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Quadrupole Elastic Scattering of Alpha Particles by Polarized Nuclei

Y. N. KIM AND H. C. THQMAS

Department of Physics, Texas Technological College, Lubbock, Texas

(Received 1 November 1965; revised manuscript received 14 April 1966)

The effect of the charge distribution of target nuclei on elastic scattering between nuclei at an incident
energy well below the Coulomb barrier has been investigated in terms of the deviation from Rutherford
scattering. In the present paper, we report the result of the calculation for the case in which the target nuclei
are oriented during the collision. For the head-on collision of alpha particles with U' and Ta'" at 24 and
16 MeV, we find that the deviations from Rutherford scattering should be about 18 and 20%, respectively,
if the polarization of the target is complete. Therefore, we conclude that the deviation should be large
enough for detection even for a reasonable degree of polarization of the target.

I. INTRODUCTION

'HE effect of the charge distribution in the nucleus
on the scattering of charged particles has been

very intensely investigated under various conditions.
In the case of scattering at low energy, ' one may expect
in general that the interaction is predominantly electric
if the incident energy is so low that the probability of
the incident particle's penetration of the Coulomb
barrier is negligible. In fact, however, other interactions
may compete. For example, in case of elastic scattering
of low-energy deuterons by nuclei, such interactions as
the deuteron breakup in Right may play an important
role. '

In investigating Coulomb scattering of the projectile
by the nucleus, the first step is to take into account the
extension of the target tacitly assuming that it remains
in its ground state throughout the interaction. For a
more satisfactory theory, however, we have to include
the effect of charge polarization' which takes account
of the contributions from all the possible excited states
of the nucleus.

It has been pointed out that virtual Coulomb exci-
tation may cause a significant modification on the elastic
scattering cross section. ' " If the process is adiabatic,
the polarization potential as obtained by a perturbation
calculation may appear to show that in most cases the
quadrupole interaction effect is larger than that of
dipole interaction in view of the high excitation frequen-
cies associated with the dipole oscillator strength. How-

' For references see, e.g. , K. Alder, A. Bohr, T. Huus, B.Mottel-
son, and A. Winther, Rev. Mod. Phys. 28, 432 (1956); Comptes
Rendus du Congres International de Physique Nucleaire (Centre
National de la Recherche Scientifique, Paris, 1964), Sec. 4d;
L. C. Biedenharn and P. J.Brussard, Coulomb Excitation (Oxford
University Press, London, 1965), Chap. 1.' J. K. Dickens and F. G. Percy, Phys. Rev. 138, B1083 (1965)
and papers cited therein.' In this paper, the term "charge polarization" is used to indi-
cate the mode of Coulomb excitation of the nucleus while "polari-
zation" refers to the mode of nuclear orientation.' P. Debye and W. Hardmeier, Physik. Z. 27, 196 (1926).' W. Hardmeier, Physik. Z. 28, 181 (1927).' N. F. Ramsey, Phys. Rev. 83, 659 (1951).' B. J. Malenka, U. E. Kruse, and N. F. Ramsey, Phys. Rev.
91, 1165 (1953).' G. Breit, M. H. Hull, and R. L. Gluckstern, Phys. Rev. 87,
74 (1952).' Y. N. Kim, Nuovo Cimento 22, 885 (1961)."C.F. Clement, Phys. Rev. 128, 2728 (1962).
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ever, in most cases of interest, the adiabatic approach is
not justified for the quadrupole polarization interaction
because of the low excitation frequencies. ' " It would
be therefore necessary in general to take account of the
coupled motion of the colliding particles in detail to
evaluate the effect of the quadrupole polarization.

Under ordinary conditions, the nuclear axis of the
target is oriented at random. Therefore, if we orient
the strongly deformed target nuclei, the quadrupole
effect will be greatly enhanced. In fact, in this case, the
interaction is proportional to r ' if r is larger than the
nuclear radius. Although perfect orientation of nuclei
cannot be achieved at present, even limited degrees of
orientation may produce a large amount of the quad-
rupole effect.

