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Generators of the de Sitter Group for the Hydrogen Atom
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Explicit Hermitian operator functions of g and p are constructed for the generators of the de Sitter group
O(4, 1) on the bound-state wave functions for the hydrogen atom. This is done for each of the one-parameter
family of irreducible unitary representations of O(4, 1) in which the irreducible representations of the four-
dimensional rotation group O(4) correspond to the degeneracy subspaces of the bound-state energy levels.
The commutation relations and the values of the invariants which label the representation of O(4, 1) are
veri6ed by direct operator calculations.
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I. INTRODUCTION

HE hydrogen atom provides a dynamically non-
trivial example of a system described by a group

larger than the invariance group of the Hamiltonian. '
The bound states of the hydrogen atom span a single
irreducible unitary representation of the de Sitter
group 0(4,1). This group has ten generators M s
= —Mtt, for cr, P= 0, 1, 2, 3, 4, satisfying the commuta-
tion relations

$M p,M, sf=i(g sMtt„g~Mps—
+gsvM-t gesM-v) (1—)

with g p
——0 except for gpp=& and g11—g22 g33 g44

= —1. The angular momentum and the I enz vector
provide representations

M;t = es7,tLt q;pt qt,p;—— —
Ms4=Ks= l2Hl "'Lqt/r+(s)sist(L~pt —P~Lt)j (2)

for j, k, 1=1, 2, 3, for six of the generators. ' These
are Hermitian operators which commute with the
Hamiltonian

H = P'/2 1/r. —

On the bound-state subspace they satisfy the com-
mutation relations (1) and generate a unitary repre-
sentation of the four-dimensional rotation group 0(4).
This subgroup of 0(4,1) is the invariance group of H
for the bound states' '; its representation is irreducible
on the subspace spanned by the bound states for any
one energy eigenvalue.

The irreducible unitary representations of 0(4) are
labeled by two invariants, which for the generators (2)
are

,'M, sM, s L'+K'—=—1—(——2H) '
and

1 to 4. Thus, if we knew no more about the hydrogen
atom than can be learned from the 0(4) generators
(2), we could deduce that each bound-state energy
eigenvalue E of H corresponds to one of the values

for j=0, ~, 1, 2, which are allowed for the first
of the two 0(4) invariants (3) when the second is
zero. 4 ' But we would not know that there actually is
an eigenvalue of H corresponding to each of these
allowed values. Nor would we know that for each
eigenvalue the subspace of eigenvectors does not sup-
port more than one multiple of the irreducible unitary
representation of 0(4) speci&ed by the invariants.

Interest in the larger group 0(4,1) is due to the fact' r

that it has a one-parameter family of inequivalent ir-
reducible unitary representations in each of which the
irreducible representations of the subgroup 0(4) cor-
respond to the hydrogen-atom bound states. These
are the irreducible unitary representations labeled by
a positive value and zero, respectively, for the two
invariants

where

—
gpvZVi„trav )

=1Rp —8 6Iggttpy)3f 0tp3Eyg

and each repeated index n, P, y, 5, tt, v implies a sum
from 0 to 4, with e„p» being totally antisymmetric,
and ep]234= 1.7 Any one of these irreducible unitary
representations of 0(4,1) provides a complete group-
theoretic description of the hydrogen-atom bound
states. It provides an answer to the questions mentioned
above which are not answered by studying the genera-
tors (2) of 0(4): for each energy eigenvalue, the ir-
reducible unitary representation of 0(4) which char-
acterizes the subspace spanned by the bound-state
eigenvectors of H occurs once and only once in the

