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Infinite-dimensional unitary representations of the noncompact group U(6,6) are employed to classify
elementary particles and, following ideas related to those of Fronsdal, are used to construct relativistic
S-matrix elements. Like the previously treated relativistic theories where 6nite-dimensional representations
of U(6,6) were used, a particular S-matrix element shows no symmetry higher than that of the appropriate
hybrid subgroup. The over-all U(6,6) symmetry may give new relations between form factors for ditferent
processes but will not, in general, give anything beyond the results of the previous formulations for the
scattering processes. The unitarity of the S matrix is compatible with the subgroup hierarchy, provided
that an infInity of multiplets for elementary particles exists and provided that all such multiplets possess
the same mass. The crucial point of our formulation is that if mass differences are introduced, these aBect
not the relativistic invariance but the unitarity of the S matrix.

1. INTRODUCTION
" "N a series of earlier papers, ' it was suggested that.„elementary particles may be classified as multiplets
of a rest symmetry group U(6)X U(6). It was shown
that moving multiplets of momentum P could be co-
variantly represented by using the finite-dimensional
representations of a larger group U(6,6) for construction
of a (covariant) algebra of the structure U(6) X U(6)

~
„.

This construction procedure involved a covariant pro-
jection' method from the larger group U(6,6) based on
Bargmann-%igner equations. The problem of coupling
of U(6)XU(6) ~„multiplets could then be reduced to
the comparatively simpler problem of coupling of U(6,6)
representations. Unfortunately, since the projection
procedure (the Bargmann-Wigner relation) was not
U(6,6) covariant, the over-all symmetry of the resulting
5 matrix was considerably smaller than the symmetry
started with. It was in fact shown by Harari and Lipkin'
and. Dashen and Gell-Mann' that the Inaximal sym-
metry one might expect for S-matrix elements in such
a theory could be classified in the following hierarchy;

(1) U(6)X U(6)
~ s, for one-momentum

processes;

(2) U-(6) I..., for two independent
moIQenta;

(3) U(3)X U(3)
~ o,o,„, for three independent

momenta;
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and U(3) for 4 or more momenta. It was also shown by
a number of authors (for references see the review article
in the Trieste Seminar Volume') that the unitarity
equation for the 5 matrix

ImT;r= Q„T;„T„rt
would in general be compatible with the maximal sym-
metry specified above, provided the intermediate states
in the sum on the right of (1) themselves were restricted
so as to belong to the relevant subgroup in the hierarchy.

Subsequent to these developments, a suggestion was
made that to obviate some of the problems mentioned
above, one might employ infinite-dimensional represen-
tations of the group" U(6,6) for classifying particles.
One would then start with the assumption that there
are in nature an infinite number of U(6) X U(6) multi-
plets, all of the same mass in the exact symmetry limit.
In a given representation of U(6,6), these multiplets
would be grouped together constituting as it were difer-
ent "rungs" of a given U(6,6) "tower. "Each such tower
would carry in addition to the labels m characterizing
individual "rungs" also a momentum parameter p. A
tower of momentum P would be carried to one of mo-
mentum p' by Lorentz transformations with each
"rung" being carried to essentially the same rung in the
new tower. ~ The noncompact transformations contained
in U(6,6) would however induce transitions between
distinct "rungs. "

'A. 0. Barut, in Proceedings of the Sennnar on High Energy
Physics and Eternentary Particles, Trieste, 1965 (International
Atomic Energy Agency, Vienna, 1965), p. 679; P. Budini and
C. Fronsdal, Phys. Rev. Letters 14, 968 (1965); C. Fronsdal, in
Proceedings of the Seminar on High Energy Physics and Elementary
Particles, Trieste, 1965 (International Atomic Energy Agency,
Vienna, 1965),p. 665; Y.Dothan, M. Gell-Mann, and Y.Ne'eman,
Phys. Letters 17, 148 {1965}.
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~ In the new rung, some rotational shuffling may of course have
occurred but there is no admixture of distinct rungs m and m'.
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In the present paper we show that one can indeed
consistently start with such towers, and that using these
one can construct S-matrix theories where both sym-
metry and unitarity are fully compatible. We find to our
surprise, however, that the resulting S-matrix elements
share with the earlier theory the feature that the over-all
invariance of the S matrix for the coupling of given
"rungs" is again governed by the same hierarchy of sub-
groups U(6) X U(6) I „„U (6) I, „U(3)X U(3) I,„,„
and U(3) for one-, two-, three-, or four-momentum
processes. The starting "tower-symmetry" U(6,6) itself
appears to play no experimentally accessible role in
four-particle scattering amplitudes. Its major predictive
value seems to lie (1) in the prediction of new relations
connecting vertex-function coupling constants of one set
of rungs to the coupling of other sets, (2) in the possi-
bility of providing more powerful and universal mass
formulas, and (3) in assuring unitarity in the limit of
there existing an infinity of "rungs" in the elementary
particle spectrum —all with the same mass.