In the present paper, we calculated the quadrupole
effect in the collision of alpha particles with U"' and
Ta'" at the incident energy (c.m. system) of 24 and 16
MeV, respectively. These energies are roughly half of
the Coulomb barrier in each case. We have used essen-

tially the same method as employed in Ref. 9, introduc-
ing the quadrupole interaction as a perturbation. After
presenting the general formalism, the particular case of
head-on collision is discussed in detail.

II. CALCULATION
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H'= ,'Z, Qpe'f(r)P-s(cosZ (nS)). (3)

In Eqs. (2) and (3), r is the vector distance from the
target to the projectile, 2 (nX) is the angle between r
and the nuclear axis of the target, Z1 and Z2 are the
charges of the projectile and the target, respectively,
and f(r) can be written as

f(r)=r ' if r)R
(4)=r'R ' if r&R,

"See, e.g., the erst paper in Ref. 1, Sec. II D.4.
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Considering only the quadrupole interaction, the
Schrodinger equation becomes

(Hp+H')f= EP,
where
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P, (kl, r) =P P, (k, ,r)

=P [4qr(23+1)]'"(k,r) ' exp(i()Tl —oo)}
Z, tn

where E is the radius of the nucleus. Qo is the intrinsic We expand"
quadrupole moment of the nucleus and is oriented along
the nuclear axis, and I'2 is the I.egendre polynomial.

In our case, because of the low incident energy,
r)E, and, therefore, Eq. (1) becomes

2q',2+k'—
22)z Z2Z2e' 2)zZ,goe2

P2(cosZ (lllV)) /=0.
PE2r3A2 r

Equation (5) may be rewritten as
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where (r,8,& ) refer to projectile and (8N, &N) determine
the direction of the nuclear axis of the target.

The solution of Eq. (6) defined by the requirement of
adding only outgoing waves to |ti, at large r may be
written in the following form:

XFl(n k &)D o'(k&)i'I"l-(8-A-), (12)

where F2(q, k,r) is the regular solution to the radial wave
equation for the orbital angular momentum i, and ol
is the Coulomb phase shift

0 l ——argF (i+ 1+iq) .

The function 0-g satisfies the recurrence relation

)Tl+2 ——O.i+tan '

i+1)

D 0' are matrix elements of the rotation matrices and
ki is a unit vector in the ki direction. The integral on
the right-hand side of Eq. (11), which will be denoted
by J, becomes

42r mZ)goe2
4 =4.+—

5
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J= (4qr)2 P i'+' exp(i(al+ol. 2oo)—}Mll. '

X Q (—1)' " &2q(8N 4N) I'l'm'(k2)
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where, for large r,

Q)m)m /
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E(r,r') expi[(kr —)Iln2kr)]P, (—k2, r') (8)
4xr
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2 i i' 2

, , (14)Ioo o&q

f, (k, r) is the Coulomb wave function and ki and k2 are
the wave vectors of the Coulomb-distorted plane waves
of the projectile before and after the interaction with
the target, respectively. Since we confine our investiga-
tion to elastic scattering only, ki ——k2(=k, say) and

p, (—k2, r) is the Coulomb scattering wave function for
the incident wave vector —k2 —— kr/r. —

The scattering amplitude f(8) may be expressed as
the sum of f, (8), the Coulomb scattering amplitude,
and f, (8), the amplitude due to the quadrupole
interaction

f(8)=f.(8)+f,(8),
where

'9

f, (8) =— exp[—i)I ln sin'(8/2)
2k sin'(8/2)

2
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are signer 3j symbols, and"

~ll) (klk2)
v 0

Fl (k2r)r 'Fl(kir)dr. (15)

If the nuclear axis of the target is parallel to the direc-
tion of the relative motion before the collision, i.e.,
(8N, yN)//ki, then

l 2q (8N))1)N) l l, —m(kl)

5(2)+1)(21+1) '"(2 1
1)

4qr 1I)2 2)2 p

and
+iqr+2io. p], (10)

f, (8) = —2)2Z,goe2/5)22

2 l A.

