
COSM I C —RAY MODULATIONS I N THE SOLAR SYSTE M

helium/protons in local interstellar space is constant in
this interval, then the number of scattering centers, in
1963, along the cosmic-ray path exceeded 800. The lower
limit to the radial extent of the cosmic-ray convection
and diffusion region beyond the orbit of earth, in 1963,
was 3 astronomical units. These values are not appre-
ciably different from those used by Parker. "

ACKNOWLEDGMENTS

The author wishes to thank Dr. M. M. Shapiro and
Dr. R. G. Glasser for helpful discussions, criticisms,
and encouragements, and Dr. M. A. Pomerantz for
helpful criticism pertaining to the discussion of the
analysis based on Fig. 10.

PHYSICAL REVIEW VOLUM E 148, N'UM 8 ER 4 26 AUGUST 1966

Quantization of Spin-2 Fields*

SHAU- JIN CHANG f
Department of Physics, IIarvard University, Cambridge, Massachusetts

(Received 12 April 1966)

A massive spin-2 field has been quantized using Schwinger s action principle. Lorentz invariance and
physical positive-definiteness requirements have been verified.

I. INTRODUCTION

'HE problem of quantization of massive spin-2
Gelds as well as other higher spin fields has been

studied rather extensively in the past. ' However, the
question of whether the quantization of fields with spin
2 according to the techniques of the quantum action
principle will lead to results which are consistent with
Lorentz invariance as well as other physical require-
ments has not been touched. The recent experimental
evidence on the existence of spin-2 particles arouses
new interest in these problems. In this paper, ' an
attempt is made to study these problems. We limit our
attention to a free, massive spin-2 field only. The
quantization for massless spin-2 fields will be discussed
in a separate publication.

II. CANONICAL FORMALISM

It is well known that a spin-2 tensor field should be
represented by a symmetric tensor h„„.In order to con-
struct a Lagrange function which contains the gradient
of the field variables linearly, we have to introduce addi-
tional field variables which transform like a third-rank
tensor. Although the introduction of a symmetric tensor

* Supported in part by the U. S. Air Force OfBce of Scientific
Research.
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«M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz and W.

Pauli, Proc. Roy. Soc. (London) A173, 211 (1939); R. J. Rivers,
Nuovo Cimento 34, 386 (1964). A complete list of classical papers
can be found in the bibliography of K. M. Corson, Introduction to
Tensors, Spinors, and Relativistic Wave equations (B-lackie tk Son,
Ltd. , Glasgow, 1953).' Publication of this paper was stimulated by a recent paper of
D. Adler, Can. J. Phys. 44, 289 (1966l. Throughout this paper we
use the following notations: g„,= (—1, 1, 1, 1l; all Greek indices u,
p, ~ ~ vary from 0 to 3 and all Latin indices i, j, ~ ~ vary from 1 to
3. Repeated indices are to be summed over. The dots between the
field operators indicate that the latter are symmetrically multiplied.

&,I'„„is more usual in the quantized gravitational field,
we Gnd that it is more convenient here to choose an
antisymmetric tensor ~„zwith the following symmetry
properties':

p+vX = p+) v )

„H„y+„H),„+zH„„=O.

These two alternative descriptions are equivalent and
they describe the same physical system. We first con-
centrate our attention on the second description only.
Ke will show in the next section that these two descrip-
tions are indeed equivalent. The Lagrange function of a
spin-2 tensor field characterized by this antisymmetric
tensor is given by'

L= '(h 8&~H""—«-H"" ct h )
+ sr (+„g.&H"~ H), H—~) ', .srt'(h—„„-h&" h'). —(1).

The plus and minus signs associated with the second
and third terms have physical content. They are associ-
ated with the positive-definiteness requirements of this
boson system. H& and h are shorthand notations for

"II„),) and h"„,
respectively.

The field equations follow from the principle of sta-
tionary action:

8~'oH"" —rrt'(he" —ge"h) =0, (2)

2„H„g (g„„H~ g„~H„) —2(ct„h„„—rt),h„„)=—0. (3)—

A symmetrization for the indices p, v in the paren-
thesis is understood. It is straightforward to show

' Both descriptions are deduced from J. Schwinger, Phys. Rev.
130, 1253 (1963).The Lagrange function for the 1 description was
given by J. Schwinger to whom I am deeply indebted.
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that our f(eld equations are equivalent to the following where Dial (x) is
set of equations:

h= 0, 8 h~"= 0 (4) Di (x—x')e(x') (fOog',

and
@II'v'A = ~vhpx ~x~pv p

8&~H""=m'h~" . (6)
and Di(x—x') is the Green's function deigned by

—(V'—2m')Di(x —x') = B(x—x') .
These are indeed the correct equations which are satis-
fied by the spin-2 Geld. We would like to point out here
that the auxiliary equation (4) is derived directly from
the action principle rather than added arbitrarily as a
further restriction.

