
P H VS I CAI. R RV I E W VOI UME 148, NUMBH, 'R 4 26 AUGUST 1966

SU(6) s -Symmetric Meson Bootstrap Model*

RH."HARD H. CApps

¹rthmestern University, Evunston, Illinois
(Received 1 April 1966)

A bootstrap model of the pseudoscalar-meson octet and singlet and the vector-meson octet and singlet is
constructed. The mesons (3II) are assumed to be MM bound states, produced by one-3E-exchange forces.
The input M&M interaction is assumed SU(6)s -symmetric, and the forces in all P wave -M3E states are
examined. The forces are most attractive in 36 states of the quantum numbers of the mesons; identification
of these states with the M leads to output 3fcVM interactions consistent with those assumed originally.
However, the SU(6)~ symmetry requires that the total coupling of the singlet vector meson should be only
—, that of the other mesons. The method of calculation involves continuing the interaction oB the mass shell
in an SU(6)s -symmetric fashion, and comparing the P wave amp-litudes at threshold in Born approxima-
tion. The technique can also be used to predict heavier resonances that do not correspond to SU(6) repre-
sentations. This fact is encouraging, since it appears that only the lighter observed hadrons form complete
representations of SU(6).

I. INTRODUCTION

'HE approximate validity of SU(6) symmetry
leads to a great simplification for many problems

of particle physics. One type of endeavor that has bene-
fited from the symmetry is the construction of com-
posite models of hadron multiplets. We consider the
example of the bootstrap model of the baryon octet
and J~= ss+ decuPlet. If only SU(3) symmetry is
assumed, the presence of two baryon multiplets leads
to several complications. On the other hand, one need
consider only the one 56-fold baryon supermultiplet B
and the one 35-fold odd-parity meson supermultiplet M
if SU(6) synunetry is assumed. ' Furthermore, SU(6)
symmetry leads to a simpli6cation in the treatment of
Ineson exchange forces in BB and BBS-states. '

Unfortunately, the techniques used in these references
cannot be applied directly to processes involving one of
the strongest of hadron interactions, the MMM inter-
action. The difhculty arises because the interaction of
three odd-parity mesons is a P-wave interaction, and
the coupling of orbital and spin-angular momenta is not
provided for in the simplest interpretation of SU(6). It
was possible to circumvent a similar difficulty that arose
in connection with the E-wave MBB interactions by
coupling the orbital angular momentum to the meson
spin, and classifying the mesons by their total angular
momentum. ' However, this technique cannot be
applied to the MMM interaction, because of the require-
ment of permutation symmetry of the three mesons.

The prospect of achieving a dynamical understanding
of the meson-meson-meson interactions received a
boost from the discovery of the "collinear" group
SU(6)s, as this group provides a simple prescription
for the trilinear interactions of the 36 meson states
(~, E, ri, X, p, E*, y, and cg).s The main purpose of this
paper is to determine whether or not an SU(6)s—
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symmetric MMM interaction may bootstrap itself in a
simple one-M-exchange model. Such a bootstrap model
can be successful only if two conditions are satis6ed.
First, the meson exchange forces must be more attrac-
tive in 36 states of the quantum numbers of the mesons
than in any other I'-wave MM states. Second, the as-
sumption of bound-state poles corresponding to the
mesons in these 36 states Inust lead to ratios of MMM
coupling constants equal to those assumed originally.

A second purpose of the paper has to do with sym-
metry breaking. It is well known that the SU(6) sym-
metry of nature must be broken more drastically than
the purely internal symmetry of SU(3). One aspect of
this symmetry breaking concerns the observed meson
and baryon resonances of spins greater than 2. It is un-
likely that these high-spin states are parts of complete
SU(6) representations, since corresponding states of
large isotopic spin and hypercharge have not been dis-
covered. This type of deviation may be placed on a
quantitative basis, in the following way. Since S, and
I, are both Hermitian generators of SU(6), the ratio
R= s p S,s/p I,' is the same for every representation
or sum of representations of SU(6), if the sums are
taken over all the states. The factor —', is included so that
the predicted value is unity. However, the value of R
corresponding to the experimentally verified meson
and baryon resonances is much greater than one. We
will call this (R)1) "vertical" deviation from the
symmetry.

The observed vertical deviation is not surprising,
since SU(6) involves spin but not orbital angular mo-

mentum. It is easy to visualize composite models of
hadrons in which the lighter states are 5 or I' states that
correspond to SU(6) multiplets, while the heavier states
involve larger angular momenta and are not described

by SU(6). This argument applies whether the basic
building blocks are quarks or the lighter mesons and

baryons themselves. Thus, the dificult problem is not
to comprehend the eGect, but rather to construct a
technique that exploits the symmetry of the lighter
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hadrons, and still is useful for calculations involving the
nonsymmetric multiplets.

The SU(6)s group is ideally suited for forming a
connecting link between the symmetric and nonsym-
metric multiplets. If the input is SU(6)iv-symmetric,
the predicted one-particle exchange contributions to the
forward and backward scattering amplitudes will pre-
serve the symmetry. If the orbital angular momentum
is large, spin-flip amplitudes (that vanish in the col-
linear directions) are likely to be important, so that
large deviations from the symmetry are likely for pre-
dicted resonances.

In Sec. II the SU(6)a-symmetric MMM interaction
is constructed, and the assumptions of the model are
presented. These assumptions are summarized in Sec.
IID. Sections III and IV deal with the calculation of the
forces and output interaction constants; the use of
SU(6) s in the calculation is explained in Sec. III, while

Sec. IV is concerned with the details of the calculation.
Readers not interested in the calculational technique
may skip from the end of Sec. II to Sec. V, where the
results are presented and the input and output inter-
action ratios are compared. The manner in which

SU(6)iv symmetry may be useful for calculations in-

volving resonance multiplets that do not correspond to
SU(6) multiplets is also discussed in Sec. V.

