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where we have used the fact that

& INM&=& tl~M&= I~M&=&. I~M&=I'-'I™&
evident from definitions. Ke note also that a similar procedure applies to composite-particle states as

((eM, ma); outl (rs'M, m'a); in)=(XNr„)~~'(m!) ' '(eM; outlP (2„) I
(rs'M, m'a); in)

= (Xrsr )"~'(m!)—'~'(tsM; inl P„(A„) I
(ts'M, m'a) I in)

= ((nM, ma); inl (I'M, m'a); in)

(A2)
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The properties of a massless spin--, system are investigated. It is found that the energy density does not
commute with itself at spacelike separation, does not transform as a tensor, and is not gauge-invariant,
although the theory is shown to be relativistically invariant.

I. INTRODUCTION

ASSLESS fields of spin-1 or greater are qualita-
tively different from their massive counterparts.

One such qualitative difference is the restriction to two
helicity states. Another is the occurrence of gauge in-
variance in the massless spin-1 system and general
coordinate invariance in the spin-2 system. Further-
more, the gravitational field (and also the linearized
massless spin-2 field) exhibits features not found in the
massless spin-1 field. For example, the comutator of the
energy density with itself does not vanish at spacelike
separation. ' ' It is natural, then, to investigate the inter-
mediate case of spin-~. In this paper it is found that the
energy density neither commutes with itself at space-
like separation (is not causal) nor transforms as the 00
component of a tensor.

This investigation is based on Schwinger's action
principle. The notation follows that of Johnson and
Sudarshan, ' who have studied the electromagnetic inter-
actions of the massive spin™~ field. The equations of
motion and commutation relations of the massless field
theory will be obtained by setting m= 0 in the Lagrange

* Supported by National Science Foundation Predoctoral
Fellowships.' S. Deser, J. Trubatch, and S. Trubatch, Nuovo Cimento 39,
1159 (1965).' J. Schwinger, Phys. Rev. 132, 1317 (1963).' K. Johnson and E. C. G. Sudarshan, Ann. Phys. (N.Y.) 13,
126 (1961}.Their notation is used throughout with the exception
p'= —1. A dot on the line indicates fermion operator product
antisymmetrization. The Lagrange function (1) is written with
Johnson and Sudarshan's W= —$. The choice oi W is irrelevant
to the arguments used in this paper because it merely Axes the con-
struction of the spin--, dependent Gelds, as explained in their
paper.

function of the massive theory. The usual procedure4 for
identifying the stress energy tensor is not applicable in
the massless spin--,' case because the Geld does not trans-
form linearly under I orentz transformations. Instead,
the energy density and its commutation relations are
found by carefully taking the massless limit of the cor-
responding massive expressions. These limits do not
exist unless the standard form of the massive spin--,'
stress energy tensor is modified in a way which causes the
massive and massless energy density to lose its causal
and tensorial properties. Fortunately, this necessary
modification does not destroy the relativistic invariance
of either theory. Finally, it is shown that it is impossible
to further modify the massless energy density to recover
its covariance or causality.

II. THE MASSIVE SYSTEM

The Lagrange function for a massive, free, spin-~3

Geld may be written in terms of the Rarita-Schwinger
vector spinor as'

~(a)=ss 0" Pv" ~A" s4" Pv. ~A" —s4" Pm.~A"—
Z Z z

From this, the action principle NV12=G1 —G2 gives the

' J. Schwinger, Phys. Rev. 91, 713 (1953). Note that this
procedure produces a symmetric T&" unique up to two three-
dimensional divergences since the coordinate variations considered
are no more than linear.
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If the decomposition into transverse and longitudinal
states is performed in the massive case then

slight modification of T, this decoupling is impossible
in Eq. (9).

Call expressions quadratic in +~' and in X, TT, and
LL, respectively, and terms bilinear in 4 ' and X, TL.
When m~ 0 there are neither anticommutation rela-
tions nor equations of motion for &. Hence (9) decouples
~ ~

(17a)(4 r»(x), @ri(x')}=Pr»)83(x —x'),

(17b)(+r»(x),&(x')}=0,

This
comm

The massless case may also be approached directly by
taking the (well-defined) sm ~ 0 limit in the Lagrange
function (1). The action principle gives equations
analagous to (2) and (3) except with m=O. The signifi-
cant difference between the massive and the massless
case is that Eq. (4) cannot be derived for the massless
case. Furthermore, since (4) was necessary to derive

(5) all that can be derived is the massless Dirac equation
for transverse spinors,