Those equations e hich describe the time development
of the system are

This indicates that pHp) and h" are not independent
dynami cal variables. A fur ther reduction of dynamica 1

variables is possible by substituting Eq. (15) into Eq.
(11), giving

(V'——,'m')h„„——,
' (88h2') =0,

with
hk l hk l 3~k lhmm p

(Bh )k ——8lhl, l

(BBhr) = BkBghkg2'.

8 '"H"'= O'—H "+m'(h '—Bkgh)

8 0Hok 8 kHmo 8 OHmk+2m2 hok

Bohkg Bghko+ kHOl+ 2 BklH0
y

Bohog= Bghoo+ HO+og-' H2g

Then, we have
(9) h = ——O'D2(88hr), (19)

and
(10) where D2 is the Green's function defined by

—(V'——,'m')D2(x —x') = 8(x—x') . (20)The other equations which relate the field variables at
the same time are

8 pHmp —m'h =0,

oH k g
—(8kh o g

—8gh ok) =o,

Then the generator can be expressed in terms of the
(11) dynamical variables hkg2' and their conjugate varia-

bles xk)
(12)

repeated Latin indices imply a summation from 1 to 3.
The generator follows also from the action principle,
and is of the form (hkl . 82rkg —grkg. Bhkg )d'x,

2

kHl„(Blhk —8 —kg~) —-'2 (BkgH —Bk„Hg) =0, (13) G= — hkl. b('H" Bkhog+ BkgB—h' )
2 —('H"—Bkhog+ 4)8 h' ) .Bhkgdsx,

G=- (h,&.BPH' —"Ho .Bh, )do*
2

1
(hk 8 (kHog) (kHol)

2
+hop O'H'k 'H'". Shop)doer . (14)

Note that not all the field variables appearing in the
generator are independent dynamical variables. They
are restricted by some further constraint equations
which are obtained by manipulating the field equations.
These further constraint equations introduce intrinsic
complications into the theory of spin-2 fields.

Taking h=m in Eq. (13) and summing from 1 to 3,
we have

OHog Bmhml Bghmm ~

Likewise, one can show that

m2hok 1Vshok+ 2 8 8 horn 8 (mHok)

Then, it fol lows that

hok —(1/m2)Di(BkBg —2m28kg)8 (mHol) (16a)

where

2rkg= (kH'g)+Dr[8kB (lH' )+8)8 (kH' )7
(1/m')DiB, Bl8„8—,(,H', )

+(1/m')D2(BkBl 228kgm2—)B-p82(pHoo) (22).
Both h k &~ and xk & are symmetric and traceless in spatial
indices. They form a possible set of dynamical varia-
bles. The hk~~ and x k ~ satisfy the following equations of
motion:

Bogrpg= mshkg '+ pk(Bh') l

+Bg(Bh )k—
2 Bkg(88h )—V hkg2'7

—2DOD2(BkBg —208kgV2)V2(88h2')
(23)

Bohkg ——grkg+m 't Bk(82r) l

+Bg(82r) k sbkg(882r)—7
—(2 3/m4) (8kBg OBkgV2) (8—82r) .

Quantization follows from the identification of the
operator 6, which is associated with boundary varia-
tions, with the

infinitesimal

generator of unitary trans-
formations on a quantum-mechanical system. 4 This im-

' J. Schwinger, Phys. Rev. 82, 914 (1951);91, 713 (1953).
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plies the fundamental equal-time commutation rela-
tions among the dynamical variables

iLh), P'(x) p-„(x'))= b),(,„rb(x—x'),

Lh), (r(x),h„,r(x')) = L~),((x),m,~(x'))=0,
with

III. THE ALTERNATIVE DESCRIPTION

The Lagrange function for the alternative description
is given by

L= —(h""--,'g~"h')

x(28, ~r„„—a„r„—a„r„)+2(r„.r—ir„„.r, )—'m'(h' h""—h") (33)

)I xI

XP —XPa

P'A P}~a

The field equations are

with
In order to calculate the commutation between field

variables with definite tensor transformation properties,
we express these 6eld variables in terms of the dynami-
cal variables. With the help of Eqs. (4)—(6), field varia-
bles with definite tensor transformation properties can
be expressed in terms of the dynamical variables as

(,Ho, ) ~„——(I/2—m') (8~(a~),+8((a~),)
+ (1/3m') bp)(aam), (25)

(8) rv 8(p ))+2gy (8) r axr )
——,'m'(h'„„—g„„h')=0, (34)

'H), &= (1/m') La)(acr) ), 8),(—an) (),

hk( heal g bk(D2(aah ) I

ho = —(I/m') (agr) k+ (2/3m4) B),(887r), etc. )

where
(8~)i= 8(~k(

(aan. ) = aka)7r), &.

