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The general algebraic relations between space inversion, time reversal, and the internal symmetry group
are analyzed within the framework of a Lorentz-invariant local field theory. The problem of unitary repre-
sentations of the full Poincare group including the space and time reQection operators has been studied by
Wigner, and the representations are classi6ed into 4 cases. lt is shown that, with the added assumption of
the local 6eld theory, Wigner's cases 2, 3, and 4 either do not not occur or can be reduced to his case 1. The
concept of minimal group extension is introduced and the related mathematical analysis is given. The sym-
metry properties under space inversion, time reversal, and other discrete operators such as charge conjuga-
tion are analyzed separately for each of the three known interactions: strong, electromagnetic, and weak.

I. INTRODUCTION

1
~IUR views of discrete symmetries such as space

inversion P, time reversal T, and charge conju-
gation C have undergone great changes in recent yea, rs.
Since 1957, it has been well established' that both P
and. C symmetries are only approximately valid. Rather
naturally, this discovery led immediately to specu-
lations as to the possible need of a profound revision
of some of our concepts. Until the recent discovery' of
the x+x decay mode of the long-lived E&0 meson,
however, it was possible to retain intact the structure
of the full Poincare group and in particular to believe
in the essential symmetry between left and right by
using CP, instead of P. From a fundamental point of
view, therefore, the strong evidence now existing of a
CP violation in E2' decay, and the concurrent indirect
conclusion that T is also not an exact symmetry, are a
more decisive blow to our notions on geometric sym-
metry principles than earlier results.

Strictly speaking, since the very existence of sym-

metry operators such as T and P, or CP, is deduced
from the alleged equivalence of certain reference
systems, the presence of phenomena violating that
equivalence implies that the operators themselves can-
not be exactly defined. The language employed most
often in describing the situation is in fact somewhat
inconsistent. One says: there is a P or CP, etc., operator
and in specific theories one often proceeds to give exact
definitions of these operators; subsequently one assumes

*This research was supported in part by the U. S. Atomic
Energy Commission.' The first experiment that conclusively established the approxi-
mate nature of P and C symmetries was made on P decay by C. S.
Wu, K. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson,
Phys. Rev. 105, 1413 (1957). This was immediately followed by
the observation of the same noninvariance properties in m, p
decays by R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys.
Rev. 105, 1415 (1957) and by J. J. Friedman and V. L. Telegdi,
Phys. Rev. 105, 1681 (1957).The possibility that P, C, and T are
only approximate symmetries was suggested theoretically by
T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956) and further
discussed by T. D. Lee, R. Qehme, and C. N. Yang, Phys. Rev.
106, 340 (1957).' J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Letters 13, 138 (1964). See also A. Abashian et ul. ,
Phys. Rev. Letters 13, 243 (1964}.

a Hamiltonian containing terms which do not commute
with P, CP or T, etc. This is the same as saying, how-
ever, that these operators do not satisfy exactly the
multiplication laws of the coordinate transformations
they are alleged to represent within the full Poincare
group. More explicitly, the transformation

r~,—r, t~+t,
corresponding to P or CP, should commute with a time
translation, represented in6nitesimally by H, and the
transformation

r —&+r, t —+ t, —

corresponding to T, transforms the time translation
t~t+r into t —+t rwhich, —because of the anti-
unitary nature' of T, again implies commutativity of
the corresponding operators. Thus the "exact" defi-
nition of the symmetry operators is a purely formal
convention, that in fact does not satisfy the basic
geometrical requirements. One can similarly think of
other possibilities of "exact" definitions. For example,
one might start with the physical single-particle state
~k,X), and define I' and T to be, respectively, the
unitary and anti-unitary operators that satisfy

(1.2)

where k and X are, respectively, the momentum and
the helicity of the particle, and p& and g& are phase
factors which may depend on X. (Helicity is defined to
be the spin component along the direction of k.)

In equations such as (1.1) and (1.2), the states
~
k,X) and

~

—k, &X) refer to the same physical particle.
The equations, however, have an unambiguous meaning
only for an exactly stable particle. The state vector of
an unstable particle must sooner or later develop com-
ponents corresponding to the decay products. No satis-
factory generalization of (1.1) or (1.2) exists for such

' E. P. Wigner, Gott. Nach. Math. Naturw. K.l., p. 546 (1932).
For a general discussion of anti-unitary operators see, e.g., E. P.
Wigner, Group Theory (Academic Press inc. , New York, 1959),
Chap. 26.
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a state, if the decay violates either space-inversion or
time-reversal symmetry. Similar difhculties arise for
multiparticle states, if the interaction involves sym-
metry violations. 4

The notion that a certain "fuzziness" is attached to
the definition of the symmetry operators P, PC, T is
not new and is not likely to be questioned; but the
situation is clearly an unsatisfactory one from a funda-
mental point of view. The following is an attempt to
characterize the ambiguity in a mathematically more
precise way; if this can be done, at least some order
can be brought into the subject.

There is already a completely different source of
ambiguity in the definition of symmetries which has
been analyzed in some detail. This is the possible
existence of superselection rules. ' Such rules imply that
the Hilbert space of a system (say a system of inter-
acting fields) should split into "noncoherent subspaces. "
Thus, every symmetry operator can be multiplied
(without detectable consequences) in each subspace
by a phase factor, which is independent of the phase
factors in the other subspaces. It is of course quite
possible that there are no superselection rules, the rules
now generally accepted being the result of an inade-

quate sensitivity of our experimental techniques. This
latter point of view may in fact present some conceptual
advantages, but it clearly leads to the same physical
results as the superselection rules, so long as the vio-
lation is either unobserved or can be neglected.

It seems practical at the present stage to accept the
view that there are superselection rules associated with
S (baryon number), Q (electric charge) and perhaps
also the leptonic numbers. The independent phase
factors in each noncoherent subspace mentioned previ-
ously are adequately replaced by the gauge group
generated by these quantities. It is then easy to sum-
marize the situation by stating that each geometrical
symmetry, if it exists, is represented not just by one
operator, but by a coset of the gauge group (as will be
discussed in more detail later). The geometrical group
then appears as the quotient of the complete symmetry
group by the above mentioned gauge-group. This for-
mulation has been used, for example, by Michel for

4 For example, for the multiparticle states one might try to
define P to be the unitary operator which transforms, say, any
physical incoming-wave state (kq, ki; k&,Xq. ~ ~ )'~ to

~

—kq, —)„;—ks, —Xm. ~ )', multiplied by an appropriate phase factor. Such
an operator, which we may call P', has only matrix elements
between states of the same energy; therefore, it commutes with
the total Hamiltonian. The observed nonconservation of parity
implies that a different operator, called Po~', would result if the
incoming-wave states are replaced by the outgoing-wave states.
At any finite time t, neither P'n nor Po&' transforms the Geld
operators at r to those at —r. These two operators P' and Po«
are, respectively, connected only with the transformation proper-
ties of the initial and the Gnal configurations of the system; such
operators are, in general, rather useless (unless space inversion
were an exact symmetry).' G. C. Kick, A. S. Wightman, and E. P. Kigner, Phys. Rev.
88, 101 (i952). See also G. Feinberg and S. Keinberg, Nuovo
Cimento 14, 57i (i959).

where g represents a set of parameters which can be
certain coupling constants and maybe mass differences.
By a suitable choice of the set of parameters g, both
space inversion and time reversal can be regarded as
exact symmetries for the solutions of the model Hamil-
tonian H.

As an example, we may take H =H free+H g where

Ht...+H,g= lim H„„,i.
e =Gwk =0

(1.4)

The parameters e and G„z are, respectively, the electron
charge and the weak-interaction coupling constant. In
this limit, the mass differences between particles within
the same isospin multiplet are all assumed to be zero.
The Hg, is the free-particle Hamiltonian, and B,& the
strong-interaction Hamiltonian. The existing experi-
mental results strongly support the assumption that,
so far as this model Hamiltonian B is concerned, both
space inversion and time reversal are exact symmetries.
Equations (1.1) and (1.2) may still be used to define
the operators P and T provided

~
k,X) is regarded as the

single-particle eigenstate of the model Hamiltonian.
Similar requirements for P and T can be easily ex-
tended to the multiparticle eigenstates of B.However,
in the limit e=G„~=O, it is not possible to distinguish
between different members of the same isospin multi-
plet. Thus, if P' is the unitary space-inversion operator,
an equally good choice can be the product SP where S is
any isospin transformation operator (or, any other
internal symmetry operator). The same holds for the
time-reversal operator T.

In general, for any given model Hamiltonian B,
there exists an interposal symmetry group g:

where the group element S is called an internal sym-
metry operator. S will be defined later (in Sec. f&) to
be any unitary operator that satisfies

SBS '=B, (1.6)

L. Michel, in Group Theoretical Concepts and Methods in
Elementary Particles, edited by F. Gursey (Gordon and preach
Publishers, New York, 1964},pp. 135—200. A discussion of group
extensions is also given in this paper. See also F. Kamber and N.
Straumann, Helv. Phys. Acta 3?, 563 (1964), and L. C. lheden-
harn, J. Nuyts, and H. Ruegg, Commun. Math. Phys. (to be
published).

the full Poincare group. ' This discussion is still based,
however, on the assumption that the discrete space-time
symmetries B,re exact.

The approximate nature of the symmetries suggests,
in our opinion, that the process of rede6nition must be
carried a step further. Let us consider a model Hamil-
tonian H which may be constructed from the real
Hamiltonian H&, t,,& by setting some of its parameters
equal to zero:

H= lim Hg, g, i,
g—+0
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(P '1"=8')

where J is the spin of the local field operator and g is
the usual CPT operator which satisfies

cts —( 1)sz (1.10)

for all internal-symmetry operators S. Thus, the
algebraic relations between {SV} and the internal
symmetry group g are completely determined if those
between fS(P} and g are known (and vice versa).

The set of operators fS(P} and fS}forms a new group
h which we shall call a mitti mal extenst'on of 8; g is an
invariant subgroup of h and the factor group is the
two-element group Z&. The mathematical analysis of

' W. Pauli, Niel s Bohr and the Development of Physics (Pergamon
Press, London, 1955); J. Schwinger, Phys. Rev. 91, 720 (1953);
94, 1366 (1953). G. Luders, Kgl. Danske Videnskab. Selskab
Mat. Fys. Medd. 28, No. 5 (1954). See also R. Jost, Helv. Phys.
Acta 30, 409 (1957); R. F. Streater and A. S. Wightman, PCT,
Spt'rt and Stats'stt'cs, and All That (W. A. Benjamin, Inc., New
York, 1964).

It should be pointed out that in the framework of the present
paper, the expression "CPT" may be misleading because either
C does not exist as a symmetry, or if C exists then there is no clear
distinction between our script letter (P and C(P (likewise for 1).
Therefore, the CPT theorem could be called the (PV' theorem.

and is not connected with any coordinate transfor-
mations. We note that if B is invariant under the charge
conjugation C, then, but only then, by definition, Q
contains C. The structure of g depends on the particular
II under consideration. A full discussion of the proper-
ties of the space-inversion operator and the time-
reversal operator cannot be given without studying
their algebraic relations with the internal symmetry
group g.