II. THE MODEL

A. The Small Coupling of the Vector Singlet

A priori, it is not obvious that SU(6)iv should lead
to a simple meson bootstrap model, since the generators
of the group commute with the kinetic energies of all
the particles only for collinear processes. ' On the other
hand, one cannot determine all the P-wave scattering
amplitudes from the forward and backward amplitudes
when some of the particles possess intrinsic spins, so
P-wave scattering is not basically a linear process.

In the simplest type of bootstrap model of a degen-
erate multiplet, the sum of the squares of all the inter-
action constants associated with a particle is the same
for all particles. However, the argument presented
below shows that SU(6) symmetry requires that this
"total coupling" sum associated with the vector singlet
is anomalous. We assume that the mesons are degen-
erate and define the interaction constant y(abc) in terms
of the "decay" amplitude M, —+ M&+M. on the mass
shell. Of course the decay momentum is imaginary; the
process is not physical. The Lorentz system is taken to
be the rest system of the initial particle a,

'

and the posi-
tive s axis to be in the direction of the momentum of the
erst final particle b. The spin components are analyzed
along the s axis. The S'-spin triplets and singlets of the
meson rnultiplet 35Q+I contain the states (V', F, V ')
and (V'), where V and F denote vector and pseudo-
scalar mesons, and the superscript is the s component
of the spin. '

Since the mesons are all of odd parity, the M wave
function must be odd with respect to a space reAection.
Hence, the decay amplitudes (in the z direction) for a
meson state of the SU(6)iv representation 35 are pro-
portional to the Clebsch-Gordan coeKcients correspond-
ing to the 35-fold antisyrnmetric state in the direct
product 3535. 4 The SU(6)iv singlet (V singlet in the
state S'=0) decay amplitude is zero, since there is no
antisymmetric singlet in the direct product 3535. The
total coupling of a physical particle is the decay proba-
bility, integrated over uO directions. This probability for
any spin state of a V meson must be equal to the decay
probability in any direction of an unpolarized sample of
the V. It follows from these arguments that the total
decay probabilities of the Pj, Ps, and Vs are equal, but
that of the Vi is only -', that of the others (since the
S'=0 state of the Vi cannot decay along the s axis).

The fact that SU(6)s requires an anomalous input
value for the total V~ coupling suggests that one con-
struct a model in which the masses of the diGerent

SU(3) multiplets may be different, and deviations from
the interaction symmetry are allowed. However, the
results of such a model would depend on the detailed
dynamical assumptions. Our present goal is to construct
a simple first approximation to a realistic model. Thus,
we will not investigate the connection between total
coupling and mass. Rather, we assume degeneracy and
exact SU(6)iv symmetry for the vertices of the one-

meson exchange diagrams.

1=Ivi'i+Ivvi+Ivvv+Ivv v'
&

Ivrr =CvprF'r &' pr,
Ivvp (+vvp/M)+ijle "c;"p,'p;"e...i

(I)

(2a)

(2b)

Ivvv CvvvF;;i, $(e; e;)(ei——, p;;)+(e,"ei,)(e,"p;i,)
+(c'c') (c~".p~')3, (2c)

~vvv'= (&vvv'/M )F;;i,[(c, p; i) (e,"pi,) (e"r, p;,)), (2d)

where p p is shorthand for p —p~. The subscripts i, j,
and k are SU(3) indices of V mesons, and I and m are
SU(3) indices of F mesons; summations over these
indices are implied. The symbol e denotes the four-
polarization vector of the V meson n, emitted or ab-
sorbed at the vertex, and p denotes the four-momen-
tum of the particle n emitted at the vertex, or minus the
four-momentum of the particle absorbed. The C and C'
are real constants, M is the meson mass, and e„„,q is the
completely antisymmetric tensor normalized by the

4The Clebsch-Gordan coeKcients associated with the direct
product BSQxBS or SU(6) are given by C. L. Cook and G. Murtaza,
Nuovo Cimento 39, 53k (1965). See also Lothar Schulke, Z.
Physik 183, 424 (1965).

B. Interaction on the Mass Shell

A relativistic M3fM interaction I, that satisfies

SU(6)iv symmetry on the mass shell, may be written
in the following form.
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condition e0128=1. We use the metric A 8=1 8 A—'8'.
The symbols Ii p~ denote the completely antisymmetric
"F-type" coupling constants referring only to the inter-
action of three SU(3) octets. The D are the completely

symmetric nonet-type coupling constants, referring to
singlets and octets. We use the convention that re-
dundant permutations of the D and Ii indices in the
equations are not taken; i.e., each particular set of three
meson states occurs no more than once in any of the
four interactions. 5

The Ii coeKcients, and octet-octet-octet part of the
D coefficients, are well known. ' The relations between
various parts of the D are given by

D..x =D„x=~&D„„
where co, X, y, and q denote the V~, I'~, and isoscalar
members of the Vs and Ps, respectively. If II(rr, Py} de-
notes the total probability of the two-particle states
corresponding to the SU(3) representations P and y in
the state n for the D-type coupling, the ratios of the II
are

II{1,88}:II(1,11}:II(8,88}:
II(8,(18+81)}=16: 2: S: 4.

