
ARDENTE, NARDELL I, AN D REATTO

or (d/dt) (ufo(t) )'"' = (pp. (t) ) '"' (A.20)

&&t'i(t) = [(o&o +&do Bp )/o&o j
Xexp[ o&oBpt] sino&p't,

(A.19)
pp(t) =exp[ —flpoBptg

X [cos&pp't+ (&pp)/(&pp') Bp sino&p tj &

for (uo„(t))&~& or (vo„(t))&'"', respectively. o&p' ——(1—
&&)o&o is

the shifted frequency, t& being given by expression (29).
Vote added in proof The .expressions for (up„(l))""

and {po„(t))&x' which can be constructed by the use of
(A.18) or (A.19) in (A.11) would present the correct
behavior at short times, and so would do the velocity
autocorrelation function (v(t) v(0))rr. Unfortunately,
these {uo„(t))&N& and (pp„(t)) &'~' do not satisfy the
relation

at long times, so that these expressions are not useful
for our purpose. In order to find an expression for
{rtp„(t))&x'& which presents the correct behavior at long
times, we abandon the attempt to fit the short-time
behavior, and consider (A.20) itself as the defining
equation for {pp„(t))&~' itself. In this case expressions
(A.19) read

A(t) = —[(o&o'-'+o&o-'Bo')/&pp'] exp[ —o&oBot] sinfl&fl l,
$2(l) =exp[ —o&oBot) (A.21)

X [cos&oo t —(o&o/o&p )Bp sin&pp't 1,

and are seen to correspond to the W.U. expression (2g)
for (vp„(t))& &.
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Dilute mixtures of He' in liquid He' are regarded as a set of He' atoms intereacting with elementary ex-
citations of the He4. The coupling between the He' and the He' is chosen phenomenologically and jt is not
weak but, for low temperatures, its main effects may be eliminated by means of two canonical transforma-
tions. The equations which determine the transformations describe the motion of a He' excitation in the
presence of one or two He' atoms and, in the latter case, they resemble Faddeev's equations in the three-body
problem. At low temperatures, there are few He' excitations and many of the properties of the mixture are
determined by the eRective He Hamiltonian produced by the transformation. In this respect, the system
behaves like a Fermi liquid. The He'-He' potential is essentially momentum-independent and consists of the
Van der %'aals interaction together with an effectively repulsive potential induced by the He4. It is suggested
that a Fermi-liquid analysis is the best way of obtaining information about this potential, and the possible
existence of a fermion superQuid phase transition is discussed from that point of view.

1. INTRODUCTION

"T has been found' that mixtures of liquid He' and
~ ~ He' containing less than 6% of He' should be stable
at arbitrarily low temperatures. Since the elementary
excitations of the He' are phonons of rather high energy
for a given momentum, ' the low-lying excited states of
the mixtures are characteristic of the He' and, at suf-
ficiently low temperatures, they should have many of
the properties of Fermi liquids. Therefore, just as for
pure He', it will be interesting to compare the equilib-
rium and transport properties' with the predictions of
I.andau's theory of a Fermi liquid4 and to search for a
fermion superQuid phase transition, ' similar to that

*Qlork performed under the auspices of the U. S. Atomic
Energy Commission.
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(1966).

K. R. Atkins, Liquid Helium (Cambridge University Press,
Cambridge, England, 1959).' . R. Abel, A. C. Anderson, %.C. Black, and J. C. Kheatley,
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which is observed in superconductors. Also, by changing
the concentration, the Fermi momentum kp may be
varied over a wide range which, usually, is not possible
in other systems.

The object of this paper is to discuss the dynamics of
the mixture in order to see in detail how the Fermi-
liquid picture emerges, to understand how the presence
of the He4 determines an effective He' Hamiltonian,
and to see if a phase transition is likely to occur at an
accessible temperature.

Once the e6ective He' Hamiltonian is known, it
should be possible to carry out good microscopic calcula-
tions since, as we shall see, the number density of the
Phys. —JETP 19, 1023 (1964)7; Proceedings of the ninth Interna-
tional Conference on Lotto Temperature Physics, edited by J. G.
Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub (Plenum
Press, New York, 1965) p. 79; Zh. Eksperim. i Teor. Fiz. 48, 997
(1965) /English transl. Soviet Phys. —JETP 21, 663 (1965)j.4 A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, 329 (1959).' L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 37, 1794 (1959)
1 English transl. : Soviet Phys. —JETP 10, 1267 (1960)j; K. A.
Brueckner, P. K. Anderson, T. Soda, and P. Morel, Phys. Rev.
118, 1442 (1960); V. J. Emery and A. M. Sessler, ibid. 119, 43
(1960).
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He' is low enough for an independent-pair approxima-
tion to be used.

