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pointed out by Harris ' in his discussion on the experi-
ments by Bekefi and Hooper" and by Gruber, McBee,
and Shepherd' in which the plasma was generated by
an electron beam. It is shown in this investigation that
a plasma-beam model in which temperature effects are
neglected can be used successfully in explaining some
of the aspects of the observed harmonic emissions.

Thus, according to Ikegarni, the maximum intensity
of the observed radiation occurs at a multiple of the
electron gyrofrequency and as the discharge current is
increased, the maximum intensity is progressively
shifted toward higher harmonics. This observation is
supported by our analysis as illustrated in the enclosed

"E. G. Harris, General Atomic Report GA-5581, 1964 (un-
published).

"G. Bekefi and E. B. Hooper, Jr., Appl. Phys. Letters 4, 135
(1964)."S.Gruber, W. D. McBee, and L. T. Shepherd, Appl. Phys.
Letters 4, 137 (1964).

graphs. Thus when R=0.0136 /Fig. 1(a)) both the
fundamental gyrofrequency and its harmonics are
excited by the beam. However, for R= 1.36 LFig. 1(b)j,
the lowest harmonic excited by the beam is represented
by ~s~ =3, whereas for R=5.444 [Fig. 1(c)) the lowest
harmonic corresponds to ~s~ =5. The rate of growth
generally decreases with increasing

~
s

~
except for rela-

tively low values of R. Thus, as shown in Fig. 1(a) when

P,=r,/c=0. 223 to 0.632, the rate of growth attains
maximum at ~s( =2 and then decreases when ~s)
becomes larger.

Both Landauer' and Ikegami observed that the
harmonic emission is due primarily to the extraordinary
wave (EJ Bo). This observation is supported by our
results. We have found that the extraordinary waves
are the only electromagnetic waves which can be
excited by the beam, i.e. , the ordinary waves (ED~~$0)
remain stationary.
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In order to test the hypothesis that the observed anomalous behavior of the low-temperature specific
heat of He' is due to the interaction of He' atoms with sound, the coupling of the single particles to the
collective excitations must be calculated. Based on an infinite-order perturbation theory, a technique is
introduced for finding the effective coupling at long wavelengths. Within this approximation scheme the
coupling is found to be of the deformation-potential kind. Vertex corrections make the expression used for
the single-particle self-energy exact. A singular vertex function, which is ruled out if perturbation theory
is valid but which is required in order to change the coupling from deformation-potential to piezoelectric,
leads to an inconsistency. All approximation schemes treated result in a deformation-potential coupling
between He3 atoms and sound. Treatments of this coupling have not so far led to results which can explain
the observed specific heat.

I. INTRODUCTION

1

�~O

BSERVATION by Anderson' indicates that the re-
cent experiments on the specific heat of He' by the

Illinois group' appear to have a temperature- dependent
density-of-states factor which becomes logarithmically
singular as the temperature approaches zero. For tem-
peratures ranging from millidegrees to tenths of degrees
Kelvin, Anderson pointed out that the specific heat may
be fit by a curve of the form C=pT+A T InB/T. a In this

* Work supported in part by a DuPont Research Grant.' P. W. Anderson, Physics 2, 1 (1965).' W. R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley,
Physics 1, 337 {1965).

3 More recent experiments which repeat and analyze the
specific-heat results are in %. R. Abel, A. C. Anderson, %. C.
Black, and J. C. Wheatley, Phys. Rev. Letters 15, 875 (1965).

temperature range, we may neglect the specific-heat
contribution due to phonons, which is cubic in the
temperature.

A suggestion proposed by Anderson was interpreted
by Balian and Fredkin4 to mean that the singular
behavior of the specihc heat could be accounted for by
considering fermion self-energy processes of virtual
emission and reabsorption of phonons of zero sound.
In order to test this hypothesis, the coupling of the
single particles to the collective excitations must be
calculated.