A simple way to calculate the various coefIicients is to
write the nonets as 3X3 matrices, and then identify
symmetric and antisymmetric combinations of the
product of two such matrices with D and Ii states, re-
spectively. ' The singlet participates only in the sym-
metric combination; hence the total D-type proba-
bility in the singlet state is twice that in an octet state.
The relations among the constants C and C' that are
implied by the symmetry may be written in the form, '

CvppFppp+p (3/8) CvvpDppcax p CvvvF p p p

= 12Cvvv' Fppp+p . (4)

In order to illustrate the meaning of the various terms
in the interaction, we classify the meson states in three
classes, the extreme helicity V states V+', the zero
helicity states V', and the I' states. Four types of
trilinear vertices are allowed, (V'PP), (V'V 'P),
(V'V'V'), and (V'V 'V'). The interactions Ivr I, Ivvr,
and I«&' correspond to the first three of these types,
while I«& is a linear combination of the last two types.

' The SU(6ls -symmetric MMM interaction has been derived
from the hypothesis of invariance under the group 3f(12) by B.
Sakita and K. C. Wali, Phys. Rev. 139,81355 (1965).An alternate
method of obtaining the interaction is to use the P and V uni-
versality principles discussed by R. H. Capps, Phys. Rev. 144,
1182 (1966).The numerical relations between the VPP and UVP
interactions are derived in these references.

'See, for example, S. L. Glashow, and J. J. Sakurai, Nuovo
Cimento 25, 337 (1962).

7 A detailed derivation of the octet-octet-octet interactions by
this method is given by J. J. Sakurai, Theoretica/ Physics, Lectures
Presented at a Seminar, Trieste, 16 July —Z5 August, 196Z (Inter-
national Atomic Energy Agency, vienna, 1963), pp. 227—249.' This method of analysis has been used to illustrate the meaning
of SU(6)~ by H. Lipkin, Symmetry Principles at High Energy, Third
Coeference, January, 1966 (W. H. Freeman and Company, San
Francisco, California, 1966},pp. 97—106.

The choices of Ii and nonet-type D coupling, together
with the conditions of Eq. (4), are sufficient to guar-
antee SU(6)s symmetry.

One may verify the symmetry of the interaction by
checking the permutation symmetry of the vertices,
and by comparing the coupling constants with the
Clebsch-Gordan coefficients of the representation 35
contained antisymmetrically in the direct product
3535. ' We will discuss here only the subtle question
of the permutation symmetry. It is convenient to choose
both the spin and internal symmetry representations so
that each of the 36 meson states corresponds to a
Hermitian field. The plane polarization states V and
V& are considered, rather than the linear combinations
V+'. The state V' is denoted V*.We use y(abc) to denote
the dimensionless (nonphysical) "decay" amplitude
M, ~M b+M, on the mass shell, the positive z direction
being that of the 3f~ momentum. The indices a, b, and c
denote helicity and internal quantum numbers. For
each of the four interaction types of Eqs. (2a)—(2d), we
consider one term in the sum. It is sufficient for the re-
quired permutation symmetry if the phases of the par-
ticle states may be chosen so that the y(abc) in each of
these terms is completely antisymmetric. This sym-
metry condition may be satisfied if the phases of all the
V' states are increased by —,x, i.e., if initial and final
states V' are replaced by r'V' and ( iV')—, respectively.
With this phase choice, all the amplitudes y(abc) are
real, since the F and D coefricients are imaginary and
real, respectively, in a Hermitian representation.

We demonstrate this permutation symmetry for the
VPP interaction term Frsser. (ps —ps). (The constant C
is suppressed. ) The longitudinal and scalar components
of the V four-polarization vector e~ in the Lorentz
system characterized by the four-momentum pr = (pr, &er)

are related to the unit three-polarization vector Vr of
the V rest system by the equations,

er pl= +1'gl(M1/M) ~1 (~1'Pl)/M. (~)

We consider the amplitude M, ~ Ms+M, in the rest
system of the 3f,. The mass shell energy relation is then
ros+re, =M. If the above phase convention is used, the

amplitude Vr* ~ Ps+Ps is proportional to the quantity
[iFrss(ps' —ps'))=2iFrssps'. On the other hand, the
amplitude ps ~ Vr'+Ps is proportional to the quantity,

iFrss(V—r pr) (&er+cvs+M)/M= —2iFrsspr*. An exten-
sion of this argument may be used to show that all the
amplitudes are antisymmetric, so the permutation con-
dition is satisfied.

The convention of changing the phase of the states
V' by —,'z is unusual, but perfectly proper. If one is con-
sidering scattering processes at arbitrary angles, a more
appropriate procedure would be to make such a phase
change in all V states, as was done by the author in
Ref. 5. Of course SU(6)rp symmetry is not present for
the nonlinear processes.

Any SU(6)s-symmetric MMM interaction may be
written in the form of Eqs. (1), (2), and (4) on the mass
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shell. This follows because the ratios of all the coupling
constants are specified unambiguously by the sym-
metry requirement.

C. Continuation 08 the Mass She11

The various P-wave M3f scattering amplitudes r may
be expressed in terms of elements of the unitary 5
matrix by the equation,

r' = (S'—&' )t (s)/(2iI p I') (6)

where s=4oP is the square of the total energy in the
center-of-mass system, and the function p(s) contains
no zeros or poles at threshold. In principle, one may
write partial-wave dispersion relations for these ampli-
tudes, including only one-meson exchange contributions
on the left-hand cut. This procedure involves the am-
biguity always present in such treatments of partial
waves, resulting from the fact that a polynomial in s
may be added to an amplitude without changing the
discontinuity across the left-hand cut. If one uses the
N/D method, the ambiguity concerns the choice of the
function p(s) of Eq. (6) that is assumed to lead to an N
function with a simple pole in the direct-pole process.
Many prescriptions that are commonly used treat the
P, longitudinal V, and transverse V states differently.
Such a prescription would lead to a loss of SU(6)s
symmetry, and must be avoided here.