The mixture will be regarded as a set of He' atoms
and He' elementary excitations and their interaction
will be chosen phenomenologically. In contrast to the
electron-phonon system, the coupling is not weak and
typical He' velocities e are much smaller than the He4

sound velocity c so that retardation effects" are un-

important and w/c may be used as an expansion
parameter.

The method of calculation will be described in Sec. 3.
It consists in carrying out successive canonical trans-
formations to eliminate the main effects of the coupling
between the He' and He' to zero and first order in vjc.
The equations which determine the transformations
describe the multiple scattering of one He' atom and a
He4 excitation or two He' atoms and a He4 excitation.
The latter may be cast into a form in which they re-
semble Fadeev's equations in the three-body problem. '
The transformed Hamiltonian is an effective fermion
Hamiltonian together with a part which involves boson
variables and may be treated as a small perturbation
at very low temperatures. This is the basis of the Fermi-
liquid model of the mixture.

The following picture emerges. Each He' atom
polarizes the He4 and, as it moves„ it acquires an effec-
tive mass nz* from the motion of the polarization cloud.
Experimentally, ' m~ is known to be about 2.5m, where
m is the mass of a He' atom. When two He' atoms come
close together, each one interacts with and distorts the
polarization cloud of the other with the result that there
is an induced force between the He' atoms which turns
out to be essentially momentum-independent. In
Sec. 3 it will be argued that the induced force has to be
repulsive or two He' atoms will form bound states which
have not been observed experimentally. If there is a
fermion superAuid phase transition, it will be brought
about by the van der Waals attraction, aided by the
increased mass and opposed by the van der Waals
repulsion and by the induced force.

This picture is qualitatively quite diff erent from that
of the mixture of hard spheres discussed by Van Leeuwen
and Cohen. ' From Bogoliubov's method" for a low-
density Bose gas they calculated the effective fermion-
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fermion force induced by the exchange of one phonon
and showed that in some circumstances it would produce
a fermion superHuid phase transition. They suggested
that the same might be true for mixtures of He'
and He4. However, the present calculation suggests
that, in helium, the induced potential is effectively
repulsive and that, in addition, the van der Waals
attraction, the He' eRective mass correction, the
scattering of He4 excitations by He' atoms, and the
overlap of the van der Waals repulsion and the induced
potential may not be neglected.

In Sec. 3, we shall obtain a Fermi-liquid Hamil-
tonian and a qualitative picture of the mixture but,
since the effective potential between He' atoms consists
of several contributions which partially cancel each
other, it is necessary to know the coupling between the
He' atoms and the He4 excitations with quite high
accuracy in order to do good quantitative calculations.
Therefore, it will be more profitable to learn directly
about the effective forces by using the results of
Landau's Fermi-liquid theory4 to interpret the low-
temperature properties of the mixture, and this will be
discussed in Sec. 4.

where

II=H3+II4+ar,

p;2
Hq=Z -+-', g q'kp~p k

i=1 2m k

(2.1)

(2.2)

describes the He',
Hq= Q coqbq~bq (2.3)

refers to the He4, and

Hr= P fqpq(bq +b q)+P P bqpqba+q bg (2.4)
q k

gives their interaction.

"H. A. Bethe, Phys. Rev. 138, B804 (1965).

2. HAMILTONIAN OF THE MIXTURE

If r, is the radius of the repulsive region of the van
der Waals potential and kp is the He' Fermi momentum,
then krr, is about 0.8 for a 6% mixture. Therefore, just
as in nuclear matter, for which kFr, is 0.6 to 0.7 (de-
pending on the assumed core radius), it should be
sufhcient to use a low-order cluster expansion" for the
He'.

It is much more difficu1. t to carry out a good micro-
scopic calculation for the He4 since its number density
is almost the same as that of the pure liquid. Therefore,
we shall use a phenomenological description in which the
excited states of the He4 are regarded as sets of ele-
mentary excitations' with momenta q and energy coq.

(Units will be chosen so that k=1.) For low momenta,
the excitations are phonons of velocity c; at higher rno-
menta they are rotons.

