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In addition to their "Machian" eBects on inertial frames, rotating bodies also have "Machian" effects on
electromagnetic 6elds. It is well known that a rotating charged shell in flat space exhibits an electromagnetic
Geld within it. However, if this rotating charged shell is surrounded by a (concentric) slowly rotating mass
shell which rotates with the same angular velocity, the electromagnetic 6eld within the charged shell de-
creases as the mass of the outer shell increases. Finally, as the gravitational radius approaches the radius
of the mass shell, the electromagnetic 6eld within the rotating charged shell vanishes. If in this limit the two
shells rotate with different angular velocities, one caneot distinguish (even with electromagnetic Gelds
reaching beyond the mass shell) whether the charged shell is rotating or the mass shell is rotating in the op-
posite direction. Therefore, in a certain cosmological model of our universe, the electromagnetic 6eld within
a rotating charged shell vanishes when the latter rotates with the same angular velocity as the bulk of the
matter in the universe.

I. INTRODUCTION

N 1918,Thirring' showed that a slowly rotating mass
- - shell drags along the inertial frames within it. Since
he used the weak-field approximation to Einstein's
equations, ~ Thirring's result is valid only when the
induced rotation of the inertial frames is small compared
to the rotation rate of the shell. Mach's principle' sug-
gests that, for mass shells comprising more nearly utl

the matter in the universe than those treated by Thir-
ring, the inertial properties of space within the shell B,re
completely determined by the shell itself. Recently it
has been shown that this is indeed the case.4 As the
mass of the slowly rotating shell increases, the inertial
frames within it are dragged along more and more until,
in the limit as the Schwarzschild radius approaches the
shell radius, the angular velocity of the inertial frames
approaches that of the shell.

Since the inertial properties of space within the mass
shell are completely determined by the shell in this
limit, it seems natural to ask if properties other than
inertial ones are also completely determined by the
mass shell. To investigate this question, we consider
the electromagnetic Geld associated with a single
uniformly charged rotating shell of negligible mass
concentric with the outer mass shell. Such a calculation
would also throw light on a conjecture of Schiff' that
the electromagnetic 6eld outside two concentric uni-

formly charged shells having equal and opposite charge
vanishes when there is no relative rotation between the
charged shells and the distant matter in our universe.
Schiff made this conjecture after re-examining the well-
known result that impact sPace this electromagnetic 6eld
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vanishes when the shells do not rotate relative to a
Galilean coordinate system.

Today it is possible to test this conjecture using a
particular cosmological model of our universe, a rotating
mass shell (with radius approaching its gravitational
radius') which represents the matter in the universe.
This model has the merit that the inertial frames within
the shell cannot rotate with respect to the shell. This
explains why the "6xed stars" are 6xed with respect
to our local inertial frames. '

In the spirit of Schiff's conjecture one would expect
the electromagnetic field within a charged shell to
vanish when it rotates with the same angular velocity
as the bulk of the matter in the universe. However, if
such an effect exhibits itself, we are faced with a paradox
described below. If the charged shell rotates relative to
an inertial observer (who remains at a constant distance
from the shell) in the asymptotically flat region at
in6nity, this observer sees a current represented by the
rotating charged shell. Since a current must be linked
by electromagnetic lines of force, one would expect this
observer to see an electromagnetic 6eld within the
charged shell. (This latter idea is also suggested by the
well-known result that, in Qat space, an electromagnetic
field manifests itself within a uniformly charged shell
which rotates relative to the inertial frames at in6nity. )
Thus we are left with the question: Does the 6eld
vanish or not?

This paradox is resolved when one takes into account
the differences in the proper times of the various ob-
servers. These proper times are related by the position-
dependent red-shift factor $V in Eq. (5)) of the
Schwarzschild solution. As the Schwarzschild radius is
approached, time advances more and more slowly (e.g. ,

6 It has been frequently pointed out (see e.g. , R. H. Dicke, J.
Wash. Acad. Sci. 48, 1959) that this relation between the mass
and radius appears to hold for the actual universe to within the
accuracy of the observations" (i.e. to within a factor of 100) at
the present epoch. Of course, the mass distribution of the actual
universe is diferent from that of a shell.' For recent observational data see G. M. Clemence (to be
published).
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an operation which takes one second in the proper time
of an observer at infinity may seem to take a thousandth
of a second when seen by an observer at or within the
mass shell). In the cosmological model considered here,
the radius of the mass shell approaches its gravitational
radius. Thus if the charged shell rotates with finite
angular velocity in the proper time of an observer
within the mass shell, it will be nonrotating in the
observer frames which are inertial at infinity. Hence all
observers will agree that the magnetic field vanishes.