Decoupling means that there are no TL (cross)
terms and the system is reducible to a direct sum
in which the (nonphysical and mathematically awkward
i.e., {x,&}= Oo) longitudinal part may be discarded. If
Eq. (9) is to have any physical meaning whatsoever
as m —& 0, then it must decouple and conditions for this

may be listed as

if it breaks up into

&& bio(x —x'). (17c) (1/i)PT 'r ( x), T' ( x)/]+( 1/i)t T I (x),T I'I'(x')]
= —(To»rr(x)+. To»rr(x/))q»$3(x —x')+ rrr(x x')

breakup of 4 is useful because 4 and X anti-
(To gg( )+To gz( /))q»g3( /)

ute and. m ' terms appear only in (17c). +,~~(x,x'). (19)

7-a~~~=0.
z

There is no equation of motion for X in the massless
case, so X is dynamically undetermined and is thus a
four component gauge variable representing the dis-
appearance of the 5,=&-,'states in the massless limit.
A gauge transformation X —+ X' leaves the physical con-
tent of the system invariant.

The breakup into longitudinal and transverse parts
comes independently from study of the anticommuta-
tion relations or from the equations of motion.

IV. THE MASSLESS LIMIT OF THE
MASSIVE SYSTEM

For field theories of spin-0 and spin-~ there is no
problem in letting m ~ 0 since these systems undergo
no discontinuous phenomena. The limit is attained
simply by setting m=0 in all relevant expressions:
Lagrange function, T&", J&", E&, etc. However, in the
massless limit for systems of spin ~&1, two transverse
modes (or helicities) must decouple from the rest of the
modes. Schwinger' has shown that such a decoupling of
longitudinal and transverse modes takes place for the
limit m —+0 of a spin-1 field. In the spin-~3 case the
dynamical variables must decouple from the longitudi-
nal variables in the massless limit. However, the inter-
esting feature of the spin-~3 system is that without a

Too —Toorr+ T00I I ~

m 0

lim To» To rr+To
m~o

and

Toorr @rt70(7.7+im)%ri,
2i

(21)

T rL q g @rl 70 7»x
2i 273

1 ( 3—-Vi~ er' 7' (1N'/.irm—,'7 V)x —
~
.—(22)

E 2V3 i

Since lim 0 Too QO, condition (a) is not satisfied.
Fur thermore,

(c) all terms in r(x,x') with a factor of 3N ' must become
LJ terms so that while m ' is unbounded as m~0,
interpretation of the commutator is possible since the
infinity is only in the space of longitudinal variables.

The usua14 procedure for constructing T&" in the mas-
sive case gives

1
Tl = 4' 7'7(erf.)A+ r) 9'tl 7'7.)4") (20)

2$

This gives

X —-'~-~il +" E7-,7»j—~
I

—3+" t7»,7-3 X—-'V'il er» bi7-3 -~ (23)

' J. Schwinger, Brar/deis I.ectgres/ 1964 (Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, f965), p. 147.
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and r contains a TT term with a coefFiciemt m . Explicitly,

1
TOO(x) T00(x )) (Tok(x)+Tok(x ))Vk()2(x x )

P(x x') ~- -1 ~:(
+-', Va'V, 'V„'(0'"(x).v V y'e"(x')

l

——&,V,& '&.' +"(*).v'
V2 j

x—x')
~m@Tw, (X~)

V2

S'(x—x')
~ h'(x —x')

+ -VkV, V„'V.'~ eT((x) ~k ~-e™(x')
I

——,'V, V,V„' e™(x').~ V ~km»(x)
~

) V2 i V2

~2(x—x') SO(x—x')——O'VkV, V„'~ e™(x').~ V ~"e"(x) +-O'Vk'V, 'V„e™(x)~ V' ~"e (x')
~

1 2

+~ ~
VkViV 'V.'(%T'(X) ykym@. T(X')8'(X X')) —+TTr+T~~. (24)

The terms in the first bracket in T(x,x') arise from the
V 'in the anticommutation relation in the [T,T
part. The terms in the second bracket come from[T",T '

$ The first bracket cancels the first three
terms in the second bracket so that the entire commuta-
tor vanishes at spacelike separation.

All three decoupling conditions (a), (b), and (c) are
satisfied and (24) reduces to (19) if

—;iVkV,(% T'. yO-'V-2ykX)

is subtracted from T '. The results of this procedure
are as follows:

(a) The second bracket in (24) disappears so that the
V—' terms no longer cancel and the commutator no
longer vanishes at spacelike separation. Causality of
T" has been sacrificed for the privilege of decoupling—a difhculty not encountered in lower spin systems.
Thus, the energy density is not an observable. Schwinger'
has shown that the energy-density commutator for
the gravitational field is also acausal, which prohibits
a local specification of energy which is not surprising
in view of the correspondence principle and general rela-
tivity. However, Deser et ul. ' have shown that the same
acausality appears in the massless spin-2 field (linearized
gravitational field). The authors are led to believe that
any field theory that is nonlocal ("nonlocal" means that
there is a nonvanishing r term in the energy density
commutation relation) will have an acausal energy

density in the massless limit. This does not happen in
electrodynamics because that is a local system.