The Hamiltonian will be written in the form
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Here r; and k; are respectively the coordinates and
momenta of the He',

(2.5)

is the Fourier transform of the number density operator
of the He', m is the mass of a He' atom, and v~ is the
Fourier transform of the van der Waals potential
divided by the volume of definition of the periodic
boundary conditions which are to be used. Since the van
der Waals potential is singular at short distances, it is
assumed that v& is defined with a cutoff which may be
removed to obtain a finite result at the end of the cal-
culation. The operators b~t create a He' excitation with
momentum q and obey Bose commutation relations.
It is not essential to use the mixture of second quantiza-
tion notation for the He' and coordinates and momenta
for the He' but it turns out to be the most convenient
for the method of calculation which will be employed.

The interaction HI describes the creation, annihila-
tion, and scattering of He4 excitations by He' atoms.
The creation and annihilation of several excitations
will appear as a high-order process although, in principle,
it should occur in H~ also. This will be reflected in the
values of f, and h, which are to be chosen to fit experi-
ment. There is reason to believe that this may not be a
bad approximation since it has been shown" that a
large part of the effective mass of a single He' atom in
He' is given by processes which involve only one
phonon.

The scattering of one excitation by another has
been omitted as it has a smaller cross section than the
scattering of an excitation by a He' atom. '" It will
be shown that He' momenta are small and so Hq has
been chosen to depend upon He' coordinates only. It
is assumed that f~ and h~ are real and depend upon
fq/ only.

The Hamiltonian should contain the self-interaction
of the He' atoms Lwhich is included incorrectly in
Eq. (2.2)j, the ground-state energy of the He' and an
expression which, roughly speaking, gives the inter-
action of the He' with the unexcited He'. These terms
are not important for the present calculation but, for
example, they would be essential in a discussion of
phase separation. We shall assume that the equili-
brium concentration and density are given and then
attempt to understand which processes are most im-
portant for the behavior of the mixture and to establish
the Fermi-liquid model.

Some knowledge of hq may be obtained from trans-
port properties in mixtures but it is not suKciently
detailed for our purpose. For this reason, it will be more

'2 A. Miller, D. Pines, and P. Nozieres, Phys. Rev. 127, 1452
(1962)."I. M. Khalatnikov and V. N. Zharkov, Zh. Eksperim. i
Teor. Fiz. 32, 1108 (1957) LEnglish transl. : Soviet Phys. —JETP
5, 905 (1957)j.

profitable to use the Fermi-liquid model to obtain in-
formation about the effective He' Hamiltonian and to
use this in turn to discuss the properties of the mixture
and to learn about f, and h~. In the next section, it
will be seen that the experimental value of m* alone is
enough to give a very good indication of the way in
which the problem has to be approached.

3. CANONICAL-TRANSFORMATION METHOD

For a given momentum, the phonon modes in the He4

have a much higher energy than the quasiparticle states
in the He' and so it should be a good approximation to
assume that, at very low temperatures, the He4 is in
its ground state except for virtual excitations which are
created by the He' and are responsible for the effective
mass and effective potential of He' atoms.

The interaction Hi is not weak. It will be seen that,
since m* is as large as 2.5m, it cannot be calculated from
a low-order perturbation expansion in f, ,even when
multiple scattering produced by h~ is taken into account.

For particles of zero momentum, however, there is a
considerable cancellation in each order of perturbation
theory which is most clearly revealed by using a canoni-
cal transformation to remove from IJ those terms which
allow He' atoms of zero momentum to create a single
He4 excitation. The transformation can be carried out
without approximation and it produces an effective
He~—Hea potential w' which is of second order in f~
In the static limit, m ~~, all terms which create He'
excitations would be removed. When m is Gnite, He'
atoms of zero momentum can exchange two excita-
tions but, for helium mixtures, the correction to v'

is less than 5%.
The coupling for the creation of a single excitation is

now proportional to the momentum of a He' atom. Now
typics. l He' momenta p are small compared to tn*c.
As two He' atoms scatter, the most important inter-
mediate-state momenta are given by the van der Waals
repulsion which has radius r, and" they are of order
w/2r, which is about 0.6 A '. For a 6% mixture, hi
is 0.3 A ', and since m*c is about 2.75 A ', p/m*c
is about 0.22 for typical intermediate states and less
than 0.11 for occupied states.