W. Pauli, Z. Physik 36, 336 (1926).
s The operators Jq=v'(L+K) and Js ——~~(L—K) commute with

each other, and each satis6es angular-momentum commutation
relations. Therefore J1' and J2' are invariants which must have
values j&(j&+1) and j&(j&+1) for an irreducible representation.
If J1'—J2' ——L K is zero, then j1=j&=j and L +I =2(J1 +J2 )
has the value (4).' L. H. Thomas, Ann. Math. 42, 113 (1941).' T. D. Newton, Ann. Math. 51, 730 (1950).
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GENERATORS OF DE SITTER GROUP

irreducible unitary representation of 0(4,1).This makes
us curious about the generators Mo which do not
commute with H and which have not been understood
as physical quantities like the generators (2) of 0(4).
Bacry solved the Poisson bracket relations to And
expressions for these generators in classical mechanics;
Bander and Itzykson, ' Ban "and Budini" have found
a representation for them on the Hilbert space of
square-integrable functions on Fock's unit four-
sphere'; but explicit expressions for the generators Mo
as functions of operators g and p on ordinary hydrogen-
atom wave functions have been unknown.

Q 2 —1/s

g
—~t&(&v&LT. (—,+& T.(—.—

&$

1V(cV+1)

~o4=lgs'++&+Ts'+ 'j 1+
lV(A+1)

—1/2

ei8(N)

1+
N(N+1)

—1/2

c rs(&&(T—s( +&+T—,(—,—&j (6)

II. STATEMENT OF RESULTS

Using Thomas' formulas for the matrix elements, '
and working with hydrogen-atom wave functions in
parabolic coordinates, we have constructed the
operators"

—1/2

Z;e(,N)

for j=1, 2, 3; N=
~
2H~ '" and N and E; mean that N

and E; (which commute with each other) are placed
to the right of everything else. Different values of Q
give inequivalent irreducible unitary representations of
0(4,1); Q and zero are the values of the two invariants

(5) which label the inequivalent irreducible unitary
representations of 0(4,1) in which the irreducible
representations of 0(4) correspond to the hydrogen-atom
bound states. ' Different functions 8 give equivalent
representations related by unitary operator functions
of II; they account for all the unitary transformations
which leave the generators (2) of the invariance group
unchanged. %e have veri6ed by explicit calculation
that on the bound-state subspace the operators (6)
are Hermitian and that, together with the operators
(2), they satisfy the commutation relations (1) and
give the values Q and zero for the two invariants (5)
of 0(4,1). In the classical limit the operators (6) reduce
to Bacry's solution of the Poisson bracket relations. '
These calculations are described in the following
sections.

Finally it should be noted that the properties of
the operators Mo on the bound-state subspace do not
determine these operators uniquely as functions of q
and y. For this it would be necessary to specify the
properties desired for these operators on the continuum
subspace. Thus, as far as the bound-state subspace is
concerned, we may add to the operators Mo given
above any functions of g and p which have zero pro-
jections on the bound-state subspace.

for j=1, 2, 3; Q can be any positive number, 0 can be
any real function (zero, for example), and

III. METHOD OF CONSTRUCTION

Formulas for matrix elements of the generators Mo
are given by Thomas. ' For the irreducible unitary
representations of 0(4,1) relevant to the hydrogen
atom, these matrix elements are for a basis in which B,
J3, and E3 are diagonal; the basis vectors are labeled
by j =0, -'„1, —,

' and mr, r&ss
———j., —j+1, j; the

eigenvalues of H are given by (4), and the eigenvalues
of Ls and Ks are r&tt+rr&s and mt —ms, respectively.
The hydrogen-atom wave functions in parabolic co-
ordinates provide such a basis. ' In the notation of
Schiff, " the bound-state wave functions I 1 2 of
parabolic coordinates are (unnormalized) eigenvectors
of H, Ls, and Ks, the eigenvalues of H are —(2e') '
with tr=tst+Ns+ ~rN~+1, and the eigenvalues of Ls
and K3 are m and e1—e2, respectively. Thus, allowing
for normalization constants and phase conventions, we
know how the generators Mo shou1d operate on these
wave functions. In particular, M03 and Mp4 should take
a wave function I„, , to certain linear combinations
Of the fOur WaVe funCtiOliS nndl n2m and Nn] n2+1,m.

Since M01 and M02 can be gotten by rotating M03,
the problem is to find operators for raising and lowering
s1 and s2.

"I.. I. Schi6, QNantum Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), 2nd ed. , pp. 87—89.