In Sec. II we give the well-known solution for the
electromagnetic field associated with a rotating charged
shell in Oat space. This Rat-space solution is similar to
the curved-space solution (Secs. IV and VI) since space
within the mass shell is Rat. Since the main interest is
the e8ect of the masses of the universe om the field
rather than vice versa, we consider an electromagnetic
field of negligible stress energy. This condition simplifies
the calculatiozs by reducing the problem of solving the
Einstein-Maxwell equations to that of solving only the
curved-space Maxwell equations, for the metric is
already known. 4 This metric for a thin slowly rotating
mass shell is given in Sec. III. In Sec. IV, Maxwell's
equations are solved in the curved space associated with
a rotating mass shell. Boundary conditions are discussed
in Sec. V. The effect of the masses in the universe on the
electromagnetic field associated with a rotating charged
shell is discussed in Sec. VI.

II. CHARGED SHELL IN FLAT SPACE

In flat space, the electromagnetic field (of negligible
stress energy) associated with a rotating charged shell
is well known. However, for completeness and to
facilitate comparison with later results we give this
familiar solution here in the kind of language which we
will be using later in curved space; the components of
the electromagnetic field are given with respect to
orthonormal Cartan frames" oP, co', oP, ~' chosen
parallel to the differential forms dt, dr, d8, ~ Qdt, —
respectively. In three-dimensional Rat space, com-
ponents relative to these frames are the familiar r, 8,
and p components of vector analysis (Fig. 1). Here we
are using the metric

$2 — (idp)2+ Q ((pi)2

dtp+drs+rpd82+r2 sln28 (dilly Qdt)2

where 0 is the angular velocity of the inertial frames
relative to an observer.

Let h~ and h2 be the components of the magnetic field
relative to the orthonormal frames cu' and cv'. The
angular dependence of h~ and h2 is the same for all r,

' E. Cartan, Les Systemes

Differentials

Exterielrs {Hermann Bt
Cie. , Paris, 1945); see also, e.g., D. Brill and J. Cohen, J. Math.
Phys. 143, 238 (1966}and the references cited there.

V1Z.
7

Itt ——ts(r) cos8; hs ——p(r) sin8, (2)

with n and p being functions of r only. For a rotating
uniformly charged shell of radius r„ total charge q, and
angular velocity co. relative to an observer, the solution
of the Maxwell equations takes the form

eg ——0,
n = —p= 2q(ip, —0)/3r, for r&r, ; (3)

III. ROTATING MASS SHELL

In this paper, the main interest is in the eBects of a
thin rotating mass shell oe the electromagnetic field
rather than vice versa; it is reasonable, therefore, to
consider an electromagnetic Geld of negligible stress
energy. Since this electromagnetic Geld does not affect
the geometry, the metric for a weakly charged shell
within a Inass shell is the same as that for the mass
shell alone. This metric for a thin slowly rotating mass
shell' of radius ro was found in Ref. 4

ds'=4'[dr'+r'd8'+r' sin'8(d4 —Qdt)'$ —V'dt' (3)

where

V = Vo= (ro —n)/(ro+n), +=Co= 1+(n/ro) '
(6)0=Qo for r(ro,

V = (r u)//(r+n), @= 1+ (u—/r),
Q= (romp'/r%')'Qo for r)ro.

Here the constants have the values

Qo= ~./(1+ L3 (ro —n)/gn(1+Ho) j)
Pp

——n/2(ro —n),

V,= (»,—)/(r, + ),
@p——1+ (n/rp),

(8)

(9)

(10)

(11)

2e is the mass of the shell as seen by an observer at
infinity, and w, is the angular velocity of the mass shell;
the elastic stress in the shell is proportional to Pp.

~ Comparison of the exterior solution iven here with that of
Kerr PR. Kerr, Phys. Rev. Letters, 10, 87 1963)7 shows that when
a is suKciently small so that terms of higher power than the first
are negligible but m is allowed to be large, Kerr s exterior solution
can be matched to an interior solution.

ei ——q/r',

is= 2p= (r/r, )'2q((p, —0)/3r, for r)r, .

Because of the choice of frames, the above components
are given relative to a nonrotating frame. Note that it is
the relative velocity of the charged shell relative to the
inertial frames (cp.—0) which appears in the above
equations. When this relative velocity vanishes, the
electromagnetic field within the charged shell (3)
vanishes also.
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frames (15) are ei, hi, and hp. Hence the electromagnetic-
field tensor can be expressed as the differential form"

f= of~~op"

=e»o A ar'+ jg,pop A cop —jg»i A ~p (16)

Uniformly charged
spherical shell

in tartan's notation. "
To write the curved-space Maxwell equations in the

language of exterior differential forms the electric-
current vector must be expressed as an exterior dif-
ferential form

X
(L

FIG. 1. Orientation of Cartan's moving orthonormal frames co&

relative to the uniformly charged shell which rotates with angular
velocity ey,

(17)

(Is)

J=J~cv&.

