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helium/protons in local interstellar space is constant in
this interval, then the number of scattering centers, in
1963, along the cosmic-ray path exceeded 800. The lower
limit to the radial extent of the cosmic-ray convection
and diffusion region beyond the orbit of earth, in 1963,
was 3 astronomical units. These values are not appre-
ciably different from those used by Parker.
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A massive spin-2 field has been quantized using Schwinger’s action principle. Lorentz invariance and
physical positive-definiteness requirements have been verified.

I. INTRODUCTION

HE problem of quantization of massive spin-2
fields as well as other higher spin fields has been
studied rather extensively in the past.! However, the
question of whether the quantization of fields with spin
2 according to the techniques of the quantum action
principle will lead to results which are consistent with
Lorentz invariance as well as other physical require-
ments has not been touched. The recent experimental
evidence on the existence of spin-2 particles arouses
new interest in these problems. In this paper,? an
attempt is made to study these problems. We limit our
attention to a free, massive spin-2 field only. The
quantization for massless spin-2 fields will be discussed
in a separate publication.

II. CANONICAL FORMALISM

It is well known that aspin-2 tensor field should be
represented by a symmetric tensor #,,. In order to con-
struct a Lagrange function which contains the gradient
of the field variables linearly, we have to introduce addi-
tional field variables which transform like a third-rank
tensor. Although the introduction of a symmetric tensor

* Supported in part by the U. S. Air Force Office of Scientific
Research.

t John Parker Fellow.

1 M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz and W.
Pauli, Proc. Roy. Soc. (London) A173, 211 (1939); R. J. Rivers,
Nuovo Cimento 34, 386 (1964). A complete list of classical papers
can be found in the bibliography of E. M. Corson, Introduction to
Tensors, Spinors, and Relativistic W ave-equations (Blackie & Son,
Ltd., Glasgow, 1953).

2 Publication of this paper was stimulated by a recent paper of
D. Adler, Can. J. Phys. 44, 289 (1966). Throughout this paper we
use the following notations: g, = (—1, 1, 1, 1); all Greek indices p,
v,- -+ vary from O to 3 and all Latin indices 7, j,- - - vary from 1 to
3. Repeated indices are to be summed over. The dots between the
field operators indicate that the latter are symmetrically multiplied.

z[y is more usual in the quantized gravitational field,
we find that it is more convenient here to choose an
antisymmetric tensor ,H,) with the following symmetry

properties?:
p,Hv)\= - MHM y
qu)\+vH)qA+ )‘Huy= 0.

These two alternative descriptions are equivalent and
they describe the same physical system. We first con-
centrate our attention on the second description only.
We will show in the next section that these two descrip-
tions are indeed equivalent. The Lagrange function of a
spin-2 tensor field characterized by this antisymmetric
tensor is given by?

L=3(hy. OV —1H™ . 0\)1,)
+1(Hop sHN— Hy HN)—3m2 (. ko —h2). (1)

The plus and minus signs associated with the second
and third terms have physical content. They are associ-
ated with the positive-definiteness requirements of this
boson system. Hy and % are shorthand notations for
EH, and A*,,

respectively.

The field equations follow from the principle of sta-
tionary action:

NEHN) —m2(hw—grvh)=0, (2)

ZMHV)\_ (g“VH)\_gﬂ-)\HV)—Z(aPhM)\_ a)\hp.v)=0- (3)

A symmetrization for the indices u, » in the paren-
thesis is understood. It is straightforward to show

3 Both descriptions are deduced from J. Schwinger, Phys. Rev.
130, 1253 (1963). The Lagrange function for the I' description was
given by J. Schwinger to whom I am deeply indebted.
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that our field equations are equivalent to the following
set of equations:

k=0, 9,#=0, @)
MHV)\= avh#)\_ a)\hlﬂ‘ ) (5)

and
O H = e, ©)

These are indeed the correct equations which are satis-
fied by the spin-2 field. We would like to point out here
that the auxiliary equation (4) is derived directly from
the action principle rather than added arbitrarily as a
further restriction.