Since we are interested only in relative forces and in
relative values of coupling constants, we need not
write actual dispersion relations. We will base our con-
clusions on a comparison of one-meson-exchange ampli-
tudes in Born approximation. This procedure circum-
vents the ambiguity discussed above, provided the inter
action remains SU(6)rr symmetr-ic when one particle is
tahen og the mass shell. One may study the off-mass-shell
symmetry conveniently by consider the direct pole
amplitudes M,+Mb ~ M, —& M, +Mb in the s direc-
tion. We exclude V'V'V' vertices from the discussion
temporarily. It may be shown that if Eqs. (1) through
(2d) are applied off the mass shell, the amplitudes re-
ferring to V' direct poles do not contain a multiplicative
factor of s/M' that is contained in the other amplitudes.
For example, the P+P —+ V' —b P+P Feynman am-
plitudes are proportional to (s—M') '(p p'), while the
V'+P +P —& V'+P amplitud—es are proportional to

(s—M2)-'(e p) (e' p')
= (s—M') '(~ p)(~' p')9/(4M')1

(A prime denotes a final-state variable. ) Thus, the inter-
action must be modified; in order that the results be
reasonable, it is necessary that the modification does not
introduce threshold zeros or poles into the one-meson
exchange contributions to the P-wave amplitudes.

The necessary modification factors may be applied
to the terms of type e1. (P2—P3) in Eqs. (2a) and (2'c).
For each such term we make the replacement,

e1 (p2 p3) ~ el'(p2 p3)L (p2+p3) /M j ~ (t)

In order to complete the modification, it is necessary
to multiply I«&' by a fa,ctor chosen so that the energy
dependence of the amplitudes involving V'V'V' ver-
tices is the same as that of the other amplitudes. This
may be done. However, it is not necessary for us to de-
termine this modification factor, for reasons given in
Sec. IID.

It must be emphasized that this modification pro-
cedure is only a substitute for the use of dispersion rela-
tions to determine the energy dependence of the P-wave
amplitudes. The procedure introduces a threshold zero
into the 5-wave amplitudes, so that modification of the
P and transverse V exchange amplitudes would be more
appropriate in a treatment of 5 waves. ' The effect of the
modification on the present calculation is discussed
further in Sec. IID.

D. Criteria for Bound States and Output
Coupling Constants

The threshold energy is particularly convenient for
projecting out the P-wave parts of the Born approxi-
mation amplitudes. The threshold P-wave amplitude is
obtained by dividing by p' those terms in the Feynman
amplitude that are linear in both the initial and final
three-momenta. For each amplitude, both types of ex-
change processes (t-channel and N-cha, nnel forces) must
be considered.

The amplitudes are matrices, since many channels
are involved. It is assumed that bound states corre-
spond to the largest positive eigenvalues of the threshold
amplitude matrices. It is assumed further that if these
Born amplitudes were used as E functions in partial-
wave dispersion relations, the right-hand cuts would
provide a common energy denominator for the different
components of the matrix amplitude. Hence, the ratio
of the interaction constants coupling two different two-
particle channels to a particular bound state is equal to
the ratio of the components of the channels in the
appropriate eigenamplitude of the threshold Born
approximation.

It is seen from Eq. (2d) that if the interaction Irr 1'
were unmodified, the amplitudes associated with this
interaction would vanish at threshold. This situation is
maintained when the interaction is modified. One may
verify this statement by showing that the relative con-
tributions of the V V'V' and V'V'V' parts of the inter-
action lyly to the one-meson exchange amplitudes at
threshold are in accordance with the requirements of
SU(6)1r symmetry. Hence, the interaction I' may be
neglected.

The V meson propagator is (6„„+p„p„/M')/
(—p' —M') where p is the four-momentum of the virtual
V meson. The second term in the numerator does not
contribute to the threshold P-wave amplitudes, and
may be. neglected. Furthermore, it can be shown that

' Such a procedure is used in Ref. 2.
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all the contributions from exchanged V mesons in the
zero helicity state (zero spin in the direction of the mo-
mentum transfer) result from the 6M term of the prop-
agator. These facts simplify the calculation.

We now study the effect of the modification of Eq. (7)
on the P-wave amplitudes. The contributions to the
unmodified Feynman amplitudes resulting from the
exchange of I' mesons, and V mesons polarized trans-
verse to the momentum transfer, are proportional to
A AB 4, where A and 8 are spin operators in the V-
meson spin space, and d, is the three-momentum
transfer. These amplitudes vanish in the forward
direction; however, the I'-wave amplitudes, defined as
in Eq. (6), do not vanish at threshold. The modification
of Eq. (7) introduces a multiplicative factor of

(—dP/M') into the contribution from the exchange of
zero-helicity V mesons, preserving the SU(6)s sym-
metry. It is instructive to compare these zero-helicity
V contributions with those that would result if no modi-
fication were made. The virtual t/" mesons concerned
are coupled at each vertex in the manner Ge (p+P'),
where p and p' are initia. l and final four-momenta and
the factors contained in G depend on whether the real
mesons are V or I' mesons. If Eqs. (2a) and (2c) are
not modified, and 1 and 2 denote the two vertices, the
Feynman amplitude Inay be written

1 1 '
2 2

GgG2
M'+ (pi —pi')s

Near threshold, the E-wave part of this amplitude in
the center-of-mass system is (GiGs/M') (—Spi pi'
—2pi pi') where the First and second terms result from
the time-like component, and space components, of the
virtual V meson. If the modification of Eq. (7) is
applied, the I'-wave part of this amplitude near thresh-
old is (GiGs/M') (—Spi. pi'). We conclude that the use
of Eqs. (2a) and (2c) without modification would
destroy the SU(6)s symmetry, but would lead to cal-
culated numbers that do not differ much from those
calculated in Sec. IV from the symmetric procedure.