In Sec. 2, we give the formalism and establish its
consistency. The chief result of the paper is the formula
(2.13) and the rather transparent expression it provides
for the kinematic momentum-dependent factors in the
theory. In Secs. 3 and 4 we exploit some well-known
techniques of Feynman's' operator calculus, developing
further the work of Ref. 6, to evaluate these kinematic
factors for the case of 3-meso' coupling. We have not
yet been able to find a suitable U(6,6) representation
for baryons and thus the question whether the present
theory reproduces the results of the earlier papers"—
and in particular if it relates the electric and magnetic
form factors for the proton in the desired manner—
remains unanswered. We intend to turn to this problem
in subsequent work.

We believe the theory presented here has close simi-
larities to the recent work of Fronsdal' and Ruhl, '
though it is not exactly easy to trace the relationship
of the ideas, or the techniques. To these authors and to
Professor M. Gell-Mann, who has been working on
related lines, we offer our appreciation for stimulating
discussions.

2. GENERAL FORMULATION

[P„,F~)=0. (2.2)

If G is a spin-containing symmetry then at least some

' R. P. Feynman, Phys. Rev. 84, (1951).' W. Ruhl, Nuovo Cimento 42, 619 (1966). We are indebted to
Professor Ruhl for sending us his papers prior to publication.' This set of commutation relations is also the starting point
of Fronsdal's work (Ref. 5).

Suppose that we are given in addition to the gener-
ators J„„,P„of space-time transformations a set of
generators Ii of some internal symmetry G. Suppose,
moreover, that the F" transform covariantly (and non-
trivially) under the space-time group"

$J„„)F)=+pep F, (2.1)

of the Cp will be nonvanishing and the relation (2.1)
implies that the generators Ii must include the gener-
ators of SI.(2,c). This means that G must be a non-
compact symmetry. Given these properties it is possible
to set up a covariant theory with higher symmetry.

In general terms the procedure is very straight-
forward. After the fashion of Wigner one specifies a
family of Lorentz boosts L„which serve to carry a
fixed 4-vector p into p,

(L.)."p =p' (2.3)

Corresponding to L~ there is a unitary operator Uq(L„)—made with the J„„—which acts upon the physical
states. A complete set of physical states may be gener-
ated formally by applying the Uz(L„) to a set of rest
stotes which we denote by Ip,m). The label m ranges
over the basis of a unitary representation of the internal
symmetry group G. These representations are of course
infinite-dimensional.

Corresponding to each rest state Ip,m) there is a
continuum of boosted states Ip,m) defined by the
relation

U (L,) Ipm)= I pm). (2.4)

Note that the index m is unaGected.
Clearly, from (3)

(pm'IF
I pm) =(pm'I U~(L.)F U~ '(L.) I pm),

and by virtue of assumption (2.1), (expressed for finite
Lorentz transformations)

U&(A)F™U& '(A) =P F—PT ~(A) (2.5)

one finds that the matrix elements of the F" between
boosted and unboosted states possess a simple linear
relationship:

(pm'IF Ipm)=pp(pm'IFpI pm)Tp (L„). (2 6)

In the sequel, whenever the p dependence is iiot
plicitly shown in (m'IF

I m) we shall always mean the
matri~ element (pm'

I
F"

I pm).
Now, as is well known, if the Ii 's are generators of

I
an SL(2,c)-containingj noncompact symmetry G

I
e.g. ,

U(6,6)), the unitary representations of G must be
infinite-dimensional. An irreducible representation of G
consists of a tower, each rung of the tower corresponding
to an irreducible representation of the maximal compact
subgroup Le.g. , U(6)XU(6)). The lables m for each
rung characterize these U(6)XU(6) representations.
The U(6) X U(6) generators produce a linear mixing of
states at each rung while the remaining generators
make transitions between rungs m and m'. We shall
on occasion refer to U(6,6) as the tower symmetry and
U(6)XU(6) as the ring symmetry.