(b) The relativistic invariance of the theory is pre-
served. The massless energy density is

Too(x) (1/2i)+T' goy VVT) (25a)

and the momentum density is

1
2'Ok(x) @T) V„@—T +&V (@T(12[~k~m j@T)

2i

1
(5'k)) =-Oki ——&) 0*'kV;V, .

i 4i
(26)

The only eigenvalues of S, with eigenvectors in the
transverse subspace are &-'„ thus verifying that the
transverse modes are the spin--,' part of the system. ~

(c) The massless energy density no longer transforms
as the 00 component of a tensor. Since

+ V [@T„@Tm @Tm@T„] (25b)
4i

Integrating quantities (25) over ail space gives P(' and
integrating the first moment of (25) gives J)'". The term
added to T is a double 3-divergence so that integrated
quantities are left unchanged. In particular, we still
have [eT',P('j=(1/i)B)'+T', so this P& is still the
generator of displacements on the field.

The spin matrix for the transverse subspace is

1 8'(x-x')i
[2'(x) 2 oo(x') j=-(rok(x)+ 2 ok(x'))V S (x—x')+-.'VkV, V„'V ' e"(x).~"~-e'-(x')

2 V'

5'(x—x')- 8'(x—x')-
——O'VkViV„'~ @T"(x'). y V yk@T'(x) + 'O' VkVV)%™(x).-y V' yk@T'(x) ~, (27)

V2 V2 i

7 The removal of the TL terms in the zero-mass limit does not alter J&"because the TL terms in T'~ from which J~' is constructed
give no contribution. This is either because they are double 3-divergences or because the antisymmetry of J~' causes them to vanish.
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then
bo(x —x')-

LT"(x),J a7= x' B—a —xa O—' IT'o(x)+2iT l,
—1ovlv d'x'4 a(x'). y V

i i & V
~m@Tl(x) (28)

Thus, T"(x) picks up a double 3-divergence under Lorentz transformations.
(d) In the massless case the Lagrange function is neither Lorentz- nor gauge-invariant, but the action, which is

the fundamental quantity from which the entire theory is derived, is both. Since the standard procedure of con-
structing T&" from 2 is only unique up to a double 3-divergence the modification made in T did not necessitate a
change in Z. The massless Lagrange function in terms of 0' ' and x is

z(x)=-, i+ a p~o .v„+-" ,iv—aI
—+"pro ~„ x—I.

i "v& )
(29)

2 depends on & as a 3-divergence so the action, Wlo= f&,"dtf d'x Z does not depend on X and is gauge-invariant.
To examine Lorentz transformation properties we use

1 1
L Vrl(x), Joa7 =

I

x'—cia —xa—O' I+'l+ d'*'(*a—*a')L+'l(x), T"(*')7,
o

to get

Leal(x), Joa7= x' Ba —xa —Bo I—%'rl+ ', iyoya@r-l(x) ivlyoy —V—+~a

(30)

m21 3
nl(2ovl+ ,'—ply V)yo -@ra+iPr—layo X. (31)

V2 2V'im —~y V

As m —+ 0 a Lorentz transformation does not mix 0 ~'

and &, but acts on the components of 0'~' in such a way
as to maintain the transversality of %~'. This is remi-
niscent of the vector potential A~ in quantum electro-
dynamics which picks up a gauge term when Lorentz
transformed in order to preserve the radiation gauge
V A=0 in the new frame. Since 0' ' and X do not mix
under Lorentz transformation, it is sufIicient that the
TT terms in the massless Lagrange function do not
transform as a scalar for 2 itself to fail to be a scalar.
Applying (31) to (29) yields

1 1
Lg r(x) Joa7

I
xo ga xa clo Ig

i &

+1Vl @T +opal+ +OV +n
V2

)1—v
I

+ra v"tt"vo+rl—
I (32)

&Vo i

separately from the massive theory and not as the limit
of the massive system. Then, the massive spin-~ sys-
tem energy density would obey causal commutation
relations as usual, but the rn= 0 system still seers from
the above mentioned -digcglties For the .massless Too

to obey causal commutation relations it is necessary to
And an expression quadratic in 4'~' involving Vl, and
V 'which, when commuted with T '(x) r=(1/2i)@ '

Xy y V+ ~ and with itself, gives precisely the 6rst
bracket of (24). Such terms do not exist, as shown below.

