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Equilibrium of a Large Assembly of Particles in General Relativity
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A new approach to the problem of the equilibrium of a relativistic configuration is proposed, taking into
account quantum-gravitational effects. This approach is based upon the quantization of the motion of
the particles in the gravitational field. The case of an assembly of spinless particles is investigated by using
the formalism of second quantization and starting from a Klein-Gordon equation which includes in the
operator VrV' the gravitational field. The mean values (T,i,) of the operator T;a are computed. It is then
possible to derive from the Einstein equations a system of differential equations which represents the
equilibrium state for an assembly of a large number of particles. The corresponding problem for Fermi
particles can be investigated in a similar way.

l
'HE problem of terminal stellar evolution is equiva-

lent to that of the search for a state of mechanical
equilibrium (when it exists) of a large cold assembly
of particles. An extensive review of this subject was
recently done by Wheeler and co-workers. ' The study
of this problem requires both the general theory of
relativity and quantum mechanics. Usually, the gen-
eral theory of relativity is introduced to describe the
macroscopic mechanical behavior of the system and
the quantum theory comes into play in determining
the equation of state of matter (for instance, the Pauli
principle determines the properties of a superdense
neutron gas).

It is our aim to present in this paper an approach
to this problem based upon the quantization of motion
of the particles in the gravitational field. Even if such
an approach seems premature because of the present
lack of knowledge about the relation between quan-
tum theory and gravitation, a thorough treatment of
it may well prove important or even essential to a
satisfactory understanding of the final stellar evolution.

We shall treat the problem in a semiclassical manner
because we neglect the effects of the quantized gravita-
tional field. For the sake of simplicity, we shall consider
the case of an assembly of spinless particles. However,
we wish to point out that the formalism will be such
that it can also be applied to the case of particles with
spin.

Let us take the Lagrangian for a spinless particle:

relativistic Klein-Gordon equation'

v,vg —p'/= 0.

Here the effect of the gravitational 6eld is included in
the operator V;V'.'

Using the formalism of second quantization, we shall
interpret P as an operator. In a similar way, the tensor

is the operator corresponding to the energy-momentum
density.

We can write the Einstein equations

Mg, =—R,s——',gg R= «(T,s), —
where (T,„) is the mean value, in the quantum-mechan-
ical sense, of the operator T;I,.

The line element corresponding to a time-independ-
ent spherical symmetry is given by

ds'= B(r) (dx')'+2—(r)dr'+r'(sin'8d y'+d8') (5)

The Klein-Gordon equation becomes

We can separate the variables as follows:

and we obtain from Eq. (6)

d rj
(1) 8-(g'(-g)'8et )

~ &(a")' V'(—g)

where re is the mass of the particle, p, =wc/A.
The corresponding equation for the P field is the

+(~B '—p') y=0. (8)
Now we put

lt(x4)=I"(8,q)R(r)e*"e+I'*(8,y)E*(r)e '"~. (9)
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This expression guarantees that the operator f de-
scribing a chargeless field is Hermitian. I' must be a
solution of the orbital Legendre equation, and R(r) is
the solution of the radial equation

d'E 2 8' A ' dE.
+ -+

dr' r 28 2A dr

l(3+1)
+ A(E'B ' —p') — R=O. (10)

Since we are interested in equilibrium states, we
should require that E vanish at infinity and be finite
for r=p. We consider only the bound states and, in
analogy with the treatment of the H atom in quantum
Inechanics, we suppose that the eigenvalues E of Kq.
(10) are discrete (1=0, 1, 2, 3 ).

We can write the general solution of Eq. (6) as
follows:

PUi~~+Y„'R 'e"'e"/~2

ing system:
.8' 1 ].

A
—1(Rol )o+ (p2 B—1E012)R0121

1 1
hf' +—

(=—1—)
oel (B Eol +p )Roi +A (Rol ) j (16)

Roi"+Roi' —+ — + t A-'(Eoi'B —' —p') gR =0
r 28 2A

where o= (m'c'/A)A&V. Eoi represents the first eigenvalue
of Eq. (10) (1=0) with the boundary conditions

4op, ' A' "Roior'dr'= 1, Roi (0)= finite value,

Roi( ~ )(, (17)
rl+y2

where y' is an arbitrary positive quantity. The other
equations

~22 g&T22+U( Y„*'R *'e '+e"/V2) (11.)
M3' ———aT3',

Let us write the operator f as the sum of two operators are consequences of Fq. (16) because of the llianchi

4 =4++4, identities
V' Hag, '=0

where

f+—Q (U +Y iR leixiE~/~Q)
l, m, n

(Ui Y *'R *'e "'e"/W2)
L,m, n

(13)

(14)

where a prime denotes differention with respect to r.
The Einstein equations with Eq. (10) give the follow-

U~ „+ and U~ „must be interpreted, respectively, as
the creation and annihilation operators of a particle in
the state with angular momentum hl (s component
hm) and energy E».

By writing T;~ as a quadratic form of the creation
and annihilation operators, we can compute the mean
values of the operator T,I„

(T*i&=(cIT'~lc&,

where (C I
is the state vector describing Ã particles in

the state of lower energy. The components of the
energy-momentum tensor turn out to be

&~[2 "l~&=—:('/")~
XL(B iEolo+go)Rolo+A —1(Rol )oj

(c [r,.lc»=0,
(c I

Ti'IC)=-', (+Pc'/h)N

XL(R»')'A-'+ (B 'E»' —p') Roio),

&4,
I z,olc,&= &C,

I z,o[C,&=;(~o/co)~
XL(B 'Eoio —p,')Roio —A (Roi')'j,

and of the relation
V';Tp' ——0. (19)

Actually, if we give the value E, the solution (if it
exists) of the system (16) under the aforesaid boundary
conditions will represent the equilibrium state for an
assembly of S particles. Of course, for astrophysical
purposes, it is more interesting to consider the corre-
sponding problem for Fermi particles. This can be
done in a similar way, and we consider brieRy the case
of particles with spin —,'.

We start from the spinorial equation in the general
theory of relativity'

~ .~i+A &gpA p2PA 0 (20)

It is possible to write the expressions for the energy-
momentum operators of the spinor field and to com-
pute their values. From these, we obtain a system
equivalent to the system (4) valid for an assembly of
particles with spin -,'.
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