Each tower carries a momentum label p, and the
boosts Uq(L~) carry a tower at rest to a tower with mo-
menturn p, each rung of the rest-tower being carried to
the corresponding rung of the moving tower. As one may
expect, the operation of the generators F~ of U(6,6) on
the moving tower is p-dependent and is specified in (2.6).
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Note however, that if we write F (P) = U(I.„)F U '(L~),
we have the transparent relation

(Pm'IF (p)I pm&=(p m'IF IPm& . (2.7)

The behavior of the towers under the space-time
group is perfectly straightforward. Explicitly, and fol-
lowing Wigner's classical method closely, we obtain

U J(A) I Pm) = U.(«.) I jm)
= Ug(Lg„R) I Pm&,

where R denotes an ordinary little group rotation —one
which leaves p invariant—

UJ(A) I pm)= UJ(LA ) UJ(R)
I pm)

=P„Ug(Lg„) IPm')(m'[Rim)
(2»

Since E is a compact rotation, one can always bring the
infinite matrix (m

I
R

I m) into block-diagonal form, each
block being finite-dimensional. With the space-time
transformations therefore we move from a given rung
of a tower of momentum p to the corresponding rung
of the tower with momentum p'=Ap, the indices m

being shuRed by an ordinary rotation E..
As an aid in the discussion of coupling problems it is

useful to have an alternative set of basis vectors for the
physical states. These we now define. Since G contains
the homogeneous I orentz group we have at our disposal
the unitary matrices (m'[A[m& and, in particular,
(m'IL~[m). I et us use these to define a new ortho-
normal set":

I pm), =P ~ IPm')(m'IL„'[m). (2.9)

These states have very simple transformation prop-
erties, namely,

U.(A)IP, &.=Z- IAp '&.( 'IAI

F [pm&, =P
[ ,pm), ( m[ F[m&. (2.10)

The new states
I P,m), mix up the rungs of the Wigner

set,
I p,m) through the operation of the matrix (m'I L„Im)

and therefore are rather difficult to interpret physically. "
In the basis (2.9) the trilinear invariants (if any)

would take the form

dPtdPsdPs 8(+Pi)8(Pi' —xi')

X8(&ps)8(pss —xss)8(a ps)8(pss —xss)

X P (mimsms)
I Pimi). I Psms&, I Psms)„(2. 11)

fRImgfS3

"To see the connection with the U(6) )& U(6) „ theory of
Ref. 1, take for [pm). states, a Quite-dimensional nonunitary
representation of U(6,6) and for [pm') the (unitary) boosted
states of U(6) && U(6). The matrix (m' L„-'[m) is then nonunitary.
Here m'= I, 2, ~ ~ ~, 6; m= 1, 2 - ~ . $2 and L„'=P+z (for
example) for a quark. Clearly [pm), satisfies the Bargmann-
Wigner equation.

~~ We believe that the states introduced by Fronsdal and Riihl
are the states [pm), .

where the numbers (mimsms) are coupling coeKcients
appropriate to the tower symmetry G. This may be
expressed in the less cumbersome form:

,(pimi I psmspsms).
= 8(p, p—s p—s)(m, I

msms)F(pi', ps', ps'), (2.12)

where F(pis, pss, pss) is an unknown amplitude function.
The formulas (2.11) and (2.12), which follow directly

from (2.10), may be translated back into the original
basis, yielding

(Pimil psmspsms&=8(Pi —Ps —Ps)F(Pi' Ps', Ps')

X P(mi I
L„

I
mi')(mi'

I
ms'ms')

X(m2 [Lies[ms)(ms [Lpa[ms). (213)
Thus, we have the relative P dependence of an infinite
set of form factors made explicit in terms of the kine-
matic factors (m'IL„[m) and, moreover, as we shall
show, this form is suited to practical calculations.