Readers uninterested in the details of the calculations
may skip Secs. III and IV, and proceed directly to
Sec. V, where the results are summarized.

III. THE USE OF SU(6)s SYMMETRY

The one-meson exchange amplitudes are zero in the
forward direction and satisfy SU(6)ir in the backward
direction. We digress briefly from the description of the
calculational method to show how the symmetry of the
backward amplitudes may be demonstrated. As in
Sec. IIB, we start with a Hermitian representation for
the mesons, and then multiply the initial and final V'
states by the phase factors (i) and (—i), respectively.
It is shown in Sec. IIC that the Feynman amplitudes
for the direct pole processes a+5 —+ c ~ a'+b' satisfy
SU(6)~ symmetry in the forward and backward direc-

tions. (These indices denote helicity and internal quan-
tum numbers. ) In the center-of-mass system, the arnpli-
tude for such a process may be written

E ycabyca~ b~S (M S) Pa PaI

where E is a constant. The crossed process for this
amplitude is the c-exchange contribution to the ampli-
tude a+a' —+ b+b'. It may be shown tha. t the threshold
value of this amplitude term in the s direction is

ltgcabgca'b'(Pb Pa )

S(T )= (T&&T'),

4 (&s)= (z)'"(T&&T')n+ (z)'"(TS)~,

4 (Ss)= (-')'"(2' &) + (-')'I'(SS),
(10)

"R.E. Cutkosky, Phys. Rev. 131, 1888 (1963)."It follows from the argument of Ref. 10 that for any SU(n),
the only nonzero forces in this type of model are those associated
with the regular representation. A more direct way to demonstrate
that theforce in the state 280Q+280a is zero is to nse Eq. (3l of
Ref. 2.

The proportionality of the coefficients of Eqs. (8) and
(9) guarantees the SU(6)s syinmetry of the exchange
contributions of Eq. (9).

We now return to the relation of SU(6)s to the cal-
culation of the I'-wave amplitudes. The cos9 terms of
the E'-wave amplitudes are given by one-half the dif-
ference between the forward and backward amplitudes.
The coeKcients of these terms satisfy SU(6)~ sym-
metry. These terms are not sufhcient for determining
all the I'-wave amplitudes, but the symmetry is useful
for determining many coefficients, and for understand-
ing the results.

The allowed I'-wave amplitudes are antisymmetric
in the combined spin and internal indices. The coeK-
cients of cos8 in these amplitudes are linear combina-
tions of amplitudes referring to the various antisym-
metric terms in the direct product 35 35 of SU(6)s .
It is helpful to draw an analogy with an "internal
SU(6)" model, in which V mesons interact with the
VVV interaction discussed by Cutkosky, and SU(6)
is an internal symmetry. "The reduction of the anti-
symmetric representations in the direct product
3535 is 350+2800+280*. The one-meson exchange
force in the representation 2800+280* is zero."Hence,
the cos0 term in the I'-wave amplitude of the present
model corresponds erbtirely to the SU(6)s representa-
tion 35. We determine the sign of this cos9 amplitude
by noting that the only contribution to m-x elastic scat-
tering results from p exchange. The p exchange ampli-
tude is positive, corresponding to an attractive force.

We denote the triplets and singlets that correspond
to the spin-like quantum number of the internal-
symmetry model by T and S. The structure of the 35-
fold multiplet is (Ti, Ts, Ss). The wave functions for
these particles correspond to the antisymmetric 35-35-35
Clebsch-Gordan coefFicients of SU(6), and are given by, '
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where all the quantities in parenthesis are normalized
to unity, the cross and dot products refer to the way in
which the spin-lik. e indices of the T are combined, and
Ii and D refer to the F and nonet D-coupling described
in Sec. IIB.

One may use these equations to write analogous
equations for the components of the W-spin triplet
(V* ", P) and singlet (V') that occur in the coso terms
of the P-wave amplitudes. The W-spin equations may
be written in the shorthand form

4'(P )= (V*'"V"')

f(V ) = (V'*p)D,

It (Vi*)=uncoupled,

~(p.)=(-:)"(V 'V ')-+(-,) (Vp).
It(V,")=(-,') I (V *P) y(-,') I (V*'V)„

(11 )

(11b)

(11c)

(11d)

(11e)

2 0 (b)4"(~),
i=1

(13)

where the prime denotes the final state, and the sum is
over the 35 states of Eqs. (11a)—(11f).

Since we are interested only in comparing different
amplitudes, we will normalize in a manner that is con-
venient. The crossing matrix coefFicient for scattering
in the state 35 of the internal symmetry model is unity,
if both t and I channel forces are included. ' Hence, we
normalize the elastic SU(6)s amplitude in the state 35
to unity. The SU(6)s amplitude is the coefficient of
p'p"/y' in the general P wave amplitude. T-he trace of

any P-wave amplitude depends only on this cose term.
We normalize the P-wave amplitudes so that the trace
of any term (with each state multiplied by the weight
27+1) is equal to three times the trace of the spin part
of the coefficient of p'p"/p' (with each state multiplied

by the spin weight). These dimensionless P-wave
amplitudes and their eigenvalues are denoted by U;
they are essentially crossing matrix elements multiplied

by three. The factor of three is included so that U and
the 8'-spin amplitude are equal for elastic PP
scattering.