' H. Bacry, Nuovo Cimento 41, A222 (1966).' M. Bander and C. Itzykson (to be published)."M. Y. Han, Nuovo Cimento (to be published)."P. Budini (to be published)."A set of operators Mo has been constructed from wave
functions in spherical coordinates by R. Musto, Phys. Rev. (to
be published). We get the same operators for each value of his
label q by setting Q=2 —q(q+1). Thus positive Q correspond to
1&q&~—~ and q= —~+ih for positive h. Musto emphasizes also
the representations for positive integers q. A representation of this
type is irreducible on the subspace spanned by the bound states
for n)9. (The square-root factors in (6) are zero for f&7=9 This.
prevents the operators Mo from connecting the subspace for
a)q to the subspace for I& 9.) Positive Q label representations
of Newton's Class I and positive integers q label representations
of Newton's Class II (Ref. 7).
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Of the operators (7), T~&++& and T~~ & are raising
and lowering operators respectively for n&, and T3'+
and T3& +) are raising and lowering operators, respec-
tively, for e2. The main factors for raising and lowering

e~, for example, are derived from the presence in I, ,
of an associated Laguerre polynomial L,+~ ~~ ~(f/n)
with $ being one of the parabolic coordinates. "

The factors (N/N+1)'&'& are dilation operators.
They scale the coordinates of the wave functions from
x to Ln/(n&1)jx. For example, they take $/n to
$/(n+1) in the associated Laguerre polynomial. They
are obtained from the scaling operation

f(ax) =a*'vf(x)

for a positive number u by substituting the operator E
for its eigenvalue n. To be in a position to operate
directly on its eigenfunctions, N must be placed to the
right of all other operators. This is indicated by the
bar.

The recurrence relations and differential equations
satisfied by the associated Laguerre polynomials imply
that"

n,+ I'll+1
L„,+,+&„~~-~(s)=

ng+1

la

)&I s +n&+—lrnl+1 —s IL»+(„)~"~(s)
l

L~x—&+[~~~ ~(s)=(nq+Iml) 'I s—nq IL»+[~~ (s).
Eds i

Operators for raising and lowering n~ in the index of
the associated Laguerre polynomial are obtained by
substituting the operators N, L3, and E3 for their
respective eigenvalues n~+n2+

I
es I+1, m, and nq —n2.

Since N, L3, and E3 commute with each other, there
is no problem in placing operators to the right in a
position to operate on their eigenfunctions. This is
indicated again by bars.

Neither the dilation operators nor the raising and
lowering operators for the indices are unique, since
their properties are required only on a particular set of
functions. To the latter, for example, we could add the
di6erential operator which annihilates the associated
Laguerre polynomials. Once these choices are made,
however, operators (6) and (7) are obtained from the
matrix elements by putting the various parts together,
taking account of normalization constants and the
various factors of the wave functions. At this stage we
did not bother with phase factors. The most general
phase factors, involving the arbitrary function 8, were
determined in the verification procedure.

"Similar raising and lowering operators were constructed by
E. Schrodinger, Proc. Roy. Irish Acad. A46, 9 (1940), and L.
InfeM and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

NT;&+ &=T;&+ &(Na1)

M;4T;t +&=T, ~ +&(M,4a1) (9)

for j=1, 2, 3. The 6rst of the relations (9) follows, in
turn, from the demonstration that for bound states"

—(1/2N2) T &+ ' =IIT &+

= T + &H(N/(Nai))' (10)
=T,&+ &L—1/2(N~1)2j

for j=1, 2, 3. To prove (10) one simply calculates the
commutator of II and T;&+ ~ and appropriately re-
arranges terms. The only novel feature arises in taking
B through the scaling operators; for example

t N

(7+1)
1 1- N ~'~~

2(N+1)' N+1 r N+1i'

The calculation of the second of the relations (9) then
proceeds in a similar fashion. The third of the commuta-
tion relations (8) follows from the properties

LT.(6,+& T.(k,—&j—0

16T,&++&T;&- -& = Ls2 —(NOMIC, W1)',

16T,' 'T,'++&=L' (X&K,&1)'—
for j= 1, 2, 3, which can be verified by direct
substitution.