The expression (2.13) which relates all the vertex
parts to a single unknown function (or at least to a
limited number of them) is the strongest result that can
be expected from the relativistic symmetry theory.
When it comes to four-point functions it will generally
be found that the number of unknown functions P is
infinite. This is because the product of two irreducible
unitary representations of a noncompact group G in
general leads to an infinite sum or integral of irreducible
representations. ' For the four-point function one expects
therefore, that the number of tower symmetry factors
(mims[msm4) is infinite, so that a manifestation of the
tower symmetry would be dificult to pin down. The
situation is diQerent for the rung level symmetries how-
ever. It is important to emphasize that one of the princi-
pal results of previous work towards the construction of
relativistic symmetry theories, namely, the emergence of
a hierarchy of hybrid, p-dependent, compact subgroups is
again discovered here. These special symmetries which
heretofore were suspect because of unitarity considera-
tions, are now founded upon a manifestly unitary
theory.

The hybrid symmetry groups G(pi, Ps, ) are defined
as the compact subgroups of G which commute with the
boosts I~„I», The action of these transformations
on the boosted states will evidently be the same as upon
rest states,

G(P) I Pm) =Z- I
Pm')(m'I G(P)[m), (2.14)

where (m'[G(p) Im)= (pm'[G(p)
I pm). The summation

over m' in (2.14) is a finite one since G(P) must be con-
tained in the maximal compact subgroup, by reference
to which the rungs were labled.

To illustrate, if one picks out from G those compact
transformations, G(Pi,Ps,Ps), which commute with L„„
L„„and L~„ then, for the vertex (2.13),

(mi[ G—'Imi'&(ptmt'I pi'I psms'psms'&
mj, 'm2'm3'

X(ms IG[m2&(ms [G[ms&= (Ptmt[ psmspsms&
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which shows that G is a symmetry of the matrix element
(pimi l p&ms psms). Similar considerations apply to matrix
elements with any number of rnomenta. If G= U(6,6)
then the hierarchy reads

U(6) X U(6) for two-point functions
(rung symmetry),

U(6) for three-point functions
(collinear symmetry),

U(3) X U(3) for four-point functions
(coplanar symmetry),

U(3) for five-point or higher functions,

The price for having made these symmetries compatible
with unitarity is of course the infinite numbers of
particles which must fill all the higher rungs of a U(6,6)
tower. The in6nity is easily seen to be necessary if one
allows for the inclusion in the intermediate states of the
unitarity relations of particles with arbitrary momenta
because, if qQ p, then

G(p, .) lqm)=p ~ lqm')(m'lL, 'G(p, )L, lm),

where the summation generally extends over all the
levels,

Further, all of these particles must possess the same
mass if the tower symmetry —and with it the unitarity
of the S matrix —is to survive. A mass-breaking im-
rnediately produces an incompatibility of the hierarchy
of symmetry groups above with the unitarity condition

ImT= TpT

except in the situation that only such intermediate
states are allowed in the sum on the right which them-
selves possess the symmetry of the hierarchy. Since we
expect from physical evidence" that the mass differences
between the rungs of the towers are quite large, there
is little hope of being able to dedne a "mean-mass" for
a given tower which could realistically approximate to
the diff erent "rung masses. "This may therefore present
a serious difhculty in giving credence to the results of
this theory.

Summarizing: Let us assume the existence of an
infinite number of rnultiplets, constituting the rungs of
a tower of noncornpact symmetry, and assume that all
such multiplets possess the same mean mass. Provided
that there is a unique coupling of three such towers, the
over-all symmetry ensures that there is one scalar form
factor f(Prs, Pss, Pss). It also specifies unambiguously the
relationships between the coefIicients (mrlmsms). For
the coupling of the rungs themselves an SU„(6) sym-
metry exists, with unitarity of the theory automatically
guaranteed. For the four-point function, one expects in
general, an infinite number of amplitudes f(s, t) so that
the tower-symmetry is unlikely to give meaningful rela-
tionships between scatterings of different types of (rung)

multiplets. However, the coplanar symmetry for
specified rungs scattering from each other will survive.