Any term to be added to the energy density (25a)
which neither changes the total energy operator nor the
generator of Lorentz transformations must be a double
3-divergence to make T" into a tensorial expression.
The added term commuted with (25a) must produce the
triple 3-divergence terms of r. A fourfold 3-divergence
commuted with (1/2i)%'r'. y y VV l will only produce
fourfold and higher 3-divergences.

There are ten possible terms which could be added
to T'. They are

Thus, 2 picks up a 3-divergence under a Lorentz trans-
formation but 5» is clearly left invariant.

V. AN ALTERNATE MASSLESS THEORY

In the massless Lagrange function the X terms appear
only as 3-divergences so it is possible to omit them en-

tirely from the theory by adding a 3-divergence to Z.
This changes neither the equation of motion (18) nor the
anticommutation relation (15). In this massless theory,
the quantities TI"",J&", etc., are just the TT terms of the
massive theory. This is a relativistic invariant theory
since the decoupled TT system was shown to be in-
variant. Suppose this m=0 theory could be considered

1 ( y V
+Fm +0 @Tn

v"v VV"
-v V.

I
e».~o

v&

1 t V;y
—v v

I
e»'~o

i & v' )

-V„V.
I

@r'.yo
V2

(33a)

(33b)

(33c)

(33d)
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1 p yV'
gs

~

Qrs +0 QT
Ws j (33e)

and Ave more obtained by letting V' ' act to the left.
The commutator of an arbitrary linear combination of

these terms with (25a) has been evaluated. It is im-

possible to cancel the terms in v causing the nontensorial
behavior. Terms constructed from more derivatives do
not suffice.

VI. CONCLUDING REMARKS

The notion of energy density has always suffered from
a slight degree of ambiguity. A 3-divergence can always
be added without affecting the total energy, a property
which can be exploited to construct a symmetric TI'"

from the canonical one. Within the context of special
relativity, the only coordinate transformations used are
linear Lorentz transformations. Thus it would seem that
there is no physical significance in the double
3-divergence that the energy density of this system picks
up under Lorentz transformations.

The failure of the energy density to commute with
itself at spacelike separation may have physical mean-
ing or may be a mere curiosity of the formalism. One
way to extract the physical content from the peculiari-
ties exhibited by the energy density of this system is to
couple it to the gravitational fIeld. The consistency of
such an interaction is being investigated.

Regardless of whether such an interaction is possible,
the study of the massless spin-~ held does have a
pedagogical virtue. It demonstrates that the lack of
microscopic causality of the energy density in quantized
gravity is not so much related to the geornetrization
(freedom of performing general coordinate transforma-
tions) but is more a general problem suffered by the
massless spin--,' system as well, which is due to the high
spin and massless nature of the underlying Geld.

ACKNOWLEDGMENTS

The authors wish to thank Professor S. Coleman,
Professor W. Gilbert, Professor J. Schwinger, and S. J.
Chang for valuable discussions.

P H YSI CAL REVIEW VOLUME 148, NUMBER 4 26 AU GUST 1966

Theory of W Production in Nucleon-Nucleon Collisions~

FRANK CHILTONt

Argonne NationaL Laboratory, Argonne, It/inois

AND

A. M. SAPERSTEIN

Department of Physics, Wayne State Uniwrsity, Detroit, Michigan

AND

E. SnttAssNERt

Department of Physics, Washington University, St Louis, Misso.uri

(Received 20 September 1965; revised manuscript received 6 May 1966}

The cross section for N+N ~ 8'+%+X is calculated in a double peripheral model. The effects of the
principle corrections such as absorption, resonant final-state interactions, and the wet' form factor are
considered. p pair production, which is intrinsically related to 8' production through the conserved vector
current, is examined as a means of testing our model and also as a source of background.

INTRODUCTION

HE possibility of a S' meson, an intermediate
boson related to weak interactions much as the

photon is related to electromagnetic interactions, has
been the subject of much work. ' If the 8' exists, its
coupling constant for coupling to the nucleon weak
current would be LGMn'/V&$'t' where G is the Fermi
coupling constant from P decay (G=10 ' Mtr ') and
M~ is the mass of the TV boson.

*This work was performed under the auspices of the U. S.
Atomic Energy Commission, U. S. Air Force Once of Scienti6c
Research under Grant AF 49(638)-1389, and the National Science
Foundation under Grants GP-3211 and GP-5077.

t This work was begun while the author was a member of the
Institute for Theoretical Physics and Department of Physics,
Stanford University, Stanford, California.

' See, for example, T. D. Lee and C. N. Yang, Phys. Rev. 119,
1410 (1960).

Theoretical estimates of 5" production cross sections
have been made for 7r+1V ~ W+N, ' p+ p ~ J4'++2, '
Coulomb production by leptons4 and photons, 5 and
production in e+e colliding beams. '
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