X I'),,*(8N)PN) (16)
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X p. (—k2, r)—E (—1) &2, (8N,yN)

X Y2 q(8~,yogi, (ki, r)dr. (11)

"See, e,g., A. Sommerfeld, Atombag Nnd Spektrultinien,
(F. Vieweg und Sohn, Braunschweig, 1939},Vol. II, Chap. VII.

'3 L. C. Siedenharn, J. L. McHale, and R. M. Thaler, Phys.
Rev. 100, 376 (1955}.
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From Eqs. (14) and (16), by using the orthogonality
relations of the 3j symbols, we obtain

1=SX4n. P i'+' exp{i(p i+a i.—2pp))

2 l l''
I
(»+1)

&0 0 oi

Therefore, Eq. (19) is valid for l~&1 whereas Eq. (20)
is valid for all values of l including 1=0.

The deviation b from the Rutherford scattering is
given by

-.(8)-.(8) If.(8) I'-If(8) I'..(8) If.(8) I'

XZ I'i. *(8~,y )I' .(k) (») 2 «{f.*(8)f.(8))
(21)
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From Eqs. (11) and (17), we find
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where %'(s) is the logarithmic derivative of the I'
functions.

~z, z+2
—3=

(l+1)(l+2) )2 l i+2~9
!

4(2l+1) (2l+3) (2l+5) (0 0 0 I

x . (20)
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Since the integral in Eq. (15) must converge at the
origin, the inequality 2l+3+ (l' l) 3)0 mu—st h—old."

'4 See, e.g., papers cited in Ref. 1."Reference 13, p. 381.

X (2l+1) (2l'+ 1)Pi (cos8) . (18)

The 3j symbol on the right-hand side of Eq. (18) shows
that f, (8) vanishes unless l'=l+2, l or I 2. Also it —is
clear that l'=l=0 gives no contribution to fp(8).

Much work has been done on the evaluation of inte-
grals of the type appearing in Eq. (15)."Making use of
this work, one can readily obtain the following results:

X 2l—2n'
(2l—1) (2l+3)

for l'=l, and

2m QpZie'k
P cos (0'i+ 0'i+p —40'p)
z=p

(22)
m=i m'+qp

(l+1)(l+2)
(23)

(2l+3)l {l(l—)—n')'+( l—)V3'"

for l'=l+2.
Obviously the following three cases, l'=l, l'=l+2,

and l'=l 2(l)~2) con—tribute to the total deviation.
However, for 8= pr, i'+~'+'&Pimp(cos8) =i~'+'&+ppi(cos8),
and also from Eq. (15), 3E, i+&

'——Mi+&, &
'. The 3j

symbol in Eq. (18) does not change value when l and l'
are interchanged. Since l=0 and 1 give no contribution
to the deviation in the case of /'=1 —2, and each term,
though not the sum, on the right-hand side of Eq. (23)
for large l becomes negligible, one can readily see, from
Eqs. (18) and (21), that the contributions to the total
deviation from the two cases, l'=l+2 and l'=l —2,
cancel each other. We will, therefore, confine our con-
siderations to the case of 1'=1 only.

In general, to carry out a calculation involving the
Coulomb wave functions with reasonable accuracy, we
have to take a very large number of partial waves. We
need in our problem the evaluation of 6 as given by
Eq. (22). For large values of l, each term of the series
in this equation decreases as I/l, oscillating between
positive and negative values as / increases. The sum of
the first l terms of this series, which will be denoted by
Pi=&'8i, also oscillates, as a function of l, with de-
creasing amplitude. However, as Eq. (13) shows, oi
changes its value more and more slowly as 3 becomes
larger, so that the intervals of the values of / over which
Pi=i' Bi undergoes oscillation will become larger, thus

where 0.,(8) is the Coulomb cross section and o.,(8) is
that part of the cross section which is caused by the
quadrupole interaction. The squared term of f,(8) on
the right-hand side of Eq. (21) is neglected. In the case
of head-on collisions, we obtain from Eqs. (10), (18),
and (21),