For this reason, the momentum-dependent potential
which is produced by the exchange of a single excitation
is small compared to v' and so, after the transformation
has been carried out, the only important effect of the
He4 is to give an effective mass to the He' atoms. A
He4 excitation is strongly scattered by a He' atom and
this gives rise to the dependence of m* upon high orders
of fq. To take this into account, we shall carry out a
second canonical transformation to remove from the
transformed Hamiltonian the terms which are bilinear
in the b~t and y;. The resulting expression for m* is an

'4H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys.
Rev. 129, 225 (1963).
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extension of that obtained by Lee, Low, and Pines"
for the polaron with intermediate coupling.

The principal correction to m* comes from the emis-
sion and absorption of two excitations —for momentum

p, expansion of the energy denominator gives a contribu-
tion to the He' self-energy proportional to p2/m*2.

As the coupling increases, m* becomes larger and helps
to diminish the correction. For helium mixtures, it,

turns out to be less than 23% of m~ and, if required, it
could be retained so that the remaining error is rather
small.

The rest of this section will be concerned with setting
out the calculation in more detail.

and the coeflicient of bqtpq is zero:

f,+(a&2+q2/2m)F, +Q h, 2F2=0.

Here

(3 8)

(3.9)

f2=f2 —& h2-kL~2+(h'/2m) j 'f' (3.11)

is the complete coeScient of p, in Kq. (3.1). Equation
(3.8) may be rewritten

F = f/L~-+(q /2m) j (3.io)
where

A. Static Transformation

Since Hq has one term which is linear and another
which is quadratic in boson variables, the generator 5&

of the first transformation has one part which involves
single He' atoms and another which refers to pairs. Let

5' =E (& ' b )(Ap—+-E 6, pp )— (3 —1)
q

be the generator of the transformation. without loss of
generality, it can be required that

4'hy, 22 4'k2, 2g (3.2)

and, in order that the transformation will be canonical,
S~ = —S~ and so

Then
e—Sib es

q q

hq+42P2+ 2 4'22 kPkP2 ,2—&-
k

(3.3)

(3 4)

p . —e—Sip .eSl

=Pi ~i &i ~ (3.S)

1ST. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297
(I953).

where

22, =P b, '(q@,e-'&'~+2 + k&2, 2e '"'~P 2). (3.6)
q k

%e shall refer to the transformed particles loosely as
"He4 excitations" and "He' atoms" as before. Since
Sj is symmetric in He' coordinates, the new He' atoms
are fermions.

The transformation does not change p, and so the new
Hamiltonian H' may be determined exactly with the
aid of Eqs. (3.4), (3.S), and (3.6). It is straightforward
to find the terms in the transformed Hamiltonian H'
which allow He' atoms of zero momentum to create a
single He excitation. They will vanish if both the coef-
ficient of bqtPq kPk is zero:

(
(q—k)' h'

&

~2+ +- ~A,2-2.+2(h2F2-2+h2-2F~)
2m 2'�&

+Zhx($~, , 2 K+4~ K,, 2)=0 (3.7)

This equation describes the motion of one He' atom and
a He4 excitation with total momentum zero. It gives
the multiple-scattering correction to f, and may be
solved numerically, given f, and h, 2.

Equation (3.7) is concerned with the crea, tion of a
He4 excitation and its subsequent motion in the 6eld
of the two He' atoms. There is no interaction between
the He' atoms and the total momentum is zero.

It is possible to go some way towards a formal solu-
tion of Eq. (3.7) by rewriting it as an operator equation.
Let

b, = co2,+2,+pP/2m+ p22/2m, (3.i2)

T22 ———hgF2 —hg(1/h)(T22+ T2g), (3.13)

f„,, 2
———,'(k,q —k

~
(1/6) (T22+ T»)

~
0,0) . (3.14)

Now Eq. (3.13) may be rewritten

T12 $1+hi(1/+)) hi@2+ (1/6) T2yj
= —h2t F2+ (1/6) T2Q, (3,15)

where h& is given by

hr= h2 —hr(i/6) hr (3.16)

which takes account of the multiple scattering of the
He4 excitation by one He' atom with the other a by-
stander in an excited state. In momentum representa-
tion, Kq. (3.16) is very similar to Kq. (3.11) and may
be solved in the same way.

Since T» is concerned with a process in which the
second He' atom does not take part in the last scat-
tering, Eq. (3.15) is reminiscent of Fadeev's equations'
in the three-body problem.