In Sec. II, the general defintions of the space-
inversion operator and the time-reversal operator are
given for any Lorentz-invariant local field theory. It
follows from these general definitions that if a unitary
operator {P is a space-inversion operator, then any
member in the set fS(P} can also be used as a space-
inversion operator. Similarly, if an anti-unitary oper-
ator V satisfies this general definition of the time
reversal operator, then any member in the set fSV }
also satisfies the same definition. For clarity, we use
the script letters (P and V' to denote an arbitrary choice
of these operators. The general algebraic relations
between these discrete elements (P, V and the internal-
symmetry group g are then investigated.

As we shall see later, an immediate consequence of
the usual "CPT" theorem' is that for any model
Hamiltonian H, if (P exists, then V exists and vice versa.
Furthermore, for any (P in the set fS(P} there exists a
V'in the set fSV'} such that

(P2= V

the minimal extension for any given group g is an
elementary case of the general theory, and is given in
Sec. III. All such minimal extensions can. be classified
into two general types 3 and 8, depending on whether
the correspondence 5~6'5(P ' is an inner or outer
automorphism of g. Some simple illustrative examples
are given in Sec. IV.

The problem of unitary representations of the full
Poincare group including the space and time-reQection
operators has been discussed by Wigner, ' and the
representations are classified into 4 cases, depending
on the algebraic properties of the space-time reQection
operators; these classifications are, however, made
without explicitly considering the internal symmetry
group. Equations (1.7)—(1.11) show that, with the
added assumption of the local-field theory, signer's
cases 2, 3 and 4 either do not occur or can be reduced
to his case j. by using different operators in the sets
fs(P} and fS9"}.

The notion of minimal extension is also useful in
studying the question of possible discrete elements in
the internal symmetry group. It has been suggested'
recently that each of the three known interactions (the
strong interaction H,~, the electromagnetic interaction
H„, and the weak interaction P„~) is invariant under
its own C;, P; and T; where i=strong, y, or weak. In
all these cases, the internal symmetry group 8, of the
particular H; is itself a minimal extension of another
group b;s which does not contain the discrete element
C;.

Applications to these interactions are given in Secs.
V and VI. The general solutions of C ~, P„~, and T„~

E. P. Wigner, in Grogp Theoretical Concepts urId Methods irI,
Elementary Particles, Ref. 6, pp. 37—80. See also R, M. F. Hout-
appel, H. Van Dam, and E. P. Wigner, Rev. Mod. Phys. 37,
595 (1965).The identification of Wigner's four cases in terms of the
language of 6eld theory is not without certain possibilities of
ambiguity. Here, we assume that each symmetry operator (P, or
1, or d, is normalized so that the vacuum state is an eigenstate
with eigenvalue +1.Let the signs ez, ~1 be defined by 0'= cl(—1)'I
and tPV'=eser( —1)'s9"(P. [By using (1.9), this implies 9"'=egG".]
The four cases 1, 2, 3, 4 correspond to (eg, el) =(1,1), (1, —1),
(—1, 1) and (—1, —1), respectively. Equations. (1.7)-(1.9) show
that the choice eg=e1=1 is always possible.

The above normalization condition merely gives a convenient
handle, to connect the transformation properties, under 6', V', and
8, of a composite system to the product of the transformations of
its constituents. The existence of a "composition law" expressing
the connection between the space-time reflection properties of a
multiparticle state and those of the single particle states is, of
course, a natural consequence of local-field theory, but we must
emphasize that some statement about this connection is an integral
part of any usable formulation of the transformation laws; for
example it is needed if one considers only the asymptotic states
of any physical reaction.

The analysis of the possible irreducible representations or co-
representations of the group of reflection operators, and the
ensuing reduction, of the subspace of all single-particle states, into
types of irreducible spaces, may be a logical step in a certain way
of analyzing the problem. But the distinction between inequivalent
representations is devoid of observable consequences, unless it
is coupled with a specific prescription for the "composition law. "
We have adopted the rules of field theory, applied if one wishes
only to the "in" and "out" states of S-matrix theory, as by far
the most natural and simple way to formulate the necessary
connections.

9 T. D. Lee, Phys. Rev. 140, B959 (1965).



T. D. LEE AND G. C. WICK

are analyzed. It can be shown that C„&, I'„i„and T„i,
also commute with the SU3-invariant part of the strong
interaction. The various physical consequences of these
discrete symmetries are discussed.

The operator C; is an element of g,. An interesting,
though perhaps academic, question is whether C, (in
particular C,~) can be continuously connected to the
unit element of g;. In Sec. VII, it is found that, at
least in some explicit models, this is possible. For
example, if we consider all Feynman graphs which
contain only the usual strong interaction vertices
between the nucleons and any G=+1 mesons such as

p, q, q' etc., then the internal symmetry group auto-
matically contains a subgroup S04 which, in turn,
contains the usual isospin group SU2. The C,t, is one
of the elements of this SO4 group; consequently, it is
connected to the unit element.

For practical applications, this SO4 symmetry is
violated by the strong interaction between the nucleons
and the pions. Some possible uses of this broken SO4
symmetry are discussed.

4.(*)=4'(x)
Lk.(x)3.= Lk'(x) j. (2.1)

x= (r, i), and a=1, 2, u (or m). Each P, is a 4-
component spinor, and its spinor components are
labeled by p which varies from 1 to 4. The p (x) and

P, (x) satisfy the usual equal-time commutation and
anticommutation relations:

L4.(r,t),4~(r', ~)j=L4.(r, t),P~(r', t)]=0, (2.2)

II. GENERAL DISCUSSION OF O' AND V'

1. Spin-0 and Spin--,' Fields

We consider first a model Hamiltonian B which
depends on n Hermitian" spin 0 fields pi(x), , p„(x)
and m Hermitian spin--,' fields Pi(x), , P (x) where

tonian B is invariant under the transformation

Sy(x)S '=soy(x),

where
SP(x)S—'= si(2$(x), (2 4)

and so, s»2 are, respectively, (eXu) and (mXm)
matrices. From the Hermiticity condition and the
commutation relations, both so and s~~~ must be real
and orthogonal. Throughout the paper, the dagger and
tilde denote, respectively, Hermitian conjugation and
transposition. In (2.4), the transpose is introduced so
that if the matrices sg and sJ' are associated with the
internal-symmetry operators 8 and S', then the matrix
associated with (SS') is (sqsq'), where J=O or i~. For
any given matrices so and s»2, if S satisfies (2.4), so
does e'~S. Throughout our discussion we assume that
there exists a single lowest eigenstate of B, called the
vacuum state ~vac). The arbitrary phase factor in
(e*'S) will always be chosen so that

Sivac)= ivac). (2.5)

B=(S). (2.6)

Definition 3. The theory is said to be invariant under
a space inversion, if there exists a unitary operator 6'
such that

and

(Pg(r i)6' '= u ppg (
—r i)—

PP„(r,t)(P'= u~)2P/iy-, g( r, i)j„, —

OBO ~=B,

(2 &)

Defimifion Z. The group of all the internal symmetry
operators is defined to be theinteruaL symmetry -group 5:

where uo~ and u»2P are, respectively, (nXe) and
(mXm) matrices, P„(x) is a (mX1) matrix whose
components are )Pi(x))», LP (x)]„.Throughout
the paper, the Majorana representation of the Dirac

rices will be used; i.e.,

and, if there is no derivative coupling,

Ly. (r,t), (d/dh)yi, (r', t) j=9.g5'(r —r'),

are real,

mat
L4.(,&)j.L4 ( 'i)j.+L4 ( ',&)3.L4.'(,&)j.

=8,g8„„5'(r—r'); (2.3)

otherwise, these relations become more complicated.
Our general discussions, of course, do not depend on
whether derivative couplings exist or not. For clarity,
we assume here that the masses of the spin-~ fields are
all diferent from zero. The zero-mass case will be
discussed in Appendix A.

Definitio 1. A unitary operator S in the Hilbert space
is called an interval symmetry op-erator if the Hamil-

'0 Any non-Hermitian field can always be decomposed into a
sum of two Hermitian fields. The use of Hermitian fields simplifies
some of the general discussions, and there is no loss of generality.

(Pivac)= ivac). (2 9)

Defieitioe 4. The theory is said to be invariant under
a time re~ersat if there exists an anti-unitary operator

p4, &5 are imaginary. (2.8)

All the y's are (4X4) Hermitian matrices. It follows
from Eqs. (2.1)—(2.3) that uz~ must be real and
orthogonal, where J=O or —,'. For' any given matrices
uP and u»2~, (2.7) only determines the unitary
operator 6' up to a phase factor. We will choose this
phase factor so that
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V' such that the vacuum state. For convenience, we adopt the choice

aild
1"Hv '=II

d
i vac) =

i vac) .
The operator 8' is unitary, and it satisfies

(2.17)

where in order to satisfy Eqs. (2.1)—(2.3), the matrices
No and n~&~ must both be real and orthogonal.

Under 1', the state
~
vac) remains the same vacuum

state, hence

therefore, we may write

y2 —( 1)2J (2.18)

1 ~vac)= (vac). (2.12)

For any given matrices No and N&t2, if K satisfies
(2.10), so does e "E.Thus we can always choose the
phase factor so that

K~ vac) = e'~
j vac) (2.11)

where e" is a phase factor. Since V is an anti-unitary
operator, independently of the phase factor e' we
must have

Any state of total angular momentum J is an eigenstate
of (—1)2~; the eigenvalue is +1 or —1 depending on
whether J is an integer or a half-integer. The operator
5' is, by definition, an element of the internal-symmetry
group g.

By using the above definitions of (P, V", 8 and S, one
can easily verify that

(2.19)

(2.20)

1'~ vac) =
~
vac) . (2.13)

(2.21)

and

(2.14)

(2.15)

The anti-unitary operator 5 is usually called the CI'T
operator. From (2.15), it follows that

Consequently,
d

t vac) = e'3
( vac) .

82[vac)= )vac). (2.16)

The phase factor e'~ can be transformed to unity by
either transforming 8-+ e '38 or by using e3"3~vac) as

)An alternative way to transform away the phase
factor e" in Eq. (2.11) is to adopt el*'~vac) as the
vacuum state. j

Ke note that if a unitary operator (P satisfies the
definition of the space-inversion operator, then any
member in the set of unitary operators {SP}also
satisfies the definition of space inversion, where S is
any internal symmetry operator. Conversely, if 5' and
6" both satisfy the definition of space inversion, then
6"(P ' must be a member of the internal symmetry
group g. Thus, the set {S5'} contains all possible
solutions of the space-inversion operators. Similarly,
if an anti-unitary operator 9" satisfies the definition of
the time-reversal operator, so does any member in the
set {S9"}.The set {S9'}also contains all possible time-
reversal operators.

In the following, we assume that the local-field
theory under consideration is invariant under the in-
homogeneous proper I.orentz transformation. The
CI'T theorem~ states that the theory must also be
invariant under an anti-unitary operator 8 where

and
1 =5'2 (2.22)

Proof. For any given (P in the set {SIP},we can choose
K= 86'. By using the definitions of 9", 6' and 8, we find

Ng =NJ (2.24)

where J=O or —,'. Theorem 1, then, follows. So far, only
the spin-0 and spin--,' fields are considered. As we shall
see, Theorem 1 is valid for any I.orentz-invariant
local-Geld theory.