The tensor expression for this vector is well known

J"=crU")

where 0. denotes the electric charge density and U&

denotes the four-velocity of an eIement of charge.
Relative to the vectors dual to the above orthonormal
frames, the nonvanishing components of the four-
velocity are

To facilitate the transition (later) to a particular
cosmological model of our universe, it is convenient to
transform the metric (5), which is the same as Eq. (1)
at infinity, into a form which is the same as Eq. (1)
within the mass shell. This is accomplished via the
coordinate transformation

U& = (1,0,0,r@' sing (po, —Q)/V)
Vol = t ) 0'02' =r .

The transformed metric retains the form of Eq. (5),

ds'=4'4/dr'+r'dg'+r' sin'8(d4t —Qdt)'] —V'dt', (13)
(20)J=~L—~'+%' sing(~. —Q)~ /V].

The source-free set of Maxwell equations""
if we set

a =a%'p'(r p,n),
4 =@(r,n)/+p(rp, n),
V= V(r,a)/Vp(rp, n),
co, =(u,/Vo(ro, n),
Qp=(o, /(1+ $3 (rp —n)/Sn(1+ pp)]),
Q= (rpe'po/re')'Qp for r& ro,

Q=QO for r&rp)

df=0, (21)

takes the form

0= f(r4')'hi]„- sing+r%'(hp sing) p.(14) (22)

Here the subscripts r and 8 denote partial diGerentiation
with respect to r and 8. The other set of Maxwell
equations

(12)
to erst order in cu, —Q. Here co, is the angular velocity
of the charged shell relative to an observer. Hence the
electric-current vector can be expressed as the one form

Po ——n/2(ro —a) .

The metric takes the same form as that of Eq. (1) in the
entire space enclosed by the mass shell since space ls
Qat there.

For the metric (13), a convenient set of orthonormal
frames is

8f=I or dpf=*j,

contains two nontrivial equations,

L(r+')' i];= r%'

(23)

(24)

(so= Vdt,

o)'=@'dr,
oo'= r4'd8,
pop= re' sin8(~ —Qdt) .

IV. CURVED-SPACE MAXWELL EQUATIONS

A. Form, ulation and Solution

By analogy with the Qat-space solution of Maxwell's
equations (2-4), we assume that the nonvanishing
components of the electromagnetic 6eld relative to the

[(r@P)Peg]pdr = ar'4'dr (26)

I D. Brill, Phys. Rev. 133, 3845 (1964). The definitions of the
de Rham d and 8 operators used here are the same as those used
by C. Misner and J. Wheeler, Ann. of Phys. 2, 525 (1957)."G. de Rham, Yarietds DQferentiables (Herman 5z Cie., Paris,
1960).

(r@'Vhp) —VC 'hi p+ ei (r%')'0„-sing
=or'4P (~,—Q) sing. (25)

Integration of Eq. (24) witil respect to r,
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yields the electric field

eg=0

ei q/—r—'
for r&r„
for r,gr(ro,

(27a)

(27b)

the boundary condition

r.+
ep ———2q(~, —Qo)/r o.

ei q/(r—e—')' for ro(r-.

Here the total electric charge q is defined by

(27c) Here r,+ and r, denote the limit r —+r, taken from
above and below, respectively. The integration of Eq.
(28) across this surface (r=r, ) yields

or% dr' r.+
=0

rc
(41)

the limits of the region containing the charge are
denoted by —and +.

Using the definitions (2), we can put Eq. (22) in the
form

0= [(r4')'n 1„-+2r@ 4p (28)

and Eq. (25) in the form

(r@2$/p) +fT@2~+e1(r+2)2Q gr2+6(oi Q) (29)

To obtain Eq. (41) we assumed that p is a regular
distribution (i.e., it corresponds to a function). If p
were not regular (e.g. if it contained Dirac-8 functions
or derivatives of 8 functions), Eq. (41) might not hold.
In the calculations which follow, we find that this
assumption is justified.

Integration of Eq. (30) across the surface r=ro yields
the condition

Elimination of p by substitution of Eq. (28) into
Eq. (29) yields

)Vr (r%")'ri;);=2ei(r+')4Q„- —2o (r+')'P (oi,—0) . (30)

For r(ro and r/r„Eq. (30) takes the form

rp+

m„- =0,
ro

while integration of Eq. (28) yields

(42)

since

Lr4e~]p ——0, (31) (43)

o-=0 and 0;=0.
Equation (31) admits the general solution

ri= t+l'r ' for 0&r&r. ,

n =li+1i'r ' for r, &r—&ro.

