (M—1)'.

(do/dQ) (or+p —+ sr+p) =0.18 mb/sr. ACKNOWLEDGMENTS
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Thus we have obtained the analytic continuation of the several discussions.
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In order to give a quantitative discussion of models for nucleon-nucleon scattering which are founded on
analyticity and unitarity of the S matrix, the fact that each partial-wave amplitude has a nonvanishing
imaginary part in the physical region must be dealt with unambiguously. That goal is achieved by evaluating
certain integrals over the physical region, using rigorous bounds when experimental data are unavailable.
The resulting modified amplitudes have known experimental uncertainty, and can validly be compared di-
rectly with dynamical models which do not themselves satisfy the requirements of unitarity, such as the
popular single-boson-exchange models. The modi6ed amplitudes are tabulated and various tests for models
are discussed.

I. INTRODUCTION

'HE hope has been expressed many times' that a
knowledge of the analytic properties of strong-

interaction scattering amplitudes may provide a partial
or perhaps even a complete framework for dynamical
calculations involving the strong interactions. In
practice a common approach is to make use of crossing
symmetry and unitarity to approximate the scattering
amplitudes of interest in some unphysical region, and
to "derive" from this approximate information some
estimates of the amplitudes in the physical region.
These "derivations" always involve assumptions addi-
tional to those mentioned above, which make the
interpretation of such calculations less clean than one
would like. The present work is a brief examination of
some of these auxiliary assumptions' and a detailed
discussion of an alternative procedure whose auxiliary
assumptions have particularly uncomplicated physical
interpretation. Finally, this procedure is applied to the

*A portion of this work was reported earlier in Phys. Rev.
Letters 12, 52 (1964).

'See, for example, G. F. Chew, S-Matrix Theory of Strong
Interactions (W. A. Benjamin, Inc., New York, 1961).

2 A more detailed discussion with some numerical examples has
been given elsewhere L'P. B. Kantor, Ann. Phys. (N.Y.) 33, 196
(1965)j. In particular it is shown there that various methods do
not agree in practice.

nucleon-nucleon problem to provide functions which
can be directly compared with the approximate ampli-
tudes derived by crossing symmetry, and the accuracy
obtainable by this method is discussed. The precise
analyticity assumption used is that each partial wave
amplitude has only those singularities given by the
Mandelstam representation. ' It should be clearly
understood that the method to be discussed does not
provide for the "derivation" of amplitudes in the
physical region. However, in my opinion it has not yet
been established clearly that the popular single-boson-
exchange models give an accurate enough description of
the true state of affairs to justify attempting such
derivation. The present method is particularly well.

suited to determining whether this is the case, and
hence, in spite of its limitations, will be very useful in
the present situation.

The presentation is divided into seven parts, dealing
with: kinematics (Sec. II), dynamics (Sec. III), the
problem of unitarization (Sec. IV), removal of the
unitarity cut (Sec. V), detailed numerical results (Sec.
VI), remarks concerning pole models (Sec. VII), and
conclusions (Sec. VIII).

3 The Mandelstam analyticity for N-N is discussed by M. L.
Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y. Kong.
Phys. Rev. 120, 2250 (1960).