Those equations which describe the time development
of the system are

aO(kHOZ) [E— am(kal)+m2(kkl_ 6701]1) , (7)
800H0k= _ amkao_ amOHmk+ 2m? hOk R (8)

Oohi= 0kiro+ xHo+50rHo, )
and

dohor=01hoo+ oHol‘f‘%Hl . (10)

The other equations which relate the field variables at
the same time are

amonn_m2hm'm=0 ) (11)
OHkl— (akhol_ alhok)=0’ (12)
WH i — (3ihtim— Omhir) — 5 (OriHm—8kmH1) =0, (13)

repeated Latin indices imply a summation from 1 to 3.
The generator follows also from the action principle,
and is of the form

1
G=- f (e NHO— M, 53, d2,
2

1
=-2- /(hkz SGHOD — GHOD 5y,

+ho. " HO*—OH % 8k )d?x. (14)

Note that not all the field variables appearing in the
generator are independent dynamical variables. They
are restricted by some further constraint equations
which are obtained by manipulating the field equations.
These further constraint equations introduce intrinsic
complications into the theory of spin-2 fields.

Taking £=m in Eq. (13) and summing from 1 to 3,
we have

oH 01= 0mhmi— Ohtmm. 15)
Likewise, one can show that
MOF— LV RO 10,0,k = — 3, mH . (16)
Then, it follows that
h%=(1/m*) D1(8x01— 2m?311)0,, "H® | (16a)
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where D;®(x) is
/ Dy(x—x")®(x")d3’,

and Dy(x—x’) is the Green’s function defined by
—(V2—2m?) D,(x—x")=8(x—x). a7

This indicates that ¢Ho and %% are not independent
dynamical variables. A further reduction of dynamical
variables is possible by substituting Eq. (15) into Eq.
(11), giving

(V2=3m) hm— 2(30hT) =0, (18)
with
hia® = hii—38khmm
(ahT))c = azhle )
(90hT) = 0,9 1h1t" .
Then, we have
Bmm=—2D5(30hT), (19)
where D; is the Green’s function defined by
— (V2—3m?) Dy(x—x")=86(x—x'). (20)

Then the generator can be expressed in terms of the
dynamical variables %z and their conjugate varia-
bles Tkl

1
G=5/hkz.5(’°H0l—-akh°l+5k;3mh0m)
— (PHO— 31k Sr10mh™). Ohdix,

1
=5/(hsz.67rkz'—71‘kl-5hsz)d3x, (21)
where
Tii= &H )+ D1[ 050 :H %yt 010m (1:H )y |
— (1/m*)D183919 04 (,H)
+(1/m2)D2(akal—%5k1m2)apaq(pH0q), (22)

Both %17 and my; are symmetric and traceless in spatial
indices. They form a possible set of dynamical varia-
bles. The 4" and 4 satisfy the following equations of
motion:

domii=mh"+[0:(0h"):
+ 01(OhT) s — 284(90KT) — V¥ T ]
— 1DyDy(8181— 361V VE(IIAT),

ol = —mr+m 9 (),
+ al(aﬂ')k_%akl(aaﬂ')]
—(2/3m*)(810:—%8,1V?)(30).

Quantization follows from the identification of the
operator G, which is associated with boundary varia-
tions, with the infinitesimal generator of unitary trans-
formations on a quantum-mechanical system.* This im-

(23)

¢ J. Schwinger, Phys. Rev. 82, 914 (1951); 91, 713 (1953).
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plies the fundamental equal-time commutation rela-
tions among the dynamical variables

LT (%), pg(X") 1= 8k1, 57O (x— x'),
[ (%),707 (X)) 1= [m11(x),m5(x") ]=0,

5kl.qu= %(5kpalq+5kaalp-%5klapq) .

(24)

with

In order to calculate the commutation between field
variables with definite tensor transformation properties,
we express these field variables in terms of the dynami-
cal variables. With the help of Egs. (4)-(6), field varia-
bles with definite tensor transformation properties can
be expressed in terms of the dynamical variables as

wH% =m— (1/2m*)[3x(37) i+ 3:(7)x ]

+(1/3m?)81a(dmr), (25)

Hy=(1/m*)[0:(97)x— 0:(37)1], (26)
hi=hiT—301D2(30RT) , 27
W= — (1/m?)(3n)i+ (2/3m*)3,(30m), etc.,  (28)

where
(07) k=01

(661r) = 6}:611!’},1 .