If arguments 1 and 2 are interchanged in Kq. (3.15)
to obtain an equation for T» in terms of T», and the

where subscripts 1 and 2 distinguish particles 1 and 2
and h and F are operators which have matrix elements
in momentum representation (q+ k

~
h

~ q) equal to h2
and (q+k

~

F
~ q) equal to F2. Here, only He' momenta

are shown, and it is implied that there is a He excita-
tion being created and scattered to keep the total mo-
mentum zero. Then if ~k,q —k) is a product of one-
particle plane-wave states with momenta k and q —k,
Eqs. (3.7) and (3.13) give
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where

=H, '+H, '+H, ', (3.18)

N p, "
80 Zr +g P ?'q pqp q+ const

&

s=& 2m q

(3.19)

.t
8~'= —P +H.c. ,

SS

8~'= 2 ~,b, 'b, +2 2 hepd~+~"b~
q k

(3.2O)

~ (~,+'+2m, t ~,+~')
(3.21)

Here, m, is given in Eq. (3.6) and, using Eqs. (3.7)
and (3.9)

(3.22)8q = 'Vq+Qq+ZOq ~

where

u, = — —2 ~ F.(—q, k+ql T'IOO), (3.23)
ca,+q'/2m

and
q k

w, = F, 'q'/—m 4Q —Fggq, g,

result is substituted back into Kq. (3.15) we find

T)2= —hgF2+hg(1/A)h2F g+hg(1/6)h2(1/6) Tgg. (3.17)

Since h and F include multiple scattering, they are not
singular but, when we come to calculate m*, it will be
seen that F is not weak and so it is possible that Eq.
(3.17) cannot be solved by low order perturbation
theory.

The transforn1ed Hamiltonian H' can be written down
exactly. It contains terms which depend upon the co-
ordinates of three or four He' atoms but, in view of the
low number density of the He', they should be un-

important and so they will be omitted. Then

~
—8IHesI

second-order perturbation theory it turns out to be
less than 5%%uo of u, and w~ for the strength of coupling
which fits the experimental value of m*, and it will be
disregarded. It is small because there is a cancellation
among terms of each order in perturbation theory,
which has been shown up automatically by the
transformation.

In a scattering event in which p; and p~ are typical
initial and final He' momenta, the exchange of a single
He' excitation, as given by H&', will induce a mo-
mentum-dependent potential which is of order p;pr/
(mc)' compared to u, and w~. The multiple scattering
produced by 82' gives a factor m/m*. The importance
of this potential may be estimated in detail by means of
a separation method" and it is found to be less than 2%
of I, and w, . It is small because p/m*c is small.

Accordingly, Ho' already contains the major part of
the induced potential and we have only to calculate the
self-energy of a He' atom. This is the main advantage
of carrying out the first transformation.

B. Effective Mass of the He' Atoms

The momentum-dependent part of the self-energy of
a He' atom comes from the emission and absorption of
He' excitations given by H&'. The effective-mass ap-
proximation consists in expanding to second order in
p/m*c which is equivalent to second order in 8&'.

However, in calculating m~, the multiple scattering
produced by H2' is very important. In particular, the
term proportional of m;t ~, gives rise to the dependence
of m* on all orders of f,. To take account of these effects,
we shall carry out a second canonical transformation.
The object will be to remove from H' the terms which
are bilinear in the bq~ and p;.

Since the change in the induced potential will be
small and since the number density of the He' is low, we
shall retain eq' but, otherwise, omit all parts of the
transformed Hamiltonian which involve two or more
He' atoms.

Let
q k

+4 Q Q P~ g Pg+, ,g, . (3.24) where
(3.25)

The exclusion principle in intermediate states does
not appear in ~q', since terms involving three or four
He' atoms have been omitted.

The induced potentials Nq and mq arise when two He'
atoms exchange a He4 excitation and scatter it back and
forth between them. They are of second order in f~.
If hq were zero, the second terms on the right-hand side
of Eqs. (2.23) and (3.24) would be missing and N~

and mq would come from simple exchange without scat-
tering. Later, it will be seen that this would not be a
good description when the He' atoms come close
together.

The third term in H2' will give rise to an effective
potential through the exchange of two excitations. In

and

q (p'+P)
S2=+ p G,e "'"'(b,t+b,),(3.26)

i=1 q

P=Q qb, tb, (3.27)

is the total-momentum operator for the He' excitations.
The exponentials in Kq. (3.25) may be expanded in

multiple commutators to give

8"=8'+[8')S2]+-',[[O',Sg]S2]+ . . (3.28)

If terms involving two or more He' atoms are
neglected, the expansion terminates at second order and

"R. J. Eden and V. J. Emery, Proc. Roy. Soc. (London)
A248, 266 ()958).
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it is not necessary to make any further approximation
in evaluating H". This is a consequence of the fact
that, if atom i were alone in the He4, k;+P would
commute with the individual parts of H' and it was for
this reason that P was included in S2. In contrast to
the first transformation, it is not possible to evaluate
H" in closed form if the approximation is not made.