2. Generalizations to Higher Spin Fields

All the above considerations can be readily applied
to higher spin fields. Let X~, X2, ~, X be e Hermitian
field operators. Each X, describes a spin-J field. The
general definitions of S, (P, 5can be most easily obtained
by noting that the formal transformation properties of
the spin-J fields are the same as that of the appropriate
derivatives (or the appropriate sum of derivatives) of
the spin-O, or spin--,', fields. For example, the trans-
formation properties of a set of 23 7=1 Acids Lx, (x)$„
are formally the same as those of 8&,(x)/Bx„where
a= 1, , 23 and p, is a spin-0 field. The defInitions of
S, (P, K, and 8 are the same as before except that Kqs.

The operators (P, K', O'$(P ', and 1"SV' ~ are all members
of the internal-synunetry group g, the operator ((Pd)
belongs to the set {SE} and the operator (9"8) belongs
to the set {S(P}.

Theorem' 1. If 6' exists, then V' exists, and vice versa.
Furthermore, for every given 6' there exists a V in the
set {SE}such that
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(2.4), (2.7), (2.10), and (2.14) are replaced by

SX„(r,t)5 '=siX„(r,t), (2.25)

PX„(r,t)$ '=upL —g»X. (—r, t)g, (2.26)

V'X„(r,t) V'-'=uirLg, X,(r, —t)], (2 2&)

SX„(r,t)8 '= —X (—r —t) (2.28)

where si, uii' and ui~ are all (nXn) real orthogonal
matrices,

(Xi)„'
Xp 7

-(X-).-

p vary from 0 to 3& (X~)„=(X~)„, and p&.=1
&= „~0,—] if ti= i =0, and zero otherwise. LThrough-
out, we adopt xo——$. Sometimes p, , ~ may vary from 1
tp 4. In such cases, x4=ixo=&t.j

All previous considerations can be directly applied
to the J=1 case, and in a similar way to any other
spin-J case, The phases of these operators S, O', V', and
8 will always be chosen so that

5 ) vac) = 6'
~
vac) = 7~ vac) =8 ) vac) =

) vac) . (2.29)

One can readily verify that, for any spin-J case,
Eqs. (2.18)—(2.21) remain valid; and for any given (P,

the general validity of Theorem 1 can be established by
choosing the element 9=SIP in the set {SE}.The
theory is, then, invariant under the group

{s,w, s&b~). (2.30)

The algebraic rela, tions between {SE)and Q are com-
pletely determined by those between {5+)and Q, and
vice versa. Thus, the symmetry property of any
Lorentz-invariant local-field theory can be studied in
two steps by examining (i) the structure of the internal-
symmetry group g and (ii) if 6' exists, the algebraic
relations between {5(P}and g.

We note that while (P is not a member of g, both (P'

and (PSG ' are. The set of operators {5,5(P}, therefore,
form a group 8 which is a minimal group extension
of g. The mathematical problem of classifying all
possible minimal extensions of a given group g will be
discussed in the next section.

III. MINIMAL EXTENSIONS

Consider a given group g of finite order u. The order
pf any grpup h which contains Q as a subgroup must be
a multiple of e. If the order is 2e we call 8 a "minimal
extension. "

Putting it differently, g possesses in h only one coset,
which is therefore a right- and left-coset at the same
time; g is therefore an invariant or normal subgroup.
This definition does not require g to be of 6nite order
and is the one preferred in the following.

An obvious minimal extension is the direct product
of g by the cyclical group Z2, consisting of the elements
1 and p, with p'=1. There are, however, in general also

other "minimal extensions" and our purpose is to
analyze them.

Let us designate by Latin characters

8) bq C) (3 1)
the elements of the subgroup g. Let p be an arbitrarily
picked element of the coset of g. The elements of the
coset are then

Gp~ 5p) Cp) (3 2)

We could also write them as pa, pb, . etc. but pa= 6'p
where, in general, a'~u. In fact, u'=pap ' defines an
automorphism F of the group g; we write

'=—Fa =pap
—'. (3 3)

In addition, the square of p must be an element of g,
which we designate by f:

p =f (35)
Thus, to a given minimal extension 8, we associate an
automorphism F and an element f of the group g.
However, F and f are not uniquely determined by h,
since they depend on the choice of the element p. If we
replace p by another element p' of the set (3.2), say
p'= gp, the automorphism F is replaced by F'

F'a=t'at' '=g(tal ')g '=g(Fa)g
The transformation

(3.6)
is an "inner automorphism" of g, which we designate
by I, and treat as an operator: a —+ I,a. We then see
that changing p to p'=gp induces the transformation"

F'=IOF. (3.7)

Likewise, f=p' becomes f'=p"=gpgp=g(pgp ')p'. One
has, therefore,

f =g(Fg)f (3.8)

Obviously, the pair F', f' is associated tp the extension
h in the same sense as the pair F, f

We now ask: given an automorphism F and an
element f of the group g, is there a minimal extension
h, to which F and f are associated in the way describedi
We first notice that F and f are subject to certain
conditions. The transformation F' must be an inner
automorphism:

F'a=I Gati ')t '=p'ap '= faf '.
"Qne says that F and F' diBer only by an inner automorphism

or "belong to the same class."An inner automorphism thus belongs
to the same class as the "identity automorphism:" a -+ u.

In that notation, F appears as an "operator" on the
elements of g. An automorphism, of course, preserves
the group laws

Fa Fb=F(ab); Fa '= (Fa) '. (3.4)
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Ff= pfp '=f (3.10)

since f= p' Th. us F and f cannot be chosen arbitrarily.
We can show, however, that an h exists, if (3.9) and
(3.10) are satisfied.

To begin with, the structure of h is completely
defined once the subgroup Pi.e. , the set (3.1) and the
corresponding multiplication table) and the associated
pair F, f are given. By definition, h consists of the
subgroup g and its coset (3.2), where p satisfies Eq.
(3.5). We may regard ap, bp, etc. as "symbols" for
the elements of the coset. The multiplication table for
8 follows from Eqs. (3.3) and (3.5), since F is given.
In fact, we have

a bp=(ab)p (3.1la)

ap b=a(pbp ')p= (a Fb)p. (3.11b)

The right-hand sides are elements of the set (3.2)
unambiguously defined by the multiplication table for
g. Finally, the product of two elements of the coset is

ap bp=a(pbp .')p'=a Fb f, (3.12)

which is the product of three elements of set (3.1) and
thus belongs to g.

To complete the proof that 8 exists, we must show
that the multiplication law thus defined is associative
and that each element of 8 has an inverse. Each element
aof (3.1) has, of course, aninversea 'since /is agroup;
an element ap of (3.2) has the inverse ap where
a= f 'Fa '. One easily verifies, in fact, by means of
(3.12), (3.4), and (3.10), that

ap ap=a Fa f=a Ff F a f
=a f 'Iga 'f=1 (3.13a)

ap ap=a Fa f=f 'Fa 'Fa.f=l, (3.13b)

where "1" is the unit element in the set (3.1). We
verify the associative law for the product of three
elements of (3.2) and leave the other cases to the reader.
We have, because of (3.12), (3.4), and (3.9)

(ap bp) cp= (a Fb f) cp= (a Fb f c)p,

ap ~ (bp cp)=ap (b Fc f)=aF(b Fc f)p.
=(a Fb F'c Ff)p

= (a Fb f c)p

The result is the sam. e. That the minimal extension
thus defined is associated to the pair F, f is, of course,
trivally implied by the construction.

We have thus seen that a pair F, f satisfying con-
ditions (3.9) and (3.10) defines a minimal extension.
Two pairs F, f and F', f' related by the transformation
(3.7), (3.8) where g is some element of (3.1) may be said

In fact, F' is more precisely the automorphism
generated by f

F'= Ig. (3.9)

Moreover, the element f is obviously a fixed-point of F:

to define equivalent extensions. In fact, the groups 8
and 8' constructed according to the above procedure
only diGer in the choice of the element p in the coset
(3.2).

Our problem is to classify all possible ieeqmim, leek
extensions. To this end we may use a transformation
(3.7) and (3.8) to reduce F, f to the simplest possible
form. Firse we make a major distinction between case A:
F is an inner automorphism of g, or case B:F is an
outer automorphism.

Case A: One can choose g in Eq. (3.7) so that F is
transformed into the identity automorphism e. Let us
therefore assume that F= e to begin with. Condition
(3.10) is now satisfied by any element of the group,
but (3.9) tells us that I~——e, i e , t. h.at f commutes with
all elements of g (belongs to the center). A possible
value of f is, of course, f= 1; also if f= fi2 where fi is
another element of the center, we can apply a trans-
formation (3.7), (3.8) with g= fi ', which leaves F= e

unchanged, and transforms f to f=1. Thus, after all
transformations we may have case Ai. F=e, f=l.
This means p'=1 and p commutes with all elements of
the group. This is the obvious solution: the direct
product of g by the cyclic group of order 2, consisting
of the elements 1 and p, with p'=1.

There is also case A2. F= e, f=jim. In this case, there
is an fi satisfying this equation outside the center, but
not one in the center. Then by using a transformation
(3.7), (3.8), with g=fi ', we transform to the values

Here I, is an inner automorphism generated by an
element g such that g' is an element of the center which
is diferent from the square of any element of the center
(in particular g'&1). The product laws (3.11) and
(3.12) can now be summarized by writing

an bP =(aF„b)n.P, . (3.14)

where n and P are two-valued symbols with the possible
values 1 and p, F =~, if n=i, and =F if n=p. This
solution is known as a semidirect product. Another
case of semidirect product will be encountered later.

Finally, we have case A3. F=e, f&fi2. That is, f
belongs to the center; there is no "square root of f"
in the group g. Clearly the existence of Cases A2 and
A3 depends on whether the center of g has elements
that have a square root only outside the center, or no
square root at all.

Case 8: Clearly F cannot be transformed to F= e,
but only to other members of the same class" of outer
automorphisms. According to (3.9), F' must be an
inner automorphism. If this is true for an element of a
certain class, it is also true for every other element of
the same class. In fact, if F=If where I is an inner
automorphism, F'=I/I/. But: CION '=I' which is an-
other inner automorphism, since the inner automor-
phisms are an invariant subgroup of the group of all
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the automorphisms; therefore, F'=ll'P=P'P. Hence
the assertion. (We have in fact proved tha, t the squares
of all elements of the same class belong to one class. )
Therefore, there is not in general a solution for every
class of outer automorphism. " We shall assume from
now on that F belongs to an admissible class. In par-
ticular, there may be in the class an F such that F2= &,

the identity automorphism. Then, clearly, f=1 is a
possible solution of Eqs. (3.9) and (3.10). We have
then case B~. F is an outer automorphism, such that
F'=e; f=1. This case leads to a semidirect product,
with a multiplication law exactly similar to Eq. (3.14).
Only the nature of F is diferent.

There is next case B2. Ii is an outer automorphism
and F'=e; f satisfies (3.10), but it cannot be trans-
formed to unity. The element f is an element of the
center. Last, we have case Bs.F and f satisfy Eqs. (3.9)
and (3.10). By using transformation (3.8) f cannot be
transformed to any element of the center. Consequently,
F' cannot be transformed to e.