2m Qoz e'k
P cos(2oi —4pp)
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Incident
energy

Case Projectile Target (c.m. system)
Coulomb
barrier

I alpha U"' 24 MeV 2g.6 MeV
II alpha Ta'" 16 MeV 24.8 MeV

As long as we consider the simple sum of this series, it
showed little sign of convergence even at this large
value of l. However, we can find the sum of this series
by invoking the Cesaro method of summation known
as (C,1)."We found it convenient to calculate the sums
of the terms in each lump with the same sign in the
series and apply the Cesaro method to the series of these
sums. The values thus obtained definitely showed con-
vergence and by calculating terms for /'s up to 10 000
in both cases, we found the following values to within
the uncertainty of 3&(10 4:

2m Q,Z,e'kq -'
I Z&~

=0.19X10 ' for case I
=0.35&& 10 ~ for case II. (24)

These procedures are justified because as long as the
series is convergent (in the sense of the simple sum), the
simple sum and (C,1) should give the same answer in
view of the condition of consistency. That the series in
Eq. (22) indeed converges even in the sense of the simple
sum, at least for our problems, can be seen in the
following way: P& r" 5& is summable (C, 1), and as was

"E.T. Whittaker and G. N. %atson, A Course of 2lfodern
Analysis (Cambridge University Press, New York, 1946), Chap.
VIII.

making it dificult to evaluate the sum of this series.
This is, of course, due to the fact that we have employed
a pure Coulomb field. In nature, however, such a field
is never encountered; in our case the Coulomb field of
the nucleus is screened by the electron cloud at dis-
tances larger than the radius of the atom. This effect
may be taken into account by adopting a screened
Coulomb potential such as

(Z,Zses/r)e "'

where A 'is of the order of the radius of the atom, instead
of the pure Coulomb potential. A calculation along these
lines appears to be very difficult however and has not
been carried out.

Attempts to obtain an approximate value of the sum
by cutting o8 the summation at a value of l correspond-
ing to an average radius of electron orbits, such as is ob-
tainable from the Thomas-Fermi statistical model, also
did not prove successful. The difficulty lies in the in-
definiteness of the value of the radius which when
combined with the oscillatory character of the sum of
the first l terms of the series introduces a large un-
certainty in the answer.

We carried out the computation of the series in
Eq. (22) up to j= 20 000 for the following two cases:

mentioned shortly after Eq. (23), 8q=o(1/j). Then
according to Hardy's convergence theorem, " the series
converges in the sense of the simple sum. Therefore the
answers obtained above (C,1) must be equal to the
simple sum of the series P& r" 5&. Only the simple sum
is very dificult to get.

The value of the intrinsic quadrupole moment Qs of
the nuclei cannot be determined very accurately. It
varies considerably according to different methods of
determination. 'r For example, the value of Qs for Ta'"
obtained from the hyperfine structure intervals is much
larger than the value used in this paper, a value esti-
Inated from the Coulomb excitation. For our purpose,
however, a rough estimation will suffice, and if we take
the following values, "

Qs
—11X10 4 cm for

Qs ——6.8&&10 '4 cm' for Ta'"

we obtain, from Eqs. (22) and (24),

8=18% for case I, and 8=20% for case II.

III. CONCLUSION

The large deviation from the Coulomb scattering
cross section obtained above corresponds, of course, to
complete polarization of the target nucleus, a situation
which cannot be achieved at present. However, even
assuming the degree of polarization to be 0.5, we still
get very large deviations of 9 and 10% for case I and
case II, respectively.

These deviations should be compared with those
arising from the charge polarization of the nucleus
taking into account the virtual Coulomb excitations.
Of these, the dipole and quadrupole polarization effects
would be the most important. According to the evalua-
tion of Malenka, Kruse, and Ramsey, 7 the deviation
from Coulomb scattering due to the dipole polarization
(polarizability) for the elastic scattering of 10-MeV
deuterons by U is 4.2% in case of head-on collisions.
Although we do not know the exact value of the polar-
izability of alpha particles, undoubtedly this must be
very much smaller than that of the deuteron because
of the great difference in the looseness of the binding of
these two nuclei. Therefore, the deviations from the
Coulomb scattering due to the dipole polarization
should be negligible.