The terms which are bilinear in b~t and p; are con-
tained entirely in H&' and )HO'+H&', Su] and, using
Eqs. (3.19), (3.20), (3.21), and (3.26), they will vanish
if G~ is determined by

If we define

q q'
h~ q G, . (3.29)

qf q2

q
F~=Fe—&

G' (7' (d,.+(7"/2m
(3.30)

q
2

v=3 2 F~Ga—
re

(3.31)

then Eq. (3.29) is satisled if

Fq(1 —q)
Gq=-

(G,+(7'/2m

Combining Eqs. (3.31) and (3.32),

F,F, (q"/m)

a' (dG+q"/2m

(3.32)

(3.33)

Equation (3.30) has to be solved for P~ and gives a
multiple scattering correction to F~. Equation (3.33)
determines g and then Kq. (3.32) gives G, directly.

Now define

H, '=H, '+t'H, '+H, ', S,j. (3.34)

Using Eqs. (3.30), (3.32), and (3.33),

t'q. p q (p+P)
If,, =g P b,te '&'

~

—
G,+ F, ~+H.c.

=~ a k m rn ~n

(3.33)

Then, from Eqs. (3.28) and (3.34),

H"=H p'+H2'+Hz'+ 2[&1'+Hl', S2j
+, (LHg', S211Smj. (3.36)

In writing down Kqs. (3.35) and (3.36), terms involving
two or more He' atoms have been neglected, otherwise
there is no approximation.

The part of H" which refers to the He' only is given

where

N Ps2
HO =2 +2 E &1('PqP q1-

'=~ 2m*

m/m*= 1—g.

(3.37)

(3.38)

C. Qualitative Discussion of the EBective Potential

The van der Waals potential is just about strong
enough" to bind two isolated He' atoms. They have

'7 J. E. Kilpatrick, W. E. Keller, and E. F. Hammel, Phys.
Rev. 97, 9 (1955).

Here Hp" consists of Hp' together with a contribution

x p2—vZ
i=12m

from 2(Hi', S2].
The remainder of H" involves the He' variables. It

is assumed that the excitation scattering terms do not
make the He4 ground state diBerent from the vacuum.
Then, at very low temperatures, real excitations may
be ignored and we have only to estimate the correc-
tions produced by the creation of virtual excitations.
Exchange of a single excitation is of fourth order in the
p; and so may be neglected; and the largest correction
to the He' self-energy comes from the emission and re-
absorption of two He' excitations. This process is of
fourth order in f, and depends upon the momentum y
of the He' atom through the energy denominator,
which may be expanded to give a term which is pro-
portional to p'/m*'. Since m* becomes larger as the
coupling is increased, it helps to diminish the correc-
tion. For the strength of coupling which gives the ex-
perimental value of m~, it is found that m/m* should be
reduced by less than 23%. If required, this leading cor-
rection may be included explicitly in Hp" and then the
over-all error is rather small. With this proviso, the dif-
ference between H" and Hp" may be regarded as a
small perturbation and many of the properties of the
mixture are determined by the fermion Hamiltonian
Hp". Since the fermion number density is low, it is
sufhcient to use an independent pair approximation to
calculate quasiparticle scattering amplitudes. This is
the basis of the Fermi-liquid model of the mixture.

Equations (3.33) and (3.38) are extensions of the
results obtained by Lee, Low, and Pines" for the polaron
with intermediate coupling. The errors are very similar
in both problems.

The efI'ective mass m* is related to the He' —He4
coupling via p. The interpretation is complicated by the
fact that He' —He4 scattering contributes to the ob-
served value of m* although, as in nuclear matter, "
the e6ect should not be large. Thus q is about —,

' and the
right hand side of Kq. (33.3) is about 1, so it is clear
that low-order perturbation theory cannot be used to
find q.
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mass 4m/3. Thus, in a mixture, if the induced potential
were negligible, the effective mass of 2.5m should be
suff:cient to make the He' atoms form bound pairs and
an estimate of the binding energy suggests that it would
be of the order of 1 K. No evidence of this has been
seen experimentally down to 0.008'K, so that, either
there are no bound pairs or their binding energy is much
less than would be given by the van der Waals force
alone. The exclusion principle does have the effect of
cutting down the force at distances somewhat greater
than about kr ' but, for 6/~ mixture, this should not
be too significant since kr ' is about 3.3 A. Therefore
the potential I,+m„ induced by the He', must be
effectively repulsive.