In the following sections, we will encounter several
examples of cases A», A2 and B~, B2, but not A3 and 83.

1. Example: g= Ui

The elements of the U~ group are e" where 0 varies
from —ir to +ir. The Ui group is Abelian; therefore,
it has no other inner automorphism except the identity
automorphism. For problems of physical interest, we
consider only the automorphism

es~ ~ e~g(0)
) (4 1)

where g(8) is a continuous function of 8. Since
e"1 e'~~= e'('1+'» we must have)

g(8i)+g(8s) =g(8i+8s) (4 2)

Thus, g(8) is a linear and homogeneous function of 8;
i.e.,

g= E0.
In order to satisfy Eq. (3.9),

E2 1

(4.3)

(4.4)

The group U& has only one continuous outer auto-
morphism e's ~ e 's, and in order to satisfy Eq. (3.10)
f must be+1 or —1.

The minimal extension 8 of U~ falls into the following

IV. SOME EXAMPLES

Before discussing the realistic cases, we first illustrate
the results of the previous sections by considering some
simple examples.

three cases:
Ai. F= e, f=1;
Bg'. F'= e f=1

P2 )

To study the physical content of each of these
diferent cases, let us consider a local-field theory whose
internal-symmetry group consists owly of U&. To each
element e" there is an internal-symmetry operator S(8).
It is convenient to define the Hermitian operator Q by

Q= i (dS/d—8) at 8=0.

It follows from the group property of U& that

S(8)=e'o'.

(4.5)

(4.6)

The operator Q commutes with the Hamiltonian H,
and since S(0)=S(27r) the eigenvalues of Q must be
integers. The automorphism Ii e"= e'g becomes
PS(8)6 '=S(g). The three cases of minimal extensions
can be written in the following alternative forms:

Ai. (PQ—Q(P =0,
(P2 —1 '

)

Bi. (PQ+Q(P=O,

(P =1'
)

B,: iPQ+Qn'=0,

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

S(8@(*)S—'(8) =g ( ), (4.14)

(4.15)

(P'= S(7r) = (—1)@. (4.12)

Case A& corresponds to a theory which, in the usual

language, is invariant under O'=P and V=CT. The
theory is, by assumption, not invariant under the usual
C where C, should it exist, must anticommute with Q.

The operator 82 must be a rnernber of the center of
the internal symmetry group b which is assumed to be
U~. Assuming that the theory contains some half-
integer spin fields, then by using Eq. (2.18), all half-
integer spin-particle states in this theory must belong
to states of odd Q, and all integer spin-particle states
belong to that of even Q. Otherwise, b cannot be Ui.
Thus,

(4.13)

Case 82 corresponds to a usual theory which is invariant
under O'= CP and 9"=T. For both cases A~ and B2, the
Bermitsan field operators associated with Q&0 must
exist in pairs, say Pi and fs. Under S(8), the fi and fs
transform as

"It is known that the classes may be considered as elements of
a factor group A/G where A is the group of automorphisms, G
the subgroup of inner automorphisms. The problem reduces,
therefore, to 6nding, in this factor group, the classes that are
"square roots of unity" or the involuntary elements of the factor
group.

s= exp(iqrs8),

(0

(4.16)

(4.17)
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and q/0 is an eigenvalue of Q. The states of Q=q are
degenerate with those of Q= —

q, and this degeneracy"
is independent of 5', or K, invariance.

Case BI is an unusual case." An explicit model is
given in Appendix B, in which the Hermitian field
operators of half-integer spins must occur in double
pairs. The theory now has an additional degeneracy
because of 0', or 9", invariance.

The group g is a minimal extension (Case Bi) of the
U2 gl ou.p.

In order to study the minimal extension of g due to
(P invariance, we first establish the following Theorem:
Theorem Z. If the theory is invariant under the space
inversion, then among the set (S(P} there is a space
inversion operator (P which satish. es

2. Example: g = ( Up, Up C}

Next, we consider another example where the internal
symmetry group contains an SU2 group whose gen-
erators are called the "isospin" I, a U~ group whose
generator is called the "hypercharge" Y, and a discrete
element called the "charge-conjugation" operator C.
The operators I, Y, and C satisfy the same commutation
relations as those of the corresponding operators in the
realistic case:

A consequence of $(P, Ij=0 is that diiferent members
of the same isospin multiplet must have the same
transformation under 6'.
Proof. Let us assume that at least in the neighborhood
of 8=0 and u=0, the transformed operator 6' exp(iI 8
+iVu) 6 ' is continuous and differentiable in the
parameters 8; and n. In this neighborhood, we have

(P exp(iI 8+iVu)(P '=exp(iI 8'+iYu'). (4.24)

)I;,I;)=i 4;,kIk,

fI;,Yj=0,
LG,Ij=0,

GY+ VG=0,

(4.18)

(4.19)

(4.20)

(4 21)
and

O'I;(P '= a;;Ij+fi;V,

(P V6'—'= c;I;+dY',

(4.25)

(4.26)

By diBerentiating with respect to 0; and u, and by
setting 8=0 and u=0, (4.24) becomes

and

G= C exp(i7rIp), C'= 1, (4.22)

where
a,,= (68,'/Be; )p, b = (Bu'/W, )p,

c;= (88,'/Bu) p, d = (Bu'/Bu) p

where i, j, k vary from 1 to 3, p;, k=+», or —1, or 0
depending on whether (ijk) is an even permutation of
(123), or an odd permutation, or otherwise.

The element of the U& group is represented by
exp(iI 8+iVu) where 8 and u are real parameters. In
order that it is a U2 group and not the direct product
SU2)&U~, we assume that" all Geld operators with
half-integer I have odd Y; i.e.,

(4.23)

The elements of the U2 group and the coset U2C= U2G
form the internal symmetry group g= (S}=(U, , U,G}.

"In the literature, the mass degeneracy between states of charge
Q=+q (e.g., e+ and e ) is often established by using invariance
under 8 (i.e., the usual "CPT"operator). It is important to notice
that in such a proof Q-conservation is implicitly assumed. In a
Lorentz-invariant local-field theory, 8 invariance is automatically
satisfied; the degeneracy between |t» and p2, or between states
Q =~q, is insured by the invariance under the internal symmetry
group U». Such degeneracy can be removed if one adds to the
Hamiltonian an additional 8-invariant term H» which violates
the U» invariance (i.e., Q conservation). As an example, we may
mention the well-known case of E»' and IC~' which are degenerate
if H I, =O, and, therefore, the strangeness 5 is conserved. H l,
does not alter the 8 invariance, but it violates 5 conservation. As
a result, X»0 and E20 do have diferent masses."If the theory contains only integer spin fields, then instead
of (4.13) and (4.31) we have 8'=1. In example 1, case B» corre-
sponds to a usual theory which is invariant under (P="CP" and
7'= "T,"while case 82 corresponds to an unusual theory. Similarly,
if there are only integer spin fields in the theory, then in example
2, case A» corresponds to a usual "C," "P," "T" separately in-
variant theory, and case A2 corresponds to an unusual theory.

"Relations such as these have been emphasized by L. Michel,
Ref. 6.

are all real numbers, and all repeated indices are to be
summed over. By using (4.25) and the commutation
relation (4.18), we find

&liiimj pijkIk &!mn(&nkIk+finY) ~

Thus,
5 =0,

and the (3X3) matrix (a;,) must be real orthogonal and
with determinant= j.. Consequently, there exists an
element exp(iI 8,) in g such that

exp(iI 8,)I, exp( —iI 8,)=a;,I;.
By choosing exp( iI 8,)(P—as (P, we establish

[(P,I,]=0.
The commutation relation (4.19) requires that

c;.=0
in Eq. (4.26); i.e.,

(PY5 '=dY.

(4.27)

(4.28)

$6', V]=0. (4.29)

The operator (PG6 ' anticommutes with V, so it must
belong to the set exp(iI 8+iVu)G. It also commutes

Now, 0" is a member of g. Since the square of any
element in g commutes with V, so must (6")'; there-
fore, d4= 1. The real constant d must be +1 or —1. If
d=+1, 6' commutes with Y. If d= —1, we can select
G6' as the new (P. Thus,
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with I. By using Eq. (4.18), we find

OGO '=e"-G. (4.30)

case A2

tP2 —
( 1)Y—

( 1)2I

The element 8' belongs to the center of the internal-
symmetry group, where g is given by (2.14). Hence,
it is either 1 or (—1)". If the theory contains some
half-integer spin fields, then we must have

We may choose e ~"(P as the new (P, and this new (P

commutes with G. The theorem is, then, proved.
Since (P commutes with all elements in g, the auto-

morphism (PS(P ' corresponds to F= t.. The center of
the group g consists of two elements: 1 and (—1)Y
= (—1)2r. Thus, according to the discussion given in
Sec. III, the minimal extension can only be one of the
two cases:

case Ai

and SU„groups. The above examples are concerned
only with m=1 and 2. To study the general case of
arbitrary n, it is useful to know the following mathe-
matical theorem":

The group of all (22Xe) unitary matrices u with deter-
minant 1 is the SU„group. If u —+ F(u) is an auto-
morphism of SU„and v~3, then there exists a e in
SU such that for every u in SU„

F(u) = vuv ',
or, for every I

F(n) = vu*v '

where I* is the complex conjugate of u.

We will not discuss the detailed analysis of the
minimal extensions of these groups. Such analysis is
greatly simplified by using the above theorem. For
example, consider a theory which satisfies (P invariance
and whose internal-symmetry group g is the SU„group
(22~3). Let the (222—1) generators of the SU„group be
F~, F2, -, F„2 ~. The above theorem shows that there
must exist an element (P in the coset g(P such that either

g2 —( 1)2J ( 1)Y. (4.31) $6,F;]=0, (4.37)

i.e., all half-integer spin particles are of odd V and all
integer spin particles are of even V. We may define

I' satisfies

aiid

For case A~,

and for case A2

P= fP exp(i-,'2r V);

LP,I]=[P,I']=0,

PC= (—1)2~CP.

P'= (—1)"

j92—1

(4.32)

(4.33)

(4 34)

(4.35)

(4.36)

Thus, case A2 corresponds to a usual theory with
separate C, I' and T invariances. Case A~ corresponds
to an unusual theory' which has an additional de-

generacy due to (P or / invariance, somewhat like the
case B~ of the preceding example. An explicit model of
such a case A~ is given in Appendix B.

3. Remarks

1. Both case B~ of example 1 and case Aj of example
2 are theories in which (P (or 1') invariance implies
additional degeneracies. At present, there does not exist
in nature any known example of such degeneracies.
However, since (P and V invariances are approximate
symmetries, such degeneracy, if it exists, must also be
only approximate. It is difficult to predict whether
such approximate degeneracies might find some applica-
tions in the future.