VerifKation that the values of the invariants (5)
for this representation are Q and zero, respectively,

"Qn thebound-state subspaceN=( —2H) 'I'and H= —{2N ) '.
our operator algebra is done with these relations. The algebraic
manipulations of this section (but not the proof of Hermiticity)
are then valid for positive as well as negative H. However with
this definition of N the formulas {6) and (7) do not give well-
defined operators 350„on the subspace for positive H. A useful
feature of this operator algebra is its invariance under X ~ —N.

IV. VERIFICATION

It is possible to work directly with the operator ex-
pressions (6) and (7) for the Mo and, for example,
verify that on the bound-state subspace they satisfy
the commutation relations (1).Evidently M04 commutes
with L, and the operators Mo; for j=1, 2, 3 satisfy the
commutation relations of a vector with L. It is neces-
sary to verify in addition only the three commutation
relations

LM34,M40j = iMpa

LM03 M34j = iM4O

PION, M4p j=iM34

as the remaining commutation relations can be shown
to follow from these by use of the Jacobi identity.

The 6rst two of the relations (8) follow immediately
once we prove that on the bound-state subspace"
the T, & ~ ' are raising and lowering operators for N
and M;4'.
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presents no new problems. It is easy to see that

I.;M,4= 0,
42= 2gaM O,~24

I.;My; =0,
for i=1,2,3,

where sums over j, &= 1, 2, 3 are understood, and from
these that the second invariant vanishes. In calculating
the 6rst invariant another useful property of the
g.(, ) is

8(T.(+,+)T.(~,+)+T.(6,—) T.(~,—))

2I 2+ 1 N2+g, 2 I .2

for j=1, 2, 3.
That the generators Mo are Hermitian follows from

the properties

(T.(+,+)) t — T.(—,—) (T.(+,—)) t — T.(—+) (12)

(22',k', m'I (T2(++&)'I 2k2, m)= b. „rt'&2,21&,

( N )
—i%'p—1—

&&(e—1,k —1,mII
EN +1)

iq y+3—N"+1

1
+ r+irpp+q2/r E2 +- ——

qp I n, k,m)
N +1

~n', n—1~k', k—1~m', m

1
&&(I—1,k —1,mI iq y+3 N+ —r+irp2+qp/4

N —1

1 -p N ~'&'p+'
—&2+1+ q2 I

N 1(N—1J— I
22,k,m)

„-,~2. 2-,~-,(~ 1,,k 1—,m I
T—,( &I ~,k-,m-)

=—(~',k', m'I T,(--& I~,k,m), (13)

for j=1, 2, 3. Our proof of (12) requires some resort
to matrix elements. Thus, consider matrix elements of
(T2(++&)t between eigenvectors of N, E2, 1.2 labeled

by eigenvalues e, k, ns. Using our knowledge of the
properties of the scaling operators, and of which states
are connected by the operators involved, we 6nd that

where S and E3 mean that N and E3 are placed to
the left of everything else. The identic. cation of the
matrix element in (13) with the matrix element of
T3& ' follows from the equivalences

(1/(N —1))r 2N —1, qp/r 1, iq 1& N —2

irpp-N —1, (1/(N —1))qp E2+N —1, (14)

where A 8 means that

N ~(2 p+1

(n —1k—1mIA
I I&2,k,m)

N+ 1i

N )iq p+1

=(.—1,k-l, mIaI
I N+1)

The proof of the relations (14) follows by taking
the matrix elements of various operator identities such
as (11).

Bacry's solutions 8;=3f 0, for j=1, 2, 3, and
S=M40 of the Poisson bracket relations' are obtained

by considering (6) and (7) as functions of classical
variables q and y and taking the limit for large E.
For example

(N/(Na1))'2 p ~ 4,-'2 p( .

It is easy to see that the other factors agree with
Bacry's by rearranging a few terms, neglecting oc-
casionally a term of higher order in 1/N, and adjusting
the phase 0.
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