In order to see how this comes about, it is desirable
to keep in mind what is happening in configuration
space. A He' atom polarizes the He' by creating a hole
in its density distribution. The nearest He atoms are
about 4 A away and beyond that there are small ripples
in the He' density which tend to die out quite quickly.
When two He' atoms come close together, each one
distorts and interacts with the hole produced by the
other and it is more accurate to talk of their joint
polarization of the He4. This changes the energy of
interaction of the He' atoms with the He4, and is the
source of the induced potential.

As the distance r between the He' atoms increases, the
overlap of their polarization distributions becomes
smaller or, equivalently, there is a decreasing probability
that a He' excitation emitted by one He' atom will

reach the other. Accordingly, for large r, simple-phonon
exchange, as given by the first terms on the right-hand
sides of Eqs. (3.23) and (3.24) will dominate the induced
potential and it should be attractive but weak.

When r is 3 or 4 A, which is the region of the direct
van der Waals attraction, the polarization distributions
strongly overlap and He4 excitations are easily passed
between the He' atoms. Then, unless h~ is much smaller
than f„ the scattering terms in Eqs. (3.23) and (3.24)
should be comparable to the simple exchange terms.
For these values of r, each He' atom on average lacks
one of its He4 neighbors to which it was bound, and so
the induced potential should be repulsive. The first
terms of N~ and m~ are negative but their Fourier trans-
forms could oscillate and be repulsive for r equal to 3
or 4 A. The scattering terms could give either sign. In
order to avoid bound states the total induced potential
should be repulsive in this region.

For smaller values of r, the induced potential is
dominated by the van der Waals repulsion so that,
even if it were attractive, it would not be effective.

What is required is the difference between the scat-
tering of two He' atoms and the scattering of a He'
atom and a He4 atom in the medium. The difference is
caused partly by the change in mass but mainly by the
fact that virtual states of the He' are phonon and roton
modes so that it is essential to do the sort of calculation
set out in Secs. (3A) and (38).

To determine the effective potential, it is necessary to
know fp and kp well enough to obtain the Fourier trans-
form of I, and w, accurately for r equal to 3 or 4 A
where it partly cancels the van der Waals attraction.
The information is not available at present and it will
be dBBcult to obtain it with the required accuracy.
Since the Fermi-liquid picture has been established in
Secs. (3A) and (38), it seems more pro&table to use
that, to learn directly about v~'.

1 —= k dkLAp(k, O) —A@(k,O)1 (4.1)
Xp kg+2 p

where p is the measured susceptibility and Xp the sus-
ceptibility of an ideal Fermi gas with particles of mass
m*.

The spin-diffusion coefficient D is given by"
D= l(xo/x)

where ep is the Fermi velocity and

(4.2)

m+3T2 2m'

8m'kz4
O

dd (1—co+)

dk
i A~(k,4)+A, (k,d) i

'. (4.3)
(1—k'/kr')'I'

'g V. J. Emery, Ann. Phys. (N.Y.) 28, 1 (1964).
'9 Reference 4, p. 335.
"Reference 4, p. 366."D. Hone, Phys. Rev. 121, 669 (1961);V. J.Emery, ibid. 133,

4661 (1964).

4. EXPERIMENTAL DETERMINATION OF
THE EFFECTIVE POTENTIAL

Landau's theory4 shows how information about the
effective interaction between quasiparticles in a Fermi
liquid may be obtained from the equilibrium and trans-
port properties of the system. The velocity of a density
wave in a mixture depends partly upon the compres-
sibility of the He' and the specific heat is determined by
m* which comes mainly from the He' —He4 interaction
and so neither of these quantities is directly useful.