2. In physical problems, one often deals with the U„

for all i = 1, 2, (222 —1), or

(PF;(P ~= —F;*, (4.38)

'6 In proving this theorem, one does not have to assume that
the automorphism preserves continuity. We wish to thank
Professor E. Kolchin {private communication) for showing us
the proof.

for all i.
Similar conclusions can be obtained if the internal

symmetry group g is the U group. Let Fr, F.. . F„m

be the e' generators of the U„group where F~, F2,
F„2 & satisfy the same algebraic relations as those of
the SU„group, and F„~ commutes with all other F;.
If the theory satisfies (P invariance, then there exists an
element (P in the coset b(P such that either (4.37) holds
for all 2= 1, 2, , (222—1), or (4.38) holds; in addition,
(P either commutes, or anticommutes, with F 2. Thus,
(P' must belong to the center of the internal symmetry
group. The detailed classification of the theory into the
diferent cases of minimal extensions depends on the
element (P' and the commutation relations between (P

and the various generators. Furthermore, depending on
the relation between (P2 and S2=(—1)2~, the theory
Inay, or may not, contain some unusual degeneracies
similar to those in the above case B~ of example 1 and
case A~ of example 2.

In a similar way and by following the arguments
used in example 2, we can readily extend such analysis
to the case in which the internal symmetry group g is
itself a minimal extension of either the SU or the U
group (due to the presence of other discrete internal-
symmetry operators, such as the charge-conjugation
operator).
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V. WEAK INTERACTIONS AND SU3-INVARIANT weak interaction, we will consider only H~~ and H~I„
STRONG INTERACTIONS i.e.

In this section, we consider the following Hamiltonian
H:

H =H„..+H„(SU,)+H„„(5.1)

where H„k is the usual weak interaction, H. 4(SUs) is
the SU3 invariant part" of the usual strong interaction
and H~„, is the free-particle Hamiltonian in which the
masses of the different hadrons within the same SU3
multiplet are considered to be the same, and the masses
of all leptons are set to be zero; i.e.,

Hwk Hll+Hlh ~ (5.8)

where
~h = i2 '"GA'h'V4Vh(1+Vs)4.

4.=A,

lych=

(cos8)ps+ (sln8)lPs,

(5.9)

(5.10)

(5.11)

and 8 is the equivalent of the Cabibbo angle in this
model. "It is useful to introduce

Furthermore, the hadron current in H~q is assumed to be

m, =m„=m„=m„=0.
d (5.2)

lP, = —(sin8)lPs+ (cos8)lPs . (5.12)
The H i, can be separated into three parts:

Hwk Hll+Hlh+Hhh )1 (5.3)

where H~~, HI, I, and H~I, describe respectively the pure
leptonic weak interaction, the pure hadronic weak
interaction, and the weak. interaction between leptons
and hadrons. Among these, only the leptonic part is
reasonably well understood:

and

H„= (G„/K2) j,*j,d'r,

Hlh= ph*j i+Aj h*jd'r, (5.5)

I. A Simple Model

In this model, the hadrons are assumed to consist of
only three hyPothetical sPin-s fields lPi, lPs and lPs which
correspond to P, n and l1' in the Sakata model. "The
lPi, lPs and lPs are of equal, but nonzero, masses; their
strong interactions are invariant under the U3 group of
transformations between these three fields. For the

where 6„is real and denotes the usual p,-decay coupling
constant,

j k=4"'v4vh(1+vs)4". +&lp "v4vh(1+vs)lp. „, (5 6)

j'h= Vi., ' v4v(h+1v)s4. +%i. 'v4vh(1+vs)4'~ (5 7)

lP„ lP„, iP„„and f„„are the field operators for e, p, , l „
and v„, Jq is the hadron current, J),*=Jq~ if X&4 and
J4*=—J4~. Apart from some general selection rules
and certain matrix elements, the detailed forms of the
hadron-dependent parts, Jq and HI, I„are not known.

For clarity, a simplified model of the hadrons will be
considered first. The symmetry properties derived for
the simple model can be applied to the realistic case,
and it leads to some consequences which may be tested
experimentally.

The fields lP„ lych and lP, are all of unit baryon number,
X=1; their charges are, respectively, +e, 0 and 0.

For the leptons, since only the zero-mass limit will
be considered, we may require

va4=4 (5.13)

where n=e, tl, l, and l„. Each lP describes a two-
component Geld. The Harniltonian H is given by Eq.
(5.1). In this model, H depends only on 4 zero-mass
two-component fields lP„ lP„, iP„„ lP„„and 3 four-com-
ponent hadron fields ij„ iPh and lP, . It is clear that H
commutes with the charge Q, the baryon number X
and the two usual lepton numbers L, and L„where the
eigenvalues of L, and L„are given by

Li———1 for /, vi,
=+1 for l+ l l,
=0 for all other particles,

(5.14)

and l= e or p, H also commutes with another Hermitian
operator S' whose eigenvalues are given by

S'= —1 for
=1 for c,
=0 for all other particles,

(5.15)

and c, c refer to the particles described, respectively,
by lP, and lP, t. For a general discussion of the symmetry
properties, it is convenient to use, in place of Q, L„and
L„, three alternative Hermitian operators L, M, and T3'.

and

L=L,+L„,
Ts= s (L.—L.)

Q=-', pL+m+x+ s'j.

(5.16)

(5.17)

(5.18)

The operators L, 3f, E, S', T3 mutually commute.

Theorem 3. The internal symmetry group b„k consists
of a connected subgrouP awk'= UsX UtX UiX Ui and
a coset g„k'C„k.

"M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman,
Nucl. Phys. 26, 222 (1961).

"Z. Maki M. Nakagawa, Y. Ohnuki, and S. Sakata, Progr.
Theoret. Phys. (K.yoto) 23, 1174 (1960).

awk —{gwk gawk +wk)

"' N. Csbibbo, Phys. Rev. Letters 10, 531 (1963).

(5.19)
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where the element of & i, is given by

expLi(T 8+L$+Mq+Ni'+S'g)], jb =g ty4yb(p&. —ip2)p. (5.27)

LT,,T,]=ie,,bTb, (5.22)

(5.23)

and T commutes with L, M, N, and S'.
The group g„q is a minimal extension of g„q, and it

belongs to case Bl. Table I lists the eigenvalues

8, $, g, 1, &t& are all real parameters. The element C„q and
the generator T satisfy the following algebraic relations:

C bM+3IIC b=0, (5.20)

! C„,T]=!C„,L]=LC,N]=LC„,S']=0, (5.21) utpgu =A gu&g+A g2p2 &

utp2u A 21pl+A 22p2 ~

(5.28)

(5.29)

The coeKcients A,; form a (2X2) matrix A. The
Hermiticity conditions of pl and p2 require A to be real,
and their commutation relations require A to be or-
thogonal. Thus, A must be of the form

Since H&@ is a linear function of jz and jz*, the invari-
ance property SH&bS '=Hp, implies that jz must
become a linear combination of j& and j),* under S;
i.e., under the transformation (5.24),

TABLE I. QUantUm nUmbers fol the varioUs particles 1n the
simple model. The Geld operators for the particles u, b, c are given
by Kqs. (5.10)-(5.12).

tt' Cos'g S1I1&I&

! )
k&sinri &cosy

(5.30)

Particles T T3 L llew 1V where q is real. I,et us define Q'.

e

Ve

Vp

8
b
C

1
2
1
2

2
1
2
0
0
0

—1—1—1—1
0
0
0

0—1 0
1 0
1 0
1 1—1 1
0 1

0
0
0
0
0
0—1

if detA =+1, and

u'=u exp( ——',igpb)

u'= uLexp( —2iqp»)]pg

if detA= —1; then,
Q ~piQ =pl,

SfS '=uP, (5.24)

T'= T(T+1), Ta, L, M, N, S' for the various particles
in the model.
Proof. Eq. (5.13) and the anticommutation relations
between the lepton fields require that any internal
symmetry operator S must satisfy

Q tp2Q =p2. (5.31)

All (4)&4) unitary matrices can be written as a linear
function of the sixteen (4&&4) matrices: 1, p;, a;, and

p,o.;. In order to satisfy (5.31), u' must be a linear
function of only 1 and o;,' consequently, Q is of the form

where
Oi

u= exp(i(-,'8 e+ ]+gpb)], (5.32)

Vp, &

and u is a (4)&4) uniiory matrix. It is convenient to
introduce the matrices e and y'.

u= pg expt i(-', 8 e+&+gpb)]. (5.33)

Under the transformation (5.32), jb ~ e ""jz and

j&,*-b e""jb*,under (5.33),j b ~e"j&&,
* and jb*~e "&jb.

For the hadron fields, it can be shown that, for the
present case, we need only consider the transformations

0
0Pl=
1

.0
'0

=1O1=

.0

0 1 0' 0 0
0 0 1 0 0000 "=i 0

0 0. .0 i
1 0 0. 0 —i
0 0 0 i 0
0 0 1 ' ' 0 0
0 1 0, .0 0

—Z

0
0
0

0 ~

—z

0 )

0.
0 0
0 0
0 —i
i 0.

/&i
S !S '=»

Pbi kybi

Sf,S—'=e'~f . (5.34)

In order that the current Jq is transformed into a linear
combination of J'b and Jb*, the (2&&2) matrix v must
be of the form

and

P3 &PlP2 ) &3— &010 2 ~ (5.25)

w= expc —i(gr, +f )]
~= r, exp) i(gr, +i-)]—,

(5.35)

(5.36)

2b=iV'747 &, (Pi+iP~)4 &
(5.26)

In terms of f and these matrices, the lepton currents
can be written as 0 1i 1 Oi

71
0) 0 —1)

(5.37)
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Under the transformation (5.35), Ji ~ e "&Ji and
Ji*~ e"&J),* under (5.36), Ji ~ e"&J),* and
J),*—+ e "&Jq. Theorem 3 is, then, proved.

The discrete element C„k is identified with the trans-
formation 24=pi, e=ri and /=0 in (5.24) and (5.34).
Under C„k

C„kj),Cwk '= j)*)
Cwk J)ICwk J) ~ (5.38)

1'Ji (r, t) V' '= Ji (r,
—

t) . ——(5.41)

The Hamiltonian H is, therefore, invariant under (P

and 9". (In this model, H, & is assumed to be invariant
under (P and K)

In the above discussion, because of familiarity we
use the field operators g„P„, . which are all non-
Hermitian. Identical results can be derived if, instead,
the appropriate Hermitian operators are used. Such a
treatment would conform more to the general notations
used in Sec. II; the details are'given in Appendix A.

It is convenient to introduce

(5.42)

While the symmetry group g„z has been discussed in
the literature, ""Theorem 3 establishes that, at least
for this simple model, Eq. (5.19) gives all possible
internal-symmetry operators.

Next, we investigate the question of 5' and V in-
variance for the model. Let us define

6'[4-(,~)3-6'-'= ( ~ )-ALP-t( —,~)3s, (5.39)

rB„(r,~)j.V'- = (~n2~2).,[P„(r, —g)3, , (S.40)

where e denotes the various particles e, p, , v„v„, a, b

and c; the subscripts n and P denote the spinor indices
which vary from 1 to 4. The p„matrices are in the
Majorana representation (2.8). Applying (P and 9' to
jz and Jz, one finds

O j,(r,~)a =j,&( r, ~),—
O'Ji(r, t)(P '= Jit(—r, f),
1'j),(r,t) 1'—'= j i (r, t),— —

and

The minimal extension of the internal symmetry
gloup g~g is

h=(b i,g ~&)=(g ),g iP ~)

which belongs to case 82.