It is instructive to compare the present scheme with
an earlier one which employed 6nite-dimensional non-
unitary representations of U(6,6). Once it is accepted
that realistic theories should avoid infinite degeneracies
then there exists a good deal of common ground between
the two approaches. If the infinite-dimensional unitary
representations are used then it is necessary to lift their
mass degeneracy so that only a finite number of rungs
can contribute in any unitarity calculation. That is to
say, the imposition of a realistic unitarity condition
serves to violate the symmetry. On the other hand, if
finite-dimensional nonunitary representations are em-
ployed, then, in order to avoid difhculty with the
metric it is necessary to impose conditions (the Barg-
mann-Wigner equations) which project out just one
U(6) X U(6) rung. These conditions violate the U(6,6)
symmetry. Both approaches lead to the same hierarchy
of hybrid subgroups for the two-, three-, and four-point
functions (prior to the imposition of the realistic uni-
tarity conditions). It may be that for the three-point
functions the present method will be able to make
stronger predictions —i.e., reduce everything to one
unknown amplitud- but for the four-point and higher
functions there seems to be nothing to choose between
them.

where
[a',a,]=8' [b,,b']=8;.&,

a'=(a, )t, 5'=(b;)t,

(3 2)

(3.3)

all other commutators vanishing. Corresponding to P
there is the adjoint P defined by

3. COUPLING OF THREE TOWERS;
THE COEFFICIENTS (milmsms)

For illustration we construct the invariant coupling
between three meson-like Feynmann towers [i.e., de-
generate discrete representations of U(6,6)$. This is not
a particularly realistic case since, as will be seen, one
of these representations must be diferent from the other
two. That is, the mesons would have to be distributed
over at least two distinct representations. The virtue
of this example lies, however, in its simplicity, and it
illustrates the calculational techniques that we intend
to employ in future computations.

We begin with the construction of some discrete
representations. Let us define the 12-component U(6,6)
spin ors

fa;)4=l l~ i=1, , 6; z='7, ., 12, (3.1)
&b;I

where the entries a; and b,' are algebraic entities satis-
fying Bose-like commutation relations:

'3 P. G. O. Freund, Phys. Rev. Letters 14, 803 (1965). V=4'vo= (—a' b'). (3 3)
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M~~= 4~P ,'g—4—~ac@

satisfy the commutation rules

(3.5)

The yo has been inserted here in order to make the
commutator of P and P a U(6,6) invariant

L&~~P3=~~'~ ~, » =1, , 12 (34)

The quantities M'z~ defined by

sequence i1, i, etc. and c is a normalization con-
stant. These can all be generated by applying M to the
vacuum. They constitute the basis for an irreducible
unitary representation of U(6,6). It is a simple matter
to evaluate in this basis the matrix elements (n I

M~~
I
e'&.

The Casimir operators may all be expressed in terms
of the single invariant /zan~ and this is fixed by

[Mg~,Mcn]= hgnMcs bc~M—gD,

and the Hermiticity condition

(Mg')'= (7o)a'Ma ~'(vo) ~ ',

(3.6)

and put
L4''~, 4sj=g'~, 4 j=o, (3.11)

If we introduce an independent set of operators P~'
such that

and thus may be employed as generators of unitary
representations of U(6,6).

We take for the annihilation operators a', b, only
those representations which admit a vacuum state

g'lo)=o, b;lo)=o. (3 8)

Then the adjoint operators a,;, b' will create states of
positive norm. A complete set of normalized states is

given by

lm&=c g, , g; 5~' . 5-Io)

6 f 12

= II (g')"' ll, , (b~) "~'I o&, (3 9)
;=i(~ t) t ~=~(~!)'

where m; denotes the number of times i occurs in the

M~ =4'4' +4'~'4'' i o 4—(fcg' +. P'cP' ), (3.12)

then, if they annihilate a common vacuum,

g'I o)= b;
I
o&= g"

I
o&= b';

I o)=o, (3.13)

we can construct a new representation by repeated
applications of M~~ to the vacuum. This representation
is irreducible since the lowest state

I 0) is evidently an
eigenstate of the Casimir operators which are all ex-
pressible in terms of the invariants

and

One may verify that the Casimir operators take values
different from those obtaining in the simple Feynman
tower discussed above. The new representation will be
spanned by the set of (unnormalized) states