P(V s) (l)lf2(Vz, wVz, y) + (l)1/2(PP)p
+ (4)'"(V'V') ~ (11f)

where the states have been defined so that the relative
phases are positive. The relative phase of the two (VV)
terms of P(Vs') is given in conventional notation by
V V*+V"V"—V'V' i.e., one may write

4(V ') = (l)'"(VV) +(—:.)'"(«)o+(l)'"(Pp), (»)
where the subscript denotes the total spin angular
momentum.

Since the force in the representation 280Q+280*
vanishes, the cose terms of the general P-wave ampli-
tudes are proportional to the expression

The octet and singlet states may be characterized by
the charge conjugation parity of the I,= I"=0 members.
Transitions between states of opposite C parity are
forbidden.

B. The 1+ States

We now turn to the SU(3) singlet states of positive
C parity. There are no singlet P-wave PP states, so
these states are all of the type VV. The SU(3) singlet
state is symmetric in the direct products 88 and
11; hence the spin state must be the antisymmetric
spin-one state. We denote the unit VV spin vector by
S, i.e., S= (2) 'i'(V, XVb), where a and b label the two
mesons. One may use Eqs. (2) and (7) to compute the
forms of the V and P exchange contributions to the di-
mensionless amplitudes U for the VV~ VV process.
That part of the V exchange contribution that refers to
unit VV spin is proportional to the corresponding part
of the P exchange contribution. The form is,

U--', L(S t)(S' k')+(S k')(S' I)], (14)

where the primes denote ffnal-state variables, and k and
k' are unit three-vectors in the direction of the mo-
menta in the center-of-mass system.

We now make use of the SU (6)s equations of Sec. III
by considering the coeKcient of the k'k" term of U;
this coeScient is proportional to the expression,

S'S"=-', (V.XVb)'(V. 'X Vb')'. (15)

The total VV spin is one in all the D-type VV states of
Eqs. (11a) and (11d). The expression of Eq. (15) cor-
responds to the It (Pi)It'(Pi) contribution of Eqs. (13)
and (11a).The relation of the VsVb and ViVi contribu-
tions to Eq. (15) must be the same as in Eq. (11a),
i.e., the coupling is of the nonet D-type. The normaliza-
tion convention of Sec. III, together with the unit co-
efficient of the V "V& * term of Eq. (11a), implies the
trace condition Ui+3U3+5Ub ——3 on the eigenvalues of
the general P-wave amplitudes. The subscript is the
multiplicity (2J+1).

Finally, one applies a partial-wave analysis to the
general P-wave amplitude, Eq. (14), and uses the above
trace condition. The results are

(16)

IV. THE CALCULATIONS

A. States of the Reyresentations 27, 10, and 10*

The SU(6)s representation 35 contains no states of
the SU(3) representations 27, 10, and 10~. It follows
from the argument of Sec. III that the cos8 terms of all
Born amplitudes corresponding to these SU(3) repre-
sentations vanish. It may be shown that in fact, all
terms of these amplitudes vanish. The techniques used
in the rest of this section may be used to demonstrate
this fact, but we omit the demonstration.
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The most positive eigenvalue corresponds to J=0, and
may be identified with the P'~ meson.

U(vp)- —(V V')(k k'),

U(P,)--,'[(V k) (V'.k')+ (V k') (V' k)],

(17a)

(17b)

U(vi)) (V V')(k k') ——,'[(V k)(V' k')

+ (V k') (V' k)$. (17c)

It can be shown that the contributions of the U(vp)
and U(Pp) terms to representations contained sym-
metrically in the direct product (8438) are additive, so
that the sum is proportional to U(vii). The U(vn)
term is the only contribution to the elastic and inelastic
amplitudes involving the (lgl) state. Thus, all con-
tributions to the singlet (VP) states are of the form of
Eq. (17c).

In the forward direction, the contribution is of
the form V V'*+ V&V'&. This corresponds to the
P(vi)f'(Vi) terms of Eqs. (11b) and (13). If we con-
sider the full amplitude at all angles, the V spin and
orbital angular momentum may couple to form states
of J=0, 1, and 2. A partial wave analysis of Eq. (17c),
normalized with the convention of Sec. III, leads to the
results

Ug= —1) U3 ———,
'

) U5= ~

The triplet state may be identified with the V& particle.

D. The 8+ States

The octet M3E states, whose I,= I'= 0 members are of
even C parity, are of several types. The U8VS and U8V&

states that are symmetric in internal indices and are of
total internal spin one, and antisymmetric V8P8 states
contribute to the scattering. Actually, P8Pj states and
V8Vl states of total internal spins 0 and 2 are also of the
correct C parity, but it Inay be shown that all elastic
and inelastic amplitudes involving these latter states
vanish.

The Born amplitudes for the VV states are of the
form of Eq. (14).The ratios of the Clebsch-Gordan co-
eRicients for these states to those of the 1+states treated
in Sec. 8 are equal to the corresponding ratios in the
forward direction. These may be determined from
Eqs. (11a) and (11d).

C. The 1 States

The only SU(3) singlet states of negative C parity
are of the type (VP). There are three types of contribu-
tions to the VP —+ VP amplitudes, denoted here by
U(vp), U(Pr), and U(vn) The. first represents F-type
V exchange associated with the crossed process
VV —+ V ~PP, and the second and third represent
F-type P exchange and D-type V exchange processes
associated with the crossed processes VP —+ P
(or V) ~ VP. If V denotes the V spin vector, these
contributions are proportional to the expressions

We now consider the VP ~ VP elastic amplitudes.
In the antisymmetric octet state, the U(V~) and U(P p)
terms of Eqs. (17a) and (17b) are subtractive, rather
than additive. It may be shown that these terms com-
bine with the U(vn) term in such a manner that the
total result is proportional to the expression

-', [(V k)(V' k')+(V k')(V' k)). (19)

In the forward direction, only the V'V" term con-
tributes. This is consistent with the SU(6) s expressions
of Eqs. (11d) and (13).