(5.48)

Ji——cosg(Oi) i'+sin8(Oi) i', (5 49)

where (Oi)22 and (Oz)i2 transform, respectively, like
and E under the usual SU3 group of transfor-

mations. From Eq. (5.49), it follows that Ji* must also
transform like an octet member under the SU3 trans-
formations. Without any further assumption, J),*
might belong to a diferent octet from Ji, and their
matrix elements would not be connected by any SU3
transformation. The requirement of C„k symmetry,
however, links Jq with Jq*.

To illustrate this, let us consider the matrix elements
of J~ between two single-baryon states. Such matrix
elements can be reduced to the usual D„and E„by
using the following relation:

(a '(p')
I
(O )-'I a.'(p)) =d -"'U'&D.U

+ft ""U'tF),U, (5.50)

where all indices vary from 1 to 3, IB„"(p)) is the
(k,24)th member of a baryon octet with 4-momentum

p„, (8&'(p')
I

is the Hermitian conjugate of
I
8 (p')),

di "2= (4/9)54'5 'li 2+8„'5i'5 "+8 '8„'8i"

;(s;s.e.'+~„—*~„~~i2+~„'~,c„&), (5.51)

j 4jk $ 4J j$ 2 $ 4$ j$ 2 (5.52)

8,' is the Kronecker 8 symbol, U and U' are, respectively,
the appropriate free Dirac spinors with 4-momentum p
and p'. From Lorentz invariance, we find

2. Applications of C„k, P k and T„k Symmetries

The above C„k, I' k and T k symmetries can be
readily applied to the Hamiltonian (5.1) for the general
case, without the triplet model of the hadrons and
without the special assumptions (5.8) and (5.9). In
place of Eq. (5.9), the hadron current J„is assumed to
transform like an octet member" under the SU3
transformations:

Thus,

[P„g,T]=[P„g,3IIj=0,

P„2L+LP 2 ——P 2N+NP g=P„iS'
+S'P„v=0,

P 2 ( 1)N+s'

Cw'k~%'k ~w'k

(5.44)

(5.45)

(5.46)

(5.47)

D =2V4LViDi'+2(p'+p)iD2'+2(p' p)iD2'j-
+&y4V2[ViDi +&(p' —p) iD2"

+i (p'+p)iD2" j, (5.53)

Fi=2V4(ViFiv+2(p'+ p) iF2"+2(p' p) F2'j-
+2'r 4'y5[ YAF1 +2 (p —p) AF2

+i(p'+p))F2"j, (5.54)

where d is given by Eq. (2.14).

G. Feinberg and F. Gursey, Phys. Rev. 128, 378 (1962)."T. D. Lee, Nuovo Cimento 35, 954 (1965}.See also Ref. 9.

where the functions D,v, D;", F,v, F," (2=1, 3)
depend only on q2= (p' —p)'. The octet current hy-
pothesis (5.49) is satisfied for arbitrary twelve comp/ex
functions D;~, ~
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By using Eq. (5.38), the C„z symmetry requires that VI. APPLICATIONS TO OTHER INTERACTIONS

and
D~ D2, F». , F2 are real,

D3, F3 are imaginary, (5.55)

&. Electromagnetic Interaction

I.et us consider the model Hamiltonian

where cr= V, or A. Expression (5.55), at least in prin-
ciple, can be tested experimentally.

In order that C j, commute with H&(SUs), we may
identify the transformation of hadrons under C k to
be the same as that under the SU3 group element

0 cos0 sino
cose —sin'8 sine cos0
sin8 sing cos8 —cos'0

(5.56)

2q*= cos8(Oq) s'+sin8(Oq) s'. (5.57)

Conversely, if Eq. (5.57) holds, then C„z symmetry
follows and the condition (5.55) is valid.

We note that in Eq. (5.57) the strangeness-conserving
part (0„)s' of the hadron current satisfies the charge
symmetry condition; i.e., (0„)&" is related to (0„)t' by
a 180 isospin rotation. Consequences of the charge-
symmetry condition have been discussed in the
literature. "

The C„& symmetry can also be applied to the pure
hadronic weak interaction III,~. For example, if III,~

transforms like an octet BC under SU3, then C i,

symmetry requires B» to be of the form

(cos'8)Xss+ (sin'8)Xss —sin8 cos8(Xss+Xs'), (5.58)

which connects the strangeness-nonconserving part of
Hss to the strangeness-conserving part. LIn (5.58), the
trace X is taken to be zero. ) Similar results can also be
obtained if different SU3 transformation properties of
H~p, are assumed.

The C i, symmetry is broken by the mass difference
between / and v&, by the SU3-violating strong inter-
action and by the electromagnetic interaction.

At present, it remains an open question whether the
weak interaction does, or does not, satisfy the V in-
variance. " If we assume that it does satisfy E invari-
ance, then Theorem 1 states that it also satisfies (P

invariance, and we may define I' z and T & by using
Eqs. (5.39)—(5.43).

A consequence of V invariance is that the 12 form
factors D,", , Ii," in Eqs. (5.53) and (5.54) must all
be real. Thus, if both V'invariance and C & symmetry
hold, we must have

D3~——D "=Fg~=F "=0 (5.59)

"See T. D. Lee and C. S. %u, Ann. Rev. Nucl. Sci. 15, 408
(1965)."See, e.g., the discussions given by T. D. Lee, in I'roceedings of
the Oxford International Conference on Elementary I'articles, 1Ã5
(Rutherford High Energy Laboratory, Harwell, England, 1966).

where 0 is the Cabibbo angle. Thus, if C„& symmetry
holds, by applying (5.56) to (5.49), one finds

H=Hr„,+H7, (6.1)

where II~ is the electromagnetic interaction and Hg„,
is the free Hamiltonian of all charged particles and the
electromagnetic field. For simplicity, we assume that
B~ is given by the minimal electromagnetic interaction"
of spin-0 and spin-~ charged particles only; the masses
of these charged particles are all assumed to be dQ'eremt

and nonzero. Each charged particle is described by two
Hermitian fields, say, f t and f,s where n= 1, , 1V

labels the different particles. The explicit form of (6.1)
is well known; its symmetry properties will be sum-
marized in the following.

It can be readily verified that the internal symmetry
group gr of (6.1) must contain a subgroup

g,'= Ur X UtX X Ur. (6.2)

For each charged particle o, there is a group
U =(S (8)}:

(A, t) A, r)
S (8)~ ~S -'(8) =exp(ib. prs8) ~, (6.3)

lt p,i

where r s is given by Eq. (4.17) and 8 p is the Kronecker
8 symbol. The group g~' is the direct product of these
U, groups. I.et Q be the generator of the group
(S (8)).The total charge of the system is (in units of e)

The group Ut generated by Q insures that states with
Q=+q and —

q are degenerate. "
The Hamiltonian (6.1) conserves not only the total

charge, but also each Q separately; it is also invariant
under the usual charge-conjugation operator C~ where

for all n, and

C,Q,+Q C,=O

2

(6.4)

(6.5)

The internal symmetry group g~ is a minimal extension
of g,':

B.= (bv' B~'Cv)

and the extension belongs to case BI~

The minimal electromagnetic interactions of spin-0
and spin--', particles are well known to satisfy both 6'
and 1 invariances. Furthermore, there exists an element
(p in the coset gr(p which satisfies (2.7) with

~ The minimal electromagnetic interaction of a charged
particle can be generated by replacing (8/Bx„) ~ (8/Bx„) eeA„—
in its free Lagrangian, where e is its charge. For the spin-0 or
spin--, particles, such a minimal electromagnetic interaction is
always invariant under C» I'» and T~. But, this is not true for
the spin-1 particles. See T. D. Lee, Phys. Rev. 140, B967 (1965).
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No ——
N&~2 =1. Consequently, (P also satisfies 2. Strong Interactions

and
L(P,Q;]= t (p,c,]=0,

(ps ( 1)sJ

(6.7)

(6.8) H=Ht, +H, t, (6.15)

We now turn to the symmetry problem of the strong
interaction. Let

Thus, the minimal extension

&=(B»B tp& (6.9)
belongs to case A2.

We note that 6' commutes with C~; therefore, it does
not correspond to the customary choice of the parity
operator. Let us define the parity operator P~ and the
time-reversal operator T~ by

P,=(P IIs Ss(w/2), (6.10)
and

CPT =8, (6.11)

where 8 is given by (1.9), and the product hatt extends
over all half-integer spin fields. The operator P~
satisfies

I:P„Q-]=0,
Prcr = (—1)s~C,P„

(6.12)

(6.13)

Pv'=1 (6.14)

The electromagnetic interaction of the two charged
leptons e and p is well known to be invariant under C~,
P„, and Tr; it is also invariant under the group (S,(8))
X{S„(8))where S,(8) and S„(8)are given by Eq. (6.3)
with n=e and p, respectively. The electromagnetic
interaction of the hadrons is found to be invariant"
under P~, 8 and the various P~ groups generated by
charge, hypercharge, and baryon number. It seems
esthetically appealing to assume that it is also invariant
under C~ and T~. However, this is only a theoretical
supposition and is, as yet, without experimental basis."

"The best experiments establishing that H, ~ and H~ are in-
variant under the same parity operator, E,~

——I'~, are from nuclear
transitions: F. Boehm and E. Kankeleit, California Institute of
Technology Report No. Calt-63-13 (unpublished); Yu. G. Abov,
P. A. Krupchitsky, and Yu. A. Oratovsky, Comptes Rendus du
Congres Internationale de Physique Eucleaire, Paris, 1964;
(Editions du Centre National de la Recherche Scientifique, Paris,
1965);L. Grodzins and F. Genovese, Phys. Rev. 121, 228 (1961);
R. K. Segel et al , ibid. 123, 1382. (1961); D. K. Alburger et al. ,
Phil. Mag. 6, 171 (1961); R. Haas, L. B. Leipuner, and R. K.
Adair, Phys. Rev. 116, 1221 (1959); F. Boehm and U. Hauser,
Nucl. Phys. 14, 615 (1959);D. A. Bromley et al. , Phys. Rev. 114,
758 (1959).

Evidence for C, q and T,t, invariances of H, t, comes from the pp
annihilation measurements (C. Baltay et al , Phys. Rev. Let. ters
15, 591 (1965)], the pp scattering experiment LA. Abashian and
K. M. Hafner, Phys. Rev. Letters 1, 225 (1958); C. F. Hwang,
T. R. Ophel, E. H. Thorndike, and R. Wilson, Phys. Rev. 119,
352 (1960)j, and the reciprocity relations LL. Rosen and J. K.
Brolley, Jr., Phys. Rev. Letters 2, 98 (1959); D. Bodansky et al. ,
ibid 2, 101 (1959)g..

'6If the electromagnetic interaction of the hadrons is not in-
variant under C~ and T~, then through virtual emissions and
absorptions of photons all strong-interaction processes would have
small C.t- and 2;q-violating amplitudes (proportional to a). How-
ever, the converse statement is not true. Such a small C,t and T,t,
noninvariant amplitude could appear if there is a mismatch
between C,~ and C~, even though the electromagnetic interaction
is invariant under C~ and T~. For a detailed discussion, see Ref. 9.

where H, & contains both the SU3-invariant and the SU3-
breaking strong interactions, and Hf, contains the free-
particle Hamiltonian of all hadrons. The masses of differ-
ent particles in the same isospin multiplet are assumed to
be the same. It is well known that H commutes with
the isospin I, the charge Q an.d the baryon number Ã.
The internal symmetry group, denoted by g,&, must
contain these generators I, Q and 1V. LFor simplicity,
we do not include the leptons, nor the electromagnetic
6eld, in Ht, .] It is useful to introduce the hypercharge

V= 2(Q—Is) .