(27)

h'= 0, B„h'~"=0,

),r„„—,(a„h g„+a„h „),—8),h „„))

(36)

(37)

(38)

r,+ r,=a,(h" ——;g"h')
—b(~),a (h'") —-'g"& h')+b(~), ")r+g~ I'„(35)

which are equivalent to

An equivalent set of equal-time commutation relations The zI'„„are anologous to the Christoffel symbols of the
among those field variables is gravitational Geld. The generator can be expressed as

it hi &(x),(„H',&
(x')) = b),(„,rb (x x,

')—
+ (1/3m') b„a),a)b(x —x)
—(1/4m') (b,ia„a)+b,)a,ai
+b~) 8~8(+b) (aiba))b(» x), —

Lh) ((x),h (»'))= L(iH'~) (») (A' )(»'))=0.

G= — L(h""—-'g "h'). b(or„,—bo(„r„))

—(or„„—bo,„r„).b(h" ——,'g"h'))d8x,

(t h'), ir. bm), (' 7r), ('. bh'), (r)—d'x,
2

(39)

All other equal-time commutation relations, such as

i/h ))(x),' H„,( x))=(1/2m')( 8) ,8)8,+b„ia,a(

b, (a„a), b—,),a~a() b(x——x'), (30)

iLh(, ((x),h'~(x')) = (1/2m')

X (4(a(+b, (ai—34(a„)b(»—«')
—(2/3m')8), a(a„b(x x'), (—31)

follow from the equations of constraint. The commuta-
tion relations can also be expressed covariantly as

~TH.( ),hx'( ))x= {l(g.~g-+ g"g.~ :g"gi )——
(I/2m )(gp)a 8 +gp 8 8)+g„gapa +g„apa))

+(1/3m') (g„„a),a,+g,.a„a„)
+ (2/3m') 8„8„8),a.}A(x x'), (32—)

where h(x —x') is the invariant function introduced by
Schwinger. An analogous form for i)h„„(x),),H, q(k'))
can be obtained easily from the 6eld equations. We will

not reproduce the calculation here.

IV. THE STRESS TENSOR

We now use the action principle to 6nd the stress
tensor from which the ten generators of the Lorentz
transformation can be constructed. The stress tensor
Tf'" is de6ned by4

BW= (d'x)a bx T~" (41)

h'ai~= h'ai —S~~ih'

~') (= 2'r) ( —2D2(ak—a( 28Hm'—)'-r„

It is straightforward to show that h'~~ and +'~~ satisfy
the same equations of motion and the same commuta-
tion relations as h~~~ and x~~. Therefore, they must de-
scribe the same physical system. The equal-time com-
mutation relations among these tensor fields can be
transcribed easily from the other descritpion. We will
not reproduce the results here.
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Making use of

as a measure of the response of the system to the space- We will next verify that the integral quantities P„and
time displacement J„„behave correctly in the sense that they are genera-

tors of Lorentz transformations. Kith the help of the
x~ ~ xv bx~.

fundamental field commutation relations, it is straight-
forward, although tedious, to verify that

d4X L,

8&& ~ 8&& (8&&bx )Bv»

d4x ~ (d4x)(1+ a„ax~),

h„„ + h„—„ Bk(h„—„)bx"+,'(8),b-x„ B„bx—k)h"v

+,'(Bk-bx„B.bx—) )h„"

with

T»v(»= T»v(r)+8kB A»v'tv (44)

pe, X(r g) o,pv gpo, Xv g'Av, go

', ( g~"h "(l.-h —()+g"h"s.h "& g" h~(l. h"—,
+g"vh&'s hv +2h»v h"v 2h&"v h"")—

These imply that the energy-momentum and angular-
momentum operators which are defined through

we obtain, for the &B~" description, that

(»=T (»= —-'g 8),( H"(' h p)+)H( 8)h"
+8k[(„H.)v .h"' —"H(„,.h, )

—H(„".h„),j, (42)

and, for the &I'"" description, that

T„'r)= T (r) =g,ak('r~(' h(').
+2(2„1'k .„F"+m'hk„. h"„—h"'. Bka,h„„). (43)