An equivalent set of equal-time commutation relations
among those field variables is

LA (%), pH g (X') ]= 841, " (x—X')
+(1/3m2) 6 p¢010:6(x—x)
— (1/4m?) (8,420 01+ 820 L0
+6pkaqaz+ 6pzaqak)5(x——x’) ,
[hru(x),hqp(x") 1= [ (%), (,H ) (x') ]=0.
All other equal-time commutation relations, such as
i 7132(%),°H o(x') 1= (1/2m) (810 491+ 8519 40
- 5qlap6k— quapal)ﬁ(x— X’) y
iL(x),10,(x") 1= (1/2m?)
X (5pkal+ 61,1(9 —_ %5];161,)5(}(— X’)
—(2/3m*)910:0,0(x—x"), (31)

follow from the equations of constraint. The commuta-
tion relations can also be expressed covariantly as

(29)

(30)

”:[hm'(x) ;h)m (x,)] = {%(guxgw-l-g,wgy)\—— %g,‘,,g)\,,)
— (1/2m2)(g:r0,05+ 40050+ 810,069 ,:02)
+(1/3m?) (80205t 8rs049y)

+(2/3m*)8,8,000,} A(x—2"), (32)

where A(x—x") is the invariant function introduced by
Schwinger. An analogous form for [/, (x)\H.x(k")]

can be obtained easily from the field equations. We will
not reproduce the calculation here.
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III. THE ALTERNATIVE DESCRIPTION

The Lagrange function for the alternative description
is given by
L=—(h'w—31gh)
X (203 MTyy— 8,T,— 8,T,)+2(I', . *T— T, . ’T'%,)

—3m*(h . B —h'%),  (33)
with
T, =1T,,
)\I‘= )\I‘aa
A= e,
The field equations are
- (6)\)‘11,“.—- ad (”Py))+%g,w(6)\)‘l"— I
—3m*(h p— gnvh’) =0, (34)
and
T4\ = 9\ (h'w —g#h')
— 6(“)\6,(}1’”)"—% v)ah,’)_l_a(#)\v)l‘_'_gﬂv]:‘)\ (35)
which are equivalent to
K=0, 09,i/»=0, (36)
)\I‘m = %(aph,)\v‘*_ avhlph— a)\h,ul') ) (37)
AW =L1mh'™, (38)

The ATy, are anologous to the Christoffel symbols of the
gravitational field. The generator can be expressed as

G= —/[(k’“”—%g"%’) . 5(011”,,— 50(',1—‘,.))
— (T =80Ty . 8(B'w—3g#h') Jd3x,

1
=E/[/Z'le-57l'kz'—7rkz'.6h’sz:ld3x, (39)

with
h/le': h,kl— “lziaklh’mm )

40
7= —2T 31— 2D2(akaz—%3klm2)ormm. ( )

It is straightforward to show that 4’37 and 7’y satisfy
the same equations of motion and the same commuta-
tion relations as 4T and mxi. Therefore, they must de-
scribe the same physical system. The equal-time com-
mutation relations among these tensor fields can be
transcribed easily from the other descritpion. We will
not reproduce the results here.

IV. THE STRESS TENSOR

We now use the action principle to find the stress
tensor from which the ten generators of the Lorentz
transformation can be constructed. The stress tensor
T is defined by*

W= / (%)9,00, T, (41)
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as a measure of the response of the system to the space-
time displacement

XF —> xH+4 Ok,

W=/d4xL,

0u— 9,—(3,02")s,
dix — (d%)(14-9,.0%4) ,
Fruw = o= ON(Pr) 5325 (90020, — 8,620 ) My
+3(0x0%,— 3,00 - -

Making use of

we obtain, for the “H» description, that
TVJ’(H) = Tvu(H) = _%guvak(an- haﬂ)'l‘XH(w- Byyhre

"" aA[(MHV)v Shro— )‘H(ud . ht')”_ ’H(u)\ . hﬂa] ) (42)
and, for the #T'™ description, that
T =T, =g,,d,(T. hF)

+2(2,Tre s TA+m2hiny. BN — B . 9\Oohy) . (43)

Itis easy to verify that both stress tensors are conserved
and are related through

Tw H) = T (T GXG,A”"')"' R (44)
with
AR AT = AN ABTN = — AN O
=1(— gIS . ho gt grlP  Ihg— g8 I
@R g2k BN —2he Y) . (45)

These imply that the energy-momentum and angular-
momentum operators which are defined through

Po= / Twdsy, (46)

Jwr= [ (e T — 2 To#)d3% 4

are the same for both systems, as are constants of mo-
tion. These operators can be expressed in terms of
dynamical variables as