All known hadrons satisfy"

(—1)"=(—1)',

( 1)2J—( 1)2N

(6.16)

(6.17)

(6.18)

Thus, I'and I are the generators of a Us group, Vis the
generator of a Ut group; the element 8'= (—1)'~
belongs to this U& group. The internal symmetry group
g,» must contain a subgroup g, ts which is the direct
product of these two groups:

get'= UsX Ur. (6.19)

In addition, H is invariant under a discrete internal
symmetry operator'~ 6 which satisfies the following
algebraic relations:

G'= (—1)"

(G,I]=0,
(6.20)

(6.21)

c, Q+Qc, =0, (6.24)

and if H does not have any further internal symmetry
properties, then b, t, is a minimal extension of b,t .

/st angst qgat Cst) 1 (6.25)

where the coset g,tsc„=g, tsG. Since C,P= 1, this
minimal extension belongs to case B~.

On the other hand, if

C.eQ+QC.t/0, (6.26)

"T.D. Lee and C. N. Yang, Nuovo Cimento 3, 749 (1956);
L. Michel, ibid. 10, 319 (1953).

GF+ VG=GX+EG=O. (6.22)

Sometimes, it is convenient to use C,&, which is related
to Gby

C,t, =G exp( —iz-Is). (6.23)

Although it was always accepted that C,& anticommutes
with Q, this relation has been questioned recently. '

We note that if
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then the group g,t must be a different one. Let us define

Q~= 2 (Q—C.»QC.» '), (6.27)

VII. REMARKS ON C, AND THE EXAMPLE
OF SO4 SYMMETRY

a11d

Thus,

and

Qrc=2(Q+C«QC. » ').

C »QJ+QJC t= 0

C.»Qx —QirC.»= 0.

(6.28)

(6.29)

(6.30)

As discussed in the two preceding sections, our
present knowledge is consistent with the assumption
that the model Hamiltonians (5.1), (6.1), and (6.15)
are separately invariant under the group

(7.1)

alld
gs«{/st tbst Cst) &

g.t"= U2X UiX Ui,

(6.31)

(6.32)

where the generators of the U2 group are I and

2(Qq —It), the generators of the two Ui groups are,
respectively, N and Q&.

There exists strong evidence" that (H(„,+H.t)
satisfies 6' invariance, and consequently also V invari-

ance; furthermore, in the set {S(P) there exists an
element, called P,t, which is the same operator as P7
defined by (H(„.+H,). We have

P„=P„ (6.33)

Since H commutes with Q and C,t, it must also commute
with Qz and Qz. The internal symmetry group g, t now
contains, in addition to the generators I, N, and

Q=Qg+Qrc, also (Qq —Qx). The exact structure of
g„depends on the specific form of the model Hamil-
tonian. In Appendix C, a nonderit)ative coup/-ing model
of such a'strong interaction is given. For the model,

where i= weak, p, and strong, respectively. The group
g, is the internal symmetry group, and it consists of a
connected invariant subgroup g;0 and a coset Q,OC, :

(7 2)

From the definitions of (P, 7, and 8, it is clear that in

(7.1) no element in the cosets g,P,, Q,T,, and g,g can
be continuously connected to the unit element. The
same is also true for the elements in the coset g,oC,.
However, it is less transparent why it should not be
possible to connect the element C,, or the elements in
the coset g,sC;, to the unit element in a continuous way.
As we shall see, this is perhaps due to the particular
forms of (5.1), (6.1) and (6.15), rather than due to any
general underlying principle.

To illustrate this, we shall discuss some explicit
strong interaction models. These models are all in-

variant under the usual C,t, P,t and T,&, but unlike in

(7.2), the element C„can be continuously connected
to the unit element.

Let us consider the virtual transitions

and it satisfies
and

E+~ iV+p, (7.3)

(6.34)

(6.35)

$P,»,I]=LP„,Q]= t P„,N]=0,
PstCst ( 1) CstPst «

N+ N+rP (or —g"), (7 4)

where N stands for rt or p and p for p+ or p'. Such
transitions can be represented, at least phenomeno-

logically, by vertices of the form
and

(6.36)P,t'=1.
Let us define

(7 5)i gs((N t (x)

pter„~N

(x) ]((«„(x),

ig„(Nt(x)ytpsN(x)]»I(x),

(P=P,t exp(-', itrN) . (6.37)
and

By using (6.18) and (6.34)—(6.36), we find (P commutes
with all internal-symmetry operators, and

(7.6)

(6.38)(P2 —( 1)N

Thus, the minimal extension

(6.39)@={8»B»P«)

where g, and g„are the appropriate strong-interaction
coupling constants which, because of Hermiticity, must
be real, ~ are the usual (2X 2) Pauli matrices for isospin

t which are the same as those given by (4.17) and

(5 37)]

belongs to case A~.
It is customary to define T,t by

CstPst~st (6.40)

The strong interaction is invariant under C,t, P,t, and

T,t. The weak interaction B I, violates both C,t and

Pst symmetries, and the electromagnetic interaction

H~ is invariant under P,t. The important questions,
whether LI ~ is invariant under C,t and T,t, and whether
H i, is invariant under T,t and (C,»P,»), are, at present,
still unanswered.

(7.7)

is the field operator for rt and p, )It„(x) and g(x) are,
respectively, the field operators for p and rl (or»t'). The
fields )It„(x) and q(x) are Hermitian, but P„(x) and

»P„(x) are not. It is clear that both interactions (7.5)
and (7.6) commute with the isospin I and the baryon
number E; they also satisfy the usual C,t, Pst and T.t
invariances. As we shall see, these two interactions are
also invariant under a much bigger symmetry group.
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aj aj (7.10)

a=zz or P and j=1 or 2. If S is an internal symmetry
operator, then according to (2.4),

where
SQS = siizP, (7.11)

(7.12)

62+

and si~& is a (4X4) real orthogonal matrix. Any such
matrix with determinant=+1 can always be expressed
in the form

exp[i(I t|+I' ll') j, (7.13)

where 8 and 8' are real parameters, the components of
I and I' are related to those of g and 0 matrices intro-
duced in (5.25) by

2I= (—azP» Pz~ gzPz) ~— (7.14)

2I'= (Pzg» pz~z) —az). (7.15)

These operators are so chosen that I is the same as the
isospin operator,

To study the full extent of the symmetry group, we
follow the general procedure outlined in Sec. II and
express f„and P„ in terms of Hermitian fields:

(7.8)

(7.9)
where

Both (7.3) and (7.4) are examples of (7.20), and the
usual pion-nucleon vertex is an example of (7.21).

Proof. Under the S04 group of transformations, any
meson transforms like an appropriate nucleon-anti-
nucleon system; therefore, it belongs to I3' ——0 and
I'=0, or 1. From (7.17), it follows that the additional
condition G=+1 implies I'=0. Hence, reaction (7.20)
conserves I . Since I conservation is implicitly assumed,
reaction (7.20) is invariant under the entire SO4 group
of transformations. Any G= —1 meson transforms like
the Is'=0 member of an I'= i rnultiplet. Thus, reaction
(7.21) violates I' conservation. Theorem 4 is, then,
proved.

It can be shown that this S04 symmetry is also vio-
lated by the known interactions between the strange
particles and the nucleon. The usefulness of this SO4
symmetry depends on whether we can separate out in
any physical process the contributions due to the
G=+1 mesons (p, g, etc.) from the symmetry-breaking
terms such as those due to the G= —1 mesons (zr, co,

etc.). [For example, in the theoretical study of the
vector and axial-vector form factors of the nucleons,
the contributions due to G=+1 and G= —1 mesons
can be conveniently separated. ] In the following, such
separations are assumed to be useful, and we will
consider those Feynman graphs which consist of only
SO4-invariant vertices.

For practical applications, it is convenient to use,
instead of (7.12),

S=2I ',
G= exp( —zzrIz'),

(7.16)

(7.17)

(7.22)

C,z
——exp[ —izr (Iz+Iz') j. (7.18)

( 1)2I+zI'

The nucleon belongs to the representation (z, 2).

(7.19)

where S is the baryon number, and C,t and G are the
same operators as those used in (6.20)—(6.23).

It can be easily verified that I commutes with I',
and they are the generators of two independent SU2
groups. Their direct product SU2)&SU2 has an in-
variant subgroup Z2 whose elements are 1. and

(—1)'r+'I' its factor group is the SO4 group which com-
prises all such (4X4) inatrices given by (7.13). The
irreducible representations of the S04 group can be
labeled as (I,I') where I(I+1) and I'(I'+1) are,
respectively, the eigenvalues of the operators I' and
I" and

N+mesons —+ N+mesons, (7.24)

where "mesons" represents an arbitrary distribution of
G=+1 mesons. In (7.23), only the I'=0 amplitudes
contribute; in (7.24), on both sides only the nucleon
carries a nonzero I'= ~~. Thus, all useful consequences
of SO4 invariance can be obtained by using only the
usual I conservation and G symmetry.

However, for reactions such as

as the base vectors of a (4X4) representation of the
S04 group. In (7.22), the field operators for n and p are
P„t and P~t, respectively. In this representation, the
generators I and I' become simply ize and zp, respec-
tively [instead of (7.14) and (7.15)j.

First, let us consider reactions

N+N —+ mesons,

Theorem 4. This SO4 symmetry is invariant under any
virtual transition

and

N+N +N+N+mesons— (7.25)

N ~~N+ (G=+1 meson),

but is violated by

N ~~ N+ (G = —1 meson) .

(7.20)

(7.21)

N+N —+ N+N+mesons, (7.26)

the full 504 symmetry can yield additional relations
between diferent amplitudes. The states FS and EE
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1
1
1
0
0
0

—1—1—1

0
0
0
1
0—1
0

1
0—1
1
0—1
1
0—1
1
0—1
0
0
0
0

State

pp
2-»3(pri+8tp)

An

2»3(pn+np)
,' (nn+—nn pp —pp)——2 '~2(pn+ep)

—2-1~~(~p+p~)
pp

2»3(pn —np)
', ( nn+-n—n pI3+V—p)

2»3(Va —8ip)
2»3(pri —np)

;(nn 8—in p—p+ p—p)
2»3(—np+pn)

33 (nn+8in+— Pp+pP)

TABLE II. Eigenstates of I, I3, I', and I3' where I and I' are the
generators of the SO4 group discussed in Sec. VII. The order of the
nucleons and antinucleons in the state, say, aP (where a and p
can be p, n, p or 83) indicates that 33 has momentum h and helicity
X, and P has momentum h.

' and helicity X'.

3P.~ e'84. .