(32)

(33)

(34)

Here l, l', l~, and l~' are integration constants. %hen
r&ro, we obtain

We thus have four boundary conditions and four un-
determined constants l, l~, l~', and l2'.

Matching of the solutions (33), (34), and (35) across
the boundaries determines these constants. Thus e is
determined. One can obtain p from Eq. (28); hi and ho

are determined by Eq. (2). If m approaches zero, there
results the flat-space solution given in Eqs. (3) and (4),
as expected.

e= lo+l&'F (r)+IF (H")—', (35) VI. ROTATING UNIVERSE

where
&'= LqVoro'+o'/2u]flo,

F (r) = 2n(r+') '+4n'(r4') —'+ln V;

(36)

(37)

l2 and l2' are constants of integration.

V. BOUNDARY CONDITIONS

To determine the constants of integration, boundary
conditions must be imposed. Regularity at the origin
requires that

l'= 0. (38)

l2 ——0. (39)

Integration of Eq. (30) across the surface r= r, yields

In the asymptotically Qat region far from the source,
the electromagnetic field must decrease as the distance
from the source increases. Thus we set

A shell of matter with radius approaching its
Schwarzschild radius has often been taken to represent
the bulk of the matter in an idealized cosmological
model of our universe. In this cosmological model the
motion of the local inertial frames is completely deter-
mined by the matter, i.e., there cannot be a rotation of
the local inertial frames within the shell relative to the
"fixed stars" (the mass shell). 4

If Mach's principle applies to more than just local
inertial properties, it suggests that "nonlocal" phe-
nomena which may not even be inertial are also com-
pletely determined by the bulk of the matter in the
universe (if matter makes the chief contribution to the
stress energy). The "nonlocal" field considered here is
the electromagnetic field associated with a rotating
charged shell within the mass shell; its electric field,
for example, extends beyond the mass shell to the
asymptotically Sat region at infinity. If the masses of
the universe determine not only inertial properties but
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also the electromagnetic fieM within the charged shell,
one might expect this field to vanish when the charged
shell rotates with the same angular velocity as that of
the bulk of matter in the universe co,.

A rotating charged shell, in this universe, generates
the following components of the electromagnetic Geld:

e~ ——0,
e = —p = (2q/3r, ) (~,—ce,)[1—(r,/ro)'j

for 0&r&r„
e,= q/r-',

e= (2',2/3r3) ((o,—~,)[1—(r/ro) 3j,
p = (qr.'/3r') ((o,—~,)[1+2(r/r, )'j

for r, &r& ra,

and

~~ =C/(r+')'
n= p=0 for ro(r.

(44)

(45)

(46)

The above are the solutions given in Eqs. (33), (34),
and (35) in the limit a approaches ro.

We see that the electromagnetic Geld within the
charged shell depends on the angular velocity of
the charged shell relative to the bulk of matter in the
universe. If this angular velocity vanishes, so does the
electromagnetic Geld within the shell.

FIG. 2. Radial component of magnetic field versus radius for a
rotating charged shell in Qat space and in the curved space gen-
erated by a thin rotating mass shell with gravitational radius
approaching its actual radius. For both curves, the difference
between the angular velocity of the charged shell u, and the
angular velocity of the inertial frames within the mass shell 00
is the same.

Outside the mass shell, the magnetic Geld vanishes
(Fig. 2) independent of &o,—~,. This is because the
observer outside the mass shell (using the frames co&)

sees nonrotating shells if an observer within the mass
shell sees the shells rotating with a Gnite angular
velocity.

VII. DISCUSSION

In Oat space we are used to having a magnetic field
within a rotating charged shell. However, if there is
enough mass around, this is not necessarily so. Namely,
if a rotating charged shell is surrounded by a concentric
mass shell which rotates (slowly) with the same angular
velocity, the magnetic field within the charged shell
decreases as the mass of the outer shell increases. This
magnetic field vanishes when the mass becomes so large
that the gravitational radius approaches the actual
radius of the mass shell.

If, in this limit, the two shells rotate with different
angular velocities, we get the "Machian" results that
one cannot distinguish whether the charged shell is
rotating or the mass shell is rotating in the opposite
direction. This is so, despite the fact that the electro-
magnetic Geld reaches beyond the mass shell to the
asymptotically Rat region at infinity.

A shell of matter with radius approaching its
Schwarzschild radius has often been taken to represent
the bulk of the matter in an idealized cosmological
model of our universe. In this cosmological model the
local inertial frames are completely determined by the
matter, i.e., there cannot be rotation of the local inertial
frames relative to the "Axed stars" (the mass shell).
Since the discussion of the preceding paragraphs applies
to this cosmological model, we see that the results
obtained here via the standard. Einstein-Maxwell theory
are consistent with Mach's principle.
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