"""=M ' M Io)
—(g, bh+g, b'A). . . (g 5jm+g~, P. jm)

I
0)

g o ~ igo Q o ~ ~ ig ggl ~ ~ ~ $2lg 2l+] o ~ ~ g 2' 0s1 s l s l+1 sm / 7

part
(3.14)

where the summation extends over all partitions of i, . i„into two sets. The U(6) X U(6) content of this tower is

(1,1)+(6,6)+( (15,H+ (21,20)}+{(20,20)+2(70,70)+ (56,56))+ (3.15)

The expression (3.14) may be looked upon as a Clebsch-Gordan formula

%(m) = P c(n)c'(e')(e, e'Im&,
n+nl =el

(3.16)

where in this case, the co'upling coeflicients, indicated symoblically by (e,n Im&, are very simple. An explicit

representation of the trilinear invariant takes the form

I= P P c„(~,e')e;;;„,„,'~ '-+- C,, , 7~" 7'C„, ,7.+i" 7.+. (3.17)
n, n ' part

where the summation extends over distinction partitions of i, . in+n, into two sets i» . i„„and i~„+1 $p

Following the procedure of Ref. 6, the coefficients c~(n,e') may be determined by imposing the condition

M~~I= 0.

One 6nds for the first few terms the explicit coefhcients

I—+@@&'+i@-.A(C . jsc +@@. 7s)+L@ -. -. [~s~o]@&.7&@~. 7o

+(1/24)%&-- &'»»(C . ~i~oC'+2C. nc . »+.Cc~. &»o)+. . . (31g)

where the (15,15) and (21,21) tensors are de6ned by

~ = sls2 —1Q -. - [&1&2]~1+ (j1j2)
&14 2 I, A, &2) ~ 2 (i1j2) (3.19)
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4. MATRIX ELEMENTS OF U(6,6) TRANSFORMATIONS

1357

We wish now to compute the kinematic factors (m~ 1.„~m'). We employ for this a graphical technique. It lends
itself to a nearly closed form evaluation of matrix elements of finite transformations and we shall start with a
general discussion although in fact we shall need only the Lorentz transformations. Consider the matrix element

(nz'~ e*""''~ "~ m) = (m'( e't'"t'~ m), (4 1)

where Xz"=0 and Xt=yoXyo. Following the method of Feynman, we treat the computation of (4.1) as if it were
an 5-matrix computation, Thus we attach a label t to the spinor quantities

pg(t) =pg, 0&3& j. .
Define the "Hamiltonian density"

so that

and, in particular,

H(h) =k(t)) 4(h),

dt H(h)=PXP=H

(4.2)

dt's Ch T(H(tg) H(t. ))= Chg dt„P 8(t;,—t,,) ~ 8(t;„,—t;„)H(t;,) H(t;„)
perm

dt, Ch. P 8(t,,—t;,) 8(t,„,—t;„)H"
perm

This enables us to write

e'~=T exp i dt H(t) (4.S)

One can go further: let X~~ be considered a function of t and define the functional

Its derivatives

Q,~/~(t~)

C(X)=(0~7 exp i Ch(ItI)X(t)p(t) ~0).
0

4'(")=(oft' It~'(t~)II~ (t~) «pl i dtp)p
~

(.
)

(4.4)

include, in particular, the desired matrix elements

4'(&) =(0~ a"b e'H a b~'~0).
8) „"(1) 8) I-, '(0)

(4.5)

For the evaluation of 4 (X) we can set up a graphical prescription. The lines in a Feynman graph correspond to

(0IT(4,(t,)P(h,))lo)=A, (t,—h,) (4.6)

and the vertices to ikey~(t). The vacuum diagrams must consist entirely of simple closed loops corresponding
to the terms

i"Tr() (hr)&(ti —t2)) (t2)" A(t.—t,)).
The propagators appearing here are very simple. Since

T(QA(hl)It' (t2)) = 8(tl t2)I/A(hl)It' (h2)+8(t2 tl)f (t2)i/A(hl) )

(4 7)

&~'(ti —h2) =
—8 (hg

—hg)8,'
8+(tg —tg) 8-

(4.8)
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For the particular case of a pure Lorentz transforma-
tion we take

Noting that

0 0.3

03 0
(4 9)