The same transformation in terms of P becomes

(A3)

(A4)

As another example, we may consider the SU2 trans-
formation

3p
—3 (expi38 e)p (AS)

where

it varies from 1 to 4. From (2.8), (5.13), and (A1), one

e.=l(1+&.)~. (A2)

and that the components of 3P t are identical with those
of s(1—ys)3P . The fields 3P and&, therefore, represent
two equivalent descriptions of the same two-component
theory" for a spin--', particle. By using (A1) and (A2),
any transformation of 3P can be readily translated into
a corresponding transformation of g„, and vice versa.

Consider, e.g., the gauge transformation

can be resolved into eigenstates of I, I3, I' and I3',
these eigenstates are listed in Table II. By using the
explicit forms of these eigenstates, it is straightforward
to obtain the various consequences of the 504 sym-
metry for reactions (7.25) and (7.26). For example,

~(p+p p+p+n')=lL~(p+ p+ +n')
+A (P+n ~ n+P+r)s)], (7.27)

where 2 denotes the appropriate amplitude, and the
state (P+n+r)s) is related to (n+P+3)') by an ex-
change of the momenta and helicities of p and n.
Relations such as (7.27) cannot be derived by using
only I and G.

Apart from such possible applications which is bound
to be limited because of known violations of this S04
symmetry, the above discussions at least give a general
class of strong interaction models in which the element
C,& is connected, in a continuous way, to the unit ele-
Inent of the internal symmetry group.

where
Q ~ 83('r3P181+IT382+'333383)A, (A6)

vc

Vg&

Similarly, the transformation

esp3$

becomes
Q ~ 83738333t3

where ps is given by (5.25). Thus, Theorem 3 can be
proved by following the same proof as that given in
Sec. V, but, using the Hermitian fields p .

APPENDIX B

V88

Vp&

and 38 is given by (5.25). In terms of p, (A5) becomes
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APPENDIX A

In this Appendix, we will illustrate the use of
Hermitian fields for a set of zero-mass spin-2 particles.
For definiteness, let us take the simple model discussed
in Sec. V. In this model, only the zero-mass limit of all
known leptons is considered. Each lepton o, is described
by a non-Hermitian field g which satisfies Eq. (5.13);
it can also be described by a Hermitian field 3P„defined
by

(4-)i= (4-)i+ (0-')i, (A1)

where n=e, p, v, or v„, X denotes the spinor index and

'SThe use of a non-Hermitian field for the two-component
spin- —,

' theory was first introduced by H. %'eyl, Z. Physik 56, 330
{1929);it was later applied to the leptons by T. D. Lee and C. N.
Yang, Phys. Rev. 10S, 1671 (1957), L. Landau, Nucl. Phys. 3,
127 (1957) and A. Salam, Nuovo Cimento 5, 299 (1957).The use
of a Hermitian field to describe a two-component spin--', particle
was made by E. Majorana, ibid. 14, 171 (1937). See the discus-
sion given by K. M. Case, Phys. Rev. 107, 307 (1957). Both
descriptions can be applied to the nonzero mass case as well as
the zero mass case. That the Majorana theory is applicable to
the nonzero mass case is obvious, since the Dirac equation is real
in the Majorana representation (2.8). That the Weyl description
is also applicable to the nonzero mass case fo11ows from Eq. (A2).
For a detailed discussion, see the review article by T. D. Lee and
C. S. Wu (Ref. 22). If the mass is zero, then transformation (A3),
or (A4), is an internal symmetry transformation; otherwise, it is
not.
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/Pl'(r, t)O '= ~,l( r, —t),

1. First, we consider the example Q=Ui. Let us otherwise. In terms of l(x) and l'(x), (88) becomes
introduce one spin-1 Hermitian field ltl„and four spin--,

Hermitian fields pi, $3, $3, and l/t 3. Under the internal Ol(r, t)o '=q, L'( r, t—),
symmetry operation (4.6), these fields transform as
follows:

s(s)4 „s-'(lt) =4„
S(e)pS-'(S)= e' 3p

where 0.3 is given by (5.25) and

where
l(x) = 2 "'[|li(x) —3%3(x)]

l'(x) = 2 '/')$3(x) —i/4(x)7.

(82)

H 3= Jx4A'» (83)

As an example of case 8&, we may assume that the
total Hamiltonian is H=Hz„,+H;„3 in which the inter-
action Hamiltonian is

The operator (P satisfies Eqs. (4.9) and (4.10), which are
the conditions for case Bj. From Theorem 1, it follows
that the theory is invariant under any time-reversal
operator in the coset gK In this case, the unusual de-
generacy between l(x) and l'(x) is due to /P or
invariance.

2. For the second example, g= {Uz,U3C}, it is case
A& that has an unusual degeneracy. ' As an illustration,
let us consider a model which consists of one spin 0,
I'=0, I=1 triplet Q and two spin 33, V=1, I=3
doublets S and S' where

The current j& is given by

ji zl 74(gl+gz /3)VX~ +zl Y4(gl +gz 73) td
+ig3(lty4yil 1'F3—yil'), (84)

where l(x), l'(x) are non-Hermitian fields related to
fi, ~ ~, P4 by

and

0= (lt iA3,A),

(Pi+ zfzl

($3+@'4)

(6'+F3'll
N —2—i/3(

($3'+i/3')

(89)

(810)

(811)

l(x) = 2—i/3/$3(x)+ill 3(x)g,

l'(x) = 2—'/3LP3(x)+i/4(x) j.
(85)

(86)

The coupling constants g&, g2 are rot relatively real,
d'or relatively imaginary, but the coupling constant g3
is real. The interaction Hamiltonian H; & is invariant
under the transformation (81).In order that the total-
Hamiltonian H is invariant under S(8) we must have
the bare mass (consequently, also the physical mass)
of pi to be the same as that of $3 and the mass of $3 to
be the same as that of f&. Then, the internal symmetry
glollp g is Ui= {5(g)}.

To satisfy 6' invariance, we assume all four fields
i/1 ' ' ' ll'4 to be degenerate. It can be verified that H is
invariant under any space-inversion operator in the
coset g(P where

H;.,= J yd'r, (812)

where

J= N F4(gi+i gg 3)~N+N'ty3(gi igzyz) ~N'—
+i g3 (Nty3y3~N'+N'ty4yz~N),

the coupling constants g~, g2, g3 are all real, and
~= (»i, rz, »3) are the usual three (2X2) Pauli matrices.
lt can be verified that the internal symmetry group is
b= {Uz U3C} where Uz= {exp(iI 8+iI'n)}, and C
satisfies

The fields ltli, ~, l/t 3, ~, fi', ~, p4' are all Hermitian
fields. The diferent fields in the same isomultiplet are
assumed to be degenerate. Let the interaction Hamil-
tonian be given by

n y„(r,t)m'= q„„y„( r, t), — —

(Pip(r, t)n '=zzi/3~(iy4)p( —r, t) .

The ma, trix N&~2 is given by

(87)

(88)

(Pi—F3)
CN(x)C '=N(x) =2 '/')

(lit 3
—i/4)

(ll 1 z|t'2
CN'(x)C-l =N'(x) = 2-i/

~

klP3 zlP4

and0 0 0 1
0 0 1 0
0 —1 0 0

.—1 0 0 0.

Cy(x)C-i= y(x).

To satisfy (P invariance, we assume that the two
isospin doublets N(x) and N'(x) are degenerate. The

and p„„=1 if p=z&4, p„„=—1 if @=v=4, and zero theory is invariant under any space-inversion operator
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in the coset gn' where

and

n'y(r, i)n '=y( —r, t),
n&N(r, &)n '=»q-, N'( r, t)—,

nN'(r, t)o '= i~,—N( r, —&).

The operator n' commutes with I, V, and C, and it
satisfies (P'=1, which is the condition for case A&. By
using Theorem 1, one finds that the theory is also
invariant under any time-reversal operator in the coset
gV'.

Both of these examples are quite artificial; they are
constructed to illustrate the physical contents of these
unusual cases. At present, no such degeneracy which is
the result of (P, or V", invariance has been observed.

APPENDIX C

H8»»»t (g1$2t7475$3+g2$8 747»4'1+g»4'1 7475/2)

+H.c. , (C1)

where P and P, are, respectively, the fields of qo' and
a; (i=1, 2, 3). The operator @ is Hermitian, but P; is
not. The three coupling constants g~, g2, g3 can be
arbitrary, provided that their product is not real; i.e.,

In this Appendix, we will give an explicit example"
of a strong interaction with no derivative coupling, and
the internal symmetry group is (6.31). Let us assume,
in addition to the known hadrons, the existence of
three hypothetical charged particles, called u~+, a2+,
and a3+. The masses of these three particles are all
diferent. There exist strong interactions between the
a,+ particles and an I=0 meson, say the known 'go'

(which is also an SU» singlet); these interactions are
described by the Hamiltonian density H, t .

C„P;(x)C,»
—'=P, (x), (C4)

where i =1, 2 or 3. Thus, the internal symmetry group
g is (6.31).Both H„' and H.» satisfy n' invariance, and
therefore also V" invariance. Furthermore, there is an
operator P,» in the coset gn', which satisfies

P.»4" (r l)P.» '=v»4'( r, ~)—
P.»y(r, t)P„—'= —y(—r, t),

and
P,A~(r, &)P,» '=y»P~( r,-&). —(CS)

The strong interaction (H,„+H,» ) is invariant under
C„, P,» and T,» where T,» is given by Eq. (6.40).

The electromagnetic current of the u;+ is

Ji »e g——P, ty»yA;, (C6)

and the electromagnetic current J~' of all known
hadrons is given by the usual expression

A'=»stl' "v»v~g + (C7)

It can be shown that the electromagnetic interaction
(Ji'+A~)Ai is invariant" under C„, P~, and T~, where

All known hadrons have Q& ——0; they also have their
usual quantum numbers I, I», N and Q=QJ. For the
a;, we assign I=N=Qq 0a——nd Q~ ——&1.

It can be verified that (C1) and (C3) conserve» I,
N, Qz, and Qz. The H«o is known to satisfy the C,»

symmetry where C,» is given by Eq. (6.23). Under C„,
all known hadrons transform in the usual way; e.g.,

C„P~(x)C„-'=4~t (x),
C.,y(x)C. =y(x),

etc. The interaction H, t, is also invariant under C,t,
provided P;(x) is unchanged under C.», i.e.,

(gig»g») &g»g»g» (C2)

Let H, & be the usual strong interactions of all known
hadrons; H.»0 is independent of P,, and it contains,
among other terms, the interaction between the
nucleons and po'. We may write

CA~(~)C. '=|t~'(*),
C,P; (x)C, '= P,t (x), —

(»=1, 2, 3), P,=P.„and

CstI st~st

(C8)

H.»'= »fkn tv 4m »64+

where the nucleon field operator is

-=1 )

(C3) The charge-conjugation operator C~ anticommutes with
both Qq and Qrr, but C,» anticommutes only with Qq.
Because of condition (C2), the strong interaction is not
invariant under C7 and T~. By using (C4), one finds
that the electromagnetic interaction is not invariant
under Csg and Tsg.

and f is the appropriate coupling constant.

"For an explicit example with derivative couplings, see Ref. 9.

' We assume that the remaining part ~ ~ ~ in (C3) is invariant
under P, t,, T,» and the group of transformations (6.31.); we also
assume that the remaining part ~ ~ ~ in (C7) is invariant under
C~, P~, and T~.