P“=% / (Ttme 0¥RinT — hum” . 0P 1m)d%% (48)
Ju= | [Tmp(xx01—2:0%) . Bmp”
+2(mkm- BimT—Tim . B T)d%%,  (49)
J"k=1 / [ pm- (2°0%—%10%) mp”
2 — ItmpT « (2008 — 2£0°) T pm
+ 27 AT — 20 km . B0 Jd%%,  (50)

with
7= (0hT) m—3 D2 Dy(V2—2m?) 8. (I0KT) .
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We will next verify that the integral quantities P, and
Jw behave correctly in the sense that they are genera-
tors of Lorentz transformations. With the help of the
fundamental field commutation relations, it is straight-
forward, although tedious, to verify that

[ (x),P*]= 0thy(x)
iLkH (%), P*]= 04, H%(x) ,
L a(2),T ] = (%05 —2,0,) hra(2)
+ (gruhoi— grohuit+ guilti— guhi) 5
Lol (%), 1= (0,0, — 2,0,) 1H ()
+ (gru vHO— gor wH A+ g1 1H
—gu 1HO+ 8% 1H,1— 8% rH o),

which are the correct relations to be satisfied by P, and
J uw 1n accordance with their interpretation as infinitesi-
mal generators of the Lorentz group. Making use of
these results, it is rather straightforward to verify that
the generators P, and J,, do satisfy the usual commuta-
tion relations with each other as well as with the field
variables %qs and \Hag

i[P wl vjz 0,
i[P“,J)\y]= g)\qu_guvP)\ y
il:];w,])\a:l = gﬂ)\]av—guoj)\v'*"gv)\-]ua_gvoJuR .

These observations show that our quantum-mechanical
system is consistent with the requirement of Lorentz
invariance.

We now examine some positive-definiteness require-
ments. The requirement that the energy must be posi-
tive is indeed satisfied, which can be verified by direct
computation

= / (3 (r) - (U m)[(@m)
(1 3m9) (00m)2-Am g+ (Bmger)?

+(1/8m*)[3x(8¢)i— 9:(89)x ]2} d*x>0,
where

gr1= "l T+ D[ 0x(0kT) 1+ 0:(0AT)1 ]
- (1/m2)D18kaz(66hT)
+ (1/’m2)D2(akal~ %51,1’}%2) (aahT) .
However, the energy density itself is not positive-
definite.
The second requirement is that the vacuum expecta-
tion value of the commutator [7dod,4], for an arbitrary
4, must be positive-definite.> We can verify this rela-

tion for those 4 which are linear in the dynamical varia-
bles. Assume that

A=/sz(x)hle(x)d8x:

¢ J. Schwinger, Phys. Rev. Letters 3, 206 (1959); Phys. Rev.

130, 800 (1963).
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where f(x) is a numerical function and may be chosen
to be symmetric and traceless. Then

[frx) ]
+©2/m)[3 )]+ (2/3m*) (80 )%d%>0

which is an operator equation. A similar result can be
obtained for those 4 which are linear in m, but the ex-
pression is much more complicated.

[idod, A ]= /

V. THE GREEN’S FUNCTION

The Green’s function of a free spin-2 tensor field can
be introduced easily with the aid of external sources. It
is defined by®

()7

, 51
dr (@) li=o GV

Gu o) =

as a measure of the response of the system to the varia-
tion of the external source. It is easy to prove that it
satisfies the following differential equation:

(2= m) Gy \o(2,2") = { — 5(gurgrot Euofr— 38w8r)
+(1/2m2) (8,60 40r~+ g1 €10 0,9\ 828505
—(1/3m?) (gw0295+ g100,95)

—(2/3m*)9,9,0,9,}8(x—="). (52)
6 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).
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Note that both the covariant commutator {7,/ ]
and the Green’s function G, . (%,%") have the same dif-
ferential structure. This serves as another test of our
quantization procedures. Under appropriate boundary
condition, the Fourier transform of the Green’s func-
tion can be represented by

(27")‘4(?2"" mi— ie)_l{%(gu)\gra’*'guwgv)\_ %guvg)\v)
+1/2m2) (gorpupr—t gnpupotgoutrprtgurbup.)
—(1/3m?) (gnvpkpv"}‘gMPnPV)'i‘ (2/3m4)PuPVP)\Pv} s

which is sometimes called the propagation function. It
is easy to verify that the expression in the curly brackets
is just equal to the sum of possible polarization tensors

5
Z e‘w(a)éh(u) ,

a=1
where €,,(® are traceless and symmetric, and satisfy

P"‘ﬁwm:O;
a,b=1,2,---,5.

€ (a) E‘w(b) =084,
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