In Sec. II of this paper we show (in second-order
perturbation theory) how the long-wavelength coupling
to collective excitations influences the specific heat. In

4 R. Balian and D. Fredkin, Phys. Rev. Letters 15, 480 (1965).
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oo{p-4)
FIG. 1.Second-order

self-energy diagram for
single-particle —phonon
interaction.

Sec. III, a technique based on an infinite-order perturba-
tion theory is introduced for finding the eGective
coupling of these excitations, at long wavelengths, to the
He3 atoms. Vertex corrections make the expression for
the single-particle self-energy exact. For a nonsingular
vertex function, the coupling to zero sound is found to
be deformation potential in nature. We show that a
singular vertex function, which is required in order to
change the coupling from deformation potential to
piezoelectric, leads to an inconsistency for a class of
self-energies. The inconsistency is that in this case there
is no solution to the zero-sound dispersion relation.

gI;+ g co+o,.'co,.(bs+b ot). (1)
s o ~ (2to„)1/s

This Hamiltonian describes free fermions, free phonons
taken to behave as a boson field, and an interaction
between them. The c's are the fermion operators and
b's the phonon operators. The bare fermion single-
particle energy measured relative to the Fermi energy
p is oo—=ks/2m' —it. The bare phonon single-particle
energy is eu&=—sk. By looking at the expression for the
fermion self-energy in second order, we will show how
the singular nature of this contribution is determined
by the functional dependence of gk on k as k approaches
zero. The fermion self-energy, shown in Fig. 1, to second
order in g is given by

d4k

&(p po) =s g o'Do(p —k)Go(k)
(2or) 4

d'k 1
=1 gj u

(2s)' (po—ko)' —toj o'+&
1

X b 0', n 0', (2)
ko Clc+ tgflc

where Do is the lowest order phonon propagator and Go
is the lowest order fermion propagator. Although the
integral can be done analytically, we will use a power
counting argument to show how the singular part of Z
is determined. A singularity will be obtained if we can

II. EFFECT OF THE COLLECTIVE MODES
ON THE SPECIFIC HEAT

In order to show the importance of the long-wave-
length coupling to collective excitations, we consider
the following Hamiltonian (throughout the paper we
choose units in which k= 1):
H, gt =Q oocs, ,tcs, ~++ to„bstbo

get the denominator of the integrand to vanish at one
of the limits of integration. In the language of theore-
ticians who determine singularities of Feynman diagrams
these are called end-point singularities.

Perform the ko integration so that the pole of Go is
not enclosed. This leads to a sum of two terms both
having eI, =O as one end point. One of the terms may be
written as

Re Z(p, po) d'k g~o' . (3)
6I,(0 po+~T —k

—6k 2M~p

Since we are interested in the self-energy at the Fermi
surface po —+0, p ~pf, there is a zero of the denominator
at the end-point k —+ pf. To continue, change variables
of integration from the cosine of the angle between

p and h, namely x, to an integration over the magnitude
of p —1K)

q'=
~ p —k~', q dq= —pk dx.

With this replacement we find that

Re -(p,po) do dq go'ppo+sq op'—
=0

dq g, 'ln(p, +sq). (4)
=0

If g,' goes to a constant for q going to zero, which in
solid-state physics is called piezoelectric coupling, then
the self-energy for po near zero is of the form

ReZ(p, p,)-po 1npo, (5)

as Balian and Fredkin' obtained. The careless treatment
of the regions of integration in the above counting
argument leaves out the momentum dependence of the
singularity.

If, on the other hand,

llmgg ~g

which is the more commonly found coupling of single
particles to sound, usually called deformation-potential
coupling by solid-state physicists, then the singular
behavior of the fermion self-energy is'

ReZ(p, po) po' Inpo. (&)

For piezoelectric coupling, Balian and Fredkin' point
out that lowest order perturbation theory leads to a
specific heat

C.-vT+A T»
I B/T

I
. (S)

For deformation-potential coupling, Eliashberg' has
shown that the lowest order contribution is