It may be shown that the contributions to the in-
elastic amplitudes VV —+ VP corresponding to unit VV
spin (S) that result from V and P excha, nge are of the
respective forms

U(V)-(V' S)(k k')+-', [(V' k)(S k')
+(V' k')(S k)],

U(P)- (V' S)(—k k')+-', [(V' k) (S k')

+(V' k')(S k)].
The coeAicients are such that these expressions are
additive, so that the total VV —+ VP amplitude is pro-
portional to the expression

—,'[(V' k)(S k')+(V'. k')(S k)). (20)

It is seen from Eqs. (14), (19), and (20) that all the
elastic and inelastic amplitudes involving the VV and
VP states are of the same form, when expressed in
terms of the total (unit) intrinsic spin of the mesons.
Hence, the relative contributions to states of total
J=0, 1, and 2 for each of these amplitudes is given by
Eq. (16). The amplitude matrix U corresponding to
J=O is twice the matrix that corresponds to the cose
terms. This may be determined from Eq. (11d). The
result is

(vv) (vp),
(VV)n 1 1

!
(VP) p 1 1

(21)

The (UV)D states involve both V8vs and V8Vi states,
with the relative coupling prescribed by the nonet
D-coupling rules of Sec. IIB.The eigenvalues are 2 and
0. The state of eigenvalue 2 may be identi6ed with the
P Ineson octet.

The corresponding matrices for total angular mo-
menta 1 and 2 may be obtained by multiplying Eq. (21)
by (——,') and (-', ), respectively.

E. The 8 States

The most complicated case is that of the octet states
whose I,= Y=O members are of odd C parity. Hence,
we present only a brief outline of the calculation in this
case.

The HEM states that may contribute are antisym-
metric (F-type) VSVS states of total internal spins 0 and
2, symmetric VSP8, V~PS, and VSPq states, and anti-
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symmetric PSP8 states. It may be shown that the elastic
PP ~ PP amplitudes are of the simple form, k k', the
elastic VP —+ VP amplitudes are of the form of
Eq. (17c), and the PP —+ VP amplitudes vanish. The
remaining amplitudes are the elastic and inelastic

amplitudes involving VV states. The forms of these
amplitudes are listed below. The VV states are not
analyzed into spin 2 and spin 0 components in these
equations. The symbols A and B denote the spin vectors
of the two V mesons in the VV states, while V is the
spin vector for VP states. The amplitudes are

Uvv —+ vv U(V)+ U(P),
U(V)=2(pgii[(A A')(B B')(k k')j

—2(pi«[(A B)(A' k) (B'.k')
+(A' B')(A k)(B.k')j
+ipaii, a ii', «s [(A'A')(B k) (B''k') j ~

U(P) =(p„„,gii[k (AXA')k' (BXB')],
Uv'v ~ vp 6 pi, gii[(k A) (k' V'XB)],
Uvv~ pp-(A B)(k k') —a'g. [(A k)(B k')],

(22)

where the symbol (P,,', ;, , .. f(i,i', . ) is shorthand for
(1+X,, ) (1+X;,) f, and the operator X,;. ex-
changes the variables i and i' in the function f. The
quantities U(V) and U(P) are the V and P exchange
contributions to the VV elastic amplitude; the two
types of exchange lead to proportional contributions to
the VV —+ VP amplitude. The contributions of V and
P exchange to the VV —+PP amplitude are propor-
tional, respectively, to

and
2(A B)(k k') —(P««[(A k)(B.k')]

{—(pi,«[(A k)(B.k') 1}.
One can determine the coefficients of the various

terms by comparing the coefficients of k'k" with the
amplitudes determined from Eqs. (11e), (11f), and
(13).The results are listed below for the different values
of J.
J=3, U(VU)s=-', ,

J=0, U(VP) = —-', ,

(23a)

(23b)

J=2, (VV)s

(VU)

(U=
(VP)

(UP)

(3/16) i~s~

j (23c)

J= 1 (VU) s (VV) o (VP) (PP)
(VV) s 11/12 (5/36)'" (15/16)'~' (5/12)'I'

(VV) o 1/12 0 (1/48)'i'
U=

(UP) 3/4 0

(PP)
(23d)

TABLE I. Quantum numbers of multipiets with nonzero eigen-
values of the amplitude U. The superscript is the charge conjuga-
tion parity of the I,= F=0 states.

Eigenvalue

3
2
1
2

2

States

(1,1)+ (8,1)+ (8,3)
(1,3)
(1,5)+ (1,5) (8,5)+ (8,7) (8,5) (8,3)
(1,3)+ (8,3)+ (8,5) (8,1) (8,3)
(1,1)

where the subscripts on the symbols (VV) denote the
total spin angular momentum. The relations between
the VSP8, V8P~ and V~PS parts of the VP states are
given by the nonet D coupling rules. The matrices are
symmetric, so redundant elements are omitted. The
eigenvalues corresponding to J= 2 are ~,~, while those
corresponding to J= 1 are 2, &-,', and 0. The eigenvalue
2 may be identified with the V octet.

V. RESULTS

The quantum numbers of the P-wave Born-approxi-
mation amplitudes corresponding to nonzero eigen-
values U are listed in Table I.The normalization of the
U is defined in Sec. III. The states with eigenvalues 2
and —,

' may be identified with the 36 meson states
assumed originally. The eigenvalue associated with the
V~ particle is smaller than the others; it is pointed out
in Sec. IIA that a similar condition applies to the direct
pole residues.