5. THE OUTLOOK

There are two major problems which need further
consideration:

(1) The determination of appropriate representations for
baryons and mesons As is well kn. own, the simplest U(6,6)
Feynman towers 8= (56,1), (126,6), and M= (1,1),
(6,6), 21, 21), do not couple. One must find more
sophisticated (less degenerate) representations in which

to place the (56,1) (and any other known) baryon
U(6)XU(6) multiplet and similarly for the mesons.
Assuming that one does succeed in finding towers which

allow, e.g., for the requisite coupling, one would still
need to verify that all the successful predictions of the
previous U(6) X U(6)

~ „theory —at least for the vertex
function —survive.

It is indeed possible that U(6,6) is not the right
symmetry group. There are several other possibilities
one may consider; e.g., to accommodate kinetic super-
multiplets considered by Gatto and others' one may
need the group O(3,1)XU(6,6)—or in analogy with

dtl' ' ' dt24448~(tl t2)0—(ts ts) ' ' ' 0—(t2444 tl)

(m —1)!m!
2444—r (4 10)

(2m)!
we get the result

C(x)=(0(e'x O4~0)

00 (m —1)!m!
= exp P (—)~2~—' (-'x)'~

M=I 2mf
(4.11)

=exp 1— (x ln(x+(1+x )'t')/1)
(1+x') 't'

where x=)f/2%2. For large x, this matrix element
behaves like 1/x. The graphical procedure needed to
obtain the general functional C(X(t)) and thus any other
desired matrix element is straightforward. All other
matrix elements will contain a fa,ctor like 4 ()f) multiplied
into a series of the type which appears in the exponent
of the exponential in (4.2). Altogether one may there-
fore expect that the kinematic factors arising from
matrix elements of (ms~I. „~mr) fall with increasing
momenta.

the hydrogen atom case, the more attractive possibility
O(4, 1)X U(6,6).

(2) The second unresolved problem concerns mass-
breaking for the noncompact symmetry and the effect
this would have on the unitarity of the S matrix. Ex-
perimentally the mass differences between incipient
rungs of possible towers suggested so far appear quite
considerable and the symmetric S matrix can therefore
be unitary only in the sight of the Lord. One of the
attractive features of the higher symmetry-breaking
provided by Sargmann-Wigner equations in the earlier
U(12) theory was the automatic mass-split which oc-
curred between particles of different spin if the unitarity
corrections were taken into account. "The Bargmann-
Wigner equations obviated any need for the introduc-
tion of separate spin-splitting terms in any U(6) X U(6)
mass formula. One may find this remark of value also in
connection with the coupling problem mentioned above.
What we have in mind is the possibility that though the
Feynman towers for U(6,6) theory do not couple for the
vertex function, the corresponding boosted towers for
U(6,6)X U(6,6) (see Ref. 6) (where the extra degrees of
freedom are cut down by the use of Bargmann-Wigner
equations) do so. The levels of such towers are indeed
representations of the covariant subgroup U(6) X U(6)

~ ~
and, what is extremely important, the meson-baryon
coupling is exactly the coupling written down in Ref. 1,
with its merits and demerits. This type of mixed ap-
proach which exploits both the ideas of this paper and
of the previous work of Ref. 1 would perhaps be more
in keeping with the attitude that the origin of noncom-
pact groups is to be attributed to dynamical accidents
which may occur in special dynamical situations for
special values of physical parameters" and is not some-
thing in the nature of a fundamental characteristic of
elementary-particle physics.

(3) There is one other possibility which one may
explore in connection with the coupling and the mass-
symmetry-breaking problem. This is to assume that the
S matrix is not a scalar in the U(6,6) space but a
(I.orentz-scalar) part of U(6,6) tensors.
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44 The unitarity relations like ReT= 1'LlmT(k4)dk4/(ks —4444)g

for a two-point function are in fact the Lehmann mass formulas.
Even if ImT is independent of spin for any U(6) XU(6) multiplet,
the Lehmann formulas have different forms for each spin value
and therfore ReT (i.e., the physical mass) will vary with spin.

'~I"or example, the Cutkosky hydrogen-spectrum symmetry
O(5, 1) makes its appearance only for the case when the total
energy-momentum vector P„ for the atom is identically zero.