As was pointed out in Sec. I, the quadrupole inter-
action would be in most cases nonadiabatic. This can
result in anomalously strong excitations if partial reso-
nance is involved. The exact evaluation of this effect
taking account of the detailed coupled motion of the
projectile and target has not been attempted in this
paper. However, we note that the cross sections for
quadrupole excitations are, for the fixed energy of pro-

' B. M. Spicer, H. H. Thies, J. E. Baglin, and F. R. Allurn,
Australian J. Phys. 11, 29g (1958)."See, e.g. , the 6rst paper in Ref. 1, Chap. VB.
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jectiles, proportional to the mass of the projectiles,
when the interaction is nonadiabatic because of the
low excitation energies. "On the other hand, the dipole
excitations are more easily produced by particles with
small charges such as protons. Therefore the quadrupole
excitation effect in our problem would be rather small
because of the smallness of the charge of the alpha
particle.

We have entirely neglected other interactions which
might occur in the course of the collisions. Of these the
most serious one would be the disintegration of the
projectile in fIight due to the electric interaction. How-
ever, the cross sections of the photodisintegration of the
alpha particle at the energies considered in the present
work would be of the order of millibarns, "whereas the
Rutherford scattering cross sections of the head-on
collisions are 0.13 b for case I and 0.14 b for case II.

The incident energy in case I is above the threshold
of the photofission of U", which is about 5.8 MeV.
Also photoneutron, and to less extent, photoproton
and other disintegration processes of the target are
possible. Although the e6ects of these interactions
should be carefully analyzed, it does not seem likely that
they could overshadow the large quadrupole moment
eGect on the elastic scattering by the polarized nuclei.

Lastly we examine whether inelastic scattering can
be sufficiently well separated from the truly elastic
scattering experimentally. It would be very difFicult to
make any accurate evaluation without detailed calcula-
tion of the inelastic scattering cross section.

"See, e.g., the first paper in Ref. 1, Chap. III.
"See, e.g., P. Goldhammer and H. S. Vaulk, Phys. Rev. 127,

945 (1962).

Although the experimental evidence on the scattering
of alpha particles by nuclei over a wide range of scatter-
ing angle well below the Coulomb barrier is scarce,
there are numerous experiments at incident energies
not very far above the Coulomb barrier. For example,
Wilson and Sampson" measured the angular distribu-
tions for elastic scattering and for inelastic scattering
to the lowest 2+ and other states in Fe and Zn using
22.2-MeV alpha particles. Their measurements show
that the ratio of the elastic and inelastic scattering is
at least about 100 even for a large scattering angle,
(167').

The excitation energies QE we have to consider for
U"' and Ta'" are 0.048 MeV and ~0.136 MeV, re-
spectively, " whereas the typical values of excitation
energies in the work of Wilson and Sampson are 0.845
MeV for Fe" and 0.99 MeV for Zn", respectively. These
differences in AE are partially compensated by the dif-
ferences in atomic numbers Z~ of the targets. In
general, " the excitation cross sections for a 6xed pro-
jectile and energy depends on hE and Z& approximately
as a function of (Z26E) 'te. We also note that the ratio
of the cross sections for elastic and E2 Coulomb excita-
tion for a Axed projectile increases rapidly as the inci-
dent energy decreases. ' From the above considerations,
it would be safe to assume that the resolution of elastic
and inelastic scatterings in our problem would not cause
any difficulty because of the overwhelming dominance
of the former over the latter.

2'H. L. Wilson and M. B. Sampson, Phys. Rev. 137, 3305
(1965).

s'iltlclear Data Sheets, compiled by K. Way et at. (National
Academy of Sciences—National Research Council, Washington,
D. C., 1958—65); W. Kunz and J. Schintlmeister, Tabellen der
Atomherle (Akademie-VerIag, Berlin, 1958).