We next check the consistency of the output and
input values of the ratios of constants coupling different
two-particle states to the same meson. As discussed in
Sec. IID, the output values are assumed proportional
to the components of the two-particle states in the
appropriate eigenamplitude. In the cases of the (1,1),
(1,3), and (8,1) amplitudes, each off-diagonal element
of the V matrix is the positive geometric mean of the
related diagonal elements, provided the phases are
chosen correctly. This condition implies that these
matrices have only the one nonzero eigenvalue. Hence,
the relative components of different MM states in the
eigenamplitude are the same as the ratios of the Born-
approximation amplitudes. The ratios are in accordance
with SU(6)iv and agree exactly with the input ratios.

On the other hand, the matrix of Eq. (23d), corre-
sponding to the multiplet Vs, has more than one non-
zero eigenvalue. (This extra complication results from
the fact that both the V'» type and V' type of helicity
state contribute to the cos8 terms of the amplitudes. )
One can use the matrix of Eq. (23d) to find the output
eigenstate P, «(Vs). The result is,

(36)"V. «(Vs) = (20)'"(UU) s+ (UU) o

+ (12)'"(UP)+ (3)'"(PP) (24)

The output and input coupling constants are equal in
the internal symmetry model discussed in Sec. III.
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Therefore, we may determine the input ratios from the
SU(6)s equations, using the fact that the probability
of a component of P(V8) that is characterized by a par-
ticular internal symmetry and internal spin is 3 the
corresponding probability of Eq. (11e), plus —', the cor-
responding probability of Eq. (12). The result is that
the input wave function is identical to the output wave
function, Eq. (24).

Since the eigenvalues U corresponding to the Pj, P8,
and V8 are equal, it is reasonable to assume that the
sums of the squares of the output coupling constants
associated with each of these states are equal. This is
consistent with the input assumption. The output value
of the ratio of the sum of the squares of the V~ coupling
constants to the sums corresponding to the other states
cannot be determined without more detailed assump-
tions concerning the energy dependence of the bound-
state amplitudes. Thus, the output results are con-
sistent with the input assumptions.

It is interesting to note that the probability of the
~7r state in the wave function for the p is only 1/18, so
this model diGers greatly from the simple p —xw boot-
strap model.

We now turn to the weakly attractive states that
correspond to the eigenvalue U= —',. It may be shown
from Table I that the ratio R=-', P S.'/P I,' for these
states is 14/3. It is pointed out in Sec. I that the value
2= 1 is required for a sum of SU(6) multiplets. Thus a
large "vertical" symmetry breaking occurs. In the
present case, the force in these states is sufficiently weak
that resonances may not occur. However, the results
domonstrate how SU(6)s -symmetric forces may lead
to large vertical symmetry breaking.

VI. CONCLUSIONS

The reason that the results of this model are simpler
than the method of calculation may be seen from the
following considerations. The P-wave amplitude con-
necting each pair of MM states is a scalar formed from
S, S', L, and L', where S and L are the total intrinsic
spin and the orbital angular momentum, and the prime
denotes a 6nal-state variable. The usual angular mo-
mentum analysis involves coupling S and L together,
and contracting with a similar combination of S' and
L'. In order to understand the influence of SU(6)s
symmetry, it is useful to consider an alternate coupling
order, in which various combinations of L and L' are
contracted with combinations of S and S'. Since only
J' waves are involved, the vectors L and L' may form a

scalar, vector, or second rank tensor, The scalar and

tensor amplitudes include L'L" terms, and are thus re-
lated to the SU(6)s symmetry. The structure of the
intrinsic spin parts of the L'L" terms could be used to
separate the scalar and tensor parts. On the other hand,
there is no L'L" term in the amplitude involving the
vector LXL'. These vector amplitudes are the only
amplitudes that may not be determined from SU(6)s
and the internal symmetry model of Sec. III. The cal-
culation of the one-meson exchange amplitudes at
threshold is necessary only to determine the LXL'
amplitudes. However, it is easy to demonstrate that the
vertices involving virtual P and transverse V mesons
are odd in the exchange of the initial and final three-
momenta of the real particles, while the vertices involv-
ing the exchange of longitudinal V mesons are even in
this exchange. Hence, all contributions to the ampli-
tudes are symmetric in the exchange of L and L'; the
LXL' terms vanish. This leads to simple results.

If one were to compute the meson exchange ampli-
tudes at an energy higher than threshold, the LXL'
terms would not all vanish. However, if one evaluated
the vertices at threshold, terms arising from higher
powers of (y —p')' in the expansion of the function
$M'+(p —p')'] ' of the propagator would not destroy
the symmetry with respect to the exchange of L and L'.
Thus, the static assumption used in this model need not
be very severe. One may use relativistic interactions
throughout; it is sufficient if the vertices are evaluated
when the real particles are nearly at rest.

The main conclusion of the paper is that an SU(6)s-
symmetric MMM interaction can bootstrap itself. Pre-
vious references lead to a similar conclusion regarding
the meson-baryon-baryon interaction. ' If the most im-
portant force diagrams responsible for binding the vari-
ous mesons and baryons are the simplest diagrams in-
volving only the meson and baryon supermultiplets
35Q+ i and 56, the interactions may bootstrap themselves
and, simultaneously, lead to heavier predicted multiplets
that deviate from SU(6) in the vertical (large spin)
fashion observed in nature. Clearly, the technique of
imposing SU(6) s symmetry on the input forces should
be applied to various MM, MB, BB, and BB states, in
order to test the general model. This procedure does not
involve arbitrary parameters, so that the predictions
concerning the relative magnitudes of forces and inter-
action constants will be definite.
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