It is easy to verify that both stress tensors are conserved
and are related through

i[hk( (x),Pvj= Bvhkl (x),
i[kH'l(x), P~$ = BvkH'l(x),

i[hkl(x), J„,g = (x„a, x—„a„)hkl(x)

+ (gk&&hvl gkvh&&l+gl&&hkv glvhk») &

i[kH'l(x), J„„]= (x„a„—x„a„)kH'l(x)

+(gk&& vH l gvk &&H l+g»l kH v

glv kH &&+b» kH»l b v kH&&l) &

which are the correct relations to be satisfied by P„and
J„„in accordance with their interpretation as infinitesi-
mal generators of the Lorentz group. Making use of
these results, it is rather straightforward to verify that
the generators P'„and J„,do satisfy the usual commuta-
tion relations with each other as well as with the field
variables It p and ),H p

i[a„,z„]=o,
iI p. J) j=g~.t'. g..I'~, —

4'[~»v&A v$ = g») &vv gA»vv+ gvk J»gvvv J»k.

These observations show that our quantum-mechanical
system is consistent with the requirement of Lorentz
invariance.

We now examine some positive-definiteness require-
ments. The requirement that the energy must be posi-
tive is indeed satis6ed, which can be verified by direct
computation

I'"= T"Od3x,

(x~T'"—x"T»)dax,

where

+( /1~3')(88~)'+-'~'2(q )'k+l'(B.q )'kl-

+(1/8~') [Bk(8(t)l al(a(f) —k1'}d'x) O,

are the same for both systems, as are constants of mo-

tion. These operators can be expressed in terms of &l=hkl +Dll Bk(ah )(+Bi(ahr)kj

dynamical variables as (1/m')D—,8k a, (Baht)
+ (1/m')D2(akal ,'i)klm')—(B—aha)

E = (ml. a&hi ' h-, ~. a-~~( )d'x, -
2

1
J'a=-

2

[w„,(xkal —xlak). h „~

+2(~k„.hl r »rl .hk r)d'x, —

[w~„.(x'Bk xka')h „—
—h . (x Bk xka )~r„—

(49)

However, the energy density itself is not positive-
definite.

The second requirement is that the vacuum expecta-
tion value of the commutator [iaoA,A j, for an arbitrary
A, must be positive-definite. We can verify this rela-
tion for those A which are linear in the dynamical varia-
bles. Assume that

fkl(x)hkl'(x)d'x,
+2~0 .h, '—2~k .ho.jd'x, (3O)

~' = (ah') ,'D:D2(~'——2~')8 (»—h')
5 J. Schwinger, Phys. Rev. I-etters 3, 296 (1959); Phys. Rev.

130) 800 (1963).
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where f),((x) is a numerical function and may be chosen
to be symmetric and traceless. Then

Lit)aA, A)= Lfg((x))'

+(2/m') $(rlf)J 5'+ (2/3m') (aaf)'d'x) 0

Note that both the covariant commutator ith„„,hq, ]
and the Green's function G„„,),.(x,x') have the same dif-
ferential structure. This serves as another test of our
quantization procedures. Under appropriate boundary
condition, the Fourier transform of the Green's func-
tion can be represented by

which is an operator equation. A similar result can be (27r) '(P'+m' «) —'(2(gl) g-+gy~g» sgl ~g) ~)

obtained for those A which are linear inmq), but the ex- +(1/2m')(g, „p„p)+g»p„P, +g,„P)p„+g»p„p„)
pression is much more complicated. —( / ')(g P~P +g~ PuP)+( / ')P.P P~P.&,

5
( )e~ ( )

a~1S(h„„(x))
G„„,),.(x,x') =

ggn(x~)
(51)

where e„„' ' are traceless and symmetric, and satisfy

V. THE GREEN'S FUNCTION which is sometimes called the propagation function. It
is easy to verify that the expression in the curly brach. ets

b t d d 1 th th d f l I i ust equal to the sum of possible polarization tensors
The Green's function of a free spin-2 tensor 6eld can

be introduced easily with the aid of external sources. It
is dined by'

as a measure of the response of the system to the varia-
tion of the external source. It is easy to prove that it
satisies the following differential equation:

(c)'—m')G, ( xx)=( 2(g )g-+g g» ag g )
+(1/2m') (g„.(I„())+g»a„(I,+g„,B„B)+g»B„B,)

(1/3—m') (g„„8),8.+g),.8„8„)
—(2/3m') r) „a„ci,c),)i)(x—x') . (52)

~ J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).

P&e„„"=0,
e„„& )e„„('&=8,b, a, 5=1, 2, , 5.
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