We shall concentrate upon the spin susceptibility x
and the spin diffusion coeScient D which are given
entirely by the He' atoms. Corresponding formulas for
the viscosity and the thermal conductivity are given
elsewhere. '"

The effective He' —He' potential is most directly
related'P to the physical scattering amplitude A (k,g) for
two particles on the Fermi surface with relative momen-
tum k and scattering angle p. The spin susceptibility'
depends upon Landau's forward scattering amplitude
f(ko; k', e') for particles of momenta and spin k,e
and k', e' and, at very low temperatures, this in turn is
obtained" from A (k,O). The result may be expressed in
terms of the odd-state amplitude Ap(k, 4) and the
even-state amplitude Az(k, 4):
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Relative momenta are less than h|; which is 0.3 A '
for a 6% mixture and so the D-state impact parameter
lies outside the range of the interparticle force. Thus the
sca, ttering amplitude is dominated by S snd I' states
and we may take As(k, g) to be Az(k, 0) and Ao(k, g)
to be Ao(k, 0)co&. Measurement of x and D as functions
of concentration and hence kp at temperatures of the
order of 0.01'K would give As(k, 0) and Ao(k, 0),
provided rearrangement eff'ects22 could be estimated.
The method of obtaining a fermion superAuid transi-
tion temperature T, from the scattering amplitudes is
given in Ref. 18.

Present indications" "are that x is very close to Xp

for concentrations of a few percent so that the right-
hand side of Eq. (4.1) is small. This result does not
necessarily imply that the eA'ective forces are weak
since Ao(k, 0) and As(k, O) can cancel each other on
average. In addition, the scattering amplitudes reflect
the behavior of the potential and change sign as 4
"N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958).
'8 D. L. Husa, D. O. Edwards, and J.R. Gains, Bull. Am. Phys.

Soc. 11, 124 (1966).
'4 A. C. Anderson and D. O. Edwards (private communication).

increases so that the integrals of Ao(k, 0) and As(k, O)

can separately be small even though the amplitudes
themselves are large for some values of k.

However, measurements of the spin diffusion in
dilute mixtures'4 show that the lifetimes of the He'
quasiparticles are 50—100 times larger than in pure He'.
It is not easy to attribute this to cancellations in the
right-hand side of Eq. (4.3) and so the scattering ampli-
tudes appear to be much smaller in magnitude than in

pure He'. Detailed estimates, based upon the value of
D only, depend upon assumptions about the relative
values of the S- and E-state scattering amplitudes.
Nevertheless it seems unlikely that dilute mixtures
will undergo a fermion superfiuid phase transition at
presently attainable temperatures.
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Quantized vortex rings of low energy down to 0.1 eV have been produced in specially purified liquid
helium at 0.3'K and the deflection of rings of 0.15- to 0.5-eV energy in a transverse magnetic field measured.
In the same apparatus the Hall mobility of positive ions has been measured at 0.3'K, yielding after extrap-
olation to zero electric field a value p=3.0X10'cm'V ' sec '. The drift velocity of ions can reach 40 m sec ~

before vortex rings are produced, also at 0.3'K.

INTRODUCTION

ECENTI.Y, Rayfield and Reif' have shown that
ions in He II, accelerated beyond thermal ve-

locity, produce vortex rings of one quantum of circula-
tion. They studied the behavior of these rings in detail
in the energy range of 5—50 eV, the rings having a
radius between about 0.2—2 p, . Even if the circulation
of these rings is quantized, their hydrodynamic be-
havior is essentially classical. Therefore, it seemed of
interest to make rings of as low an energy as possible
with correspondingly small radius, in the hope of
getting some insight into the behavior of the rings as
they approach the quantum hydrodynamic region.

' G. W. Rayfield and F. Reif, Phys. Rev. 136, A1194 (1964).
~ D. Amit and E. P. Gross, Phys. Rev. 145, 130 (1966). We

are indebted to Professor Gross for sending us a copy of this
paper prior to publication.

This should also yield information on the mechanism
producing such rings.

The energy E of a vortex ring of radius R (assuming
the core with radius a is solid) is given by

E= —,'pPRLg —7/4j,
where p is the density of the fiuid; ~, the circulation, is
h/m (m is the mass of the He atom) in this case; and
g = ln8R/a.

Since each part of the vortex ring is in the velocity
field of the other parts, a net velocity v results, perpen-

' E. P. Gross, J. Math. Phys. 4, 195 (1963).
4 V. L. Ginzburg and L. P. Pitaevski, Zh. Eksperim. i Teor.

Fiz. 34, 1240 (1958) I English transl. : Soviet Phys. —JETP 7,
858 (1958)i.' A. L. Fetter, Phys. Rev. 138, 429 (1963).

6H. Lamb, Hydrodynamics (Dover Publications, Inc. , New
York, 1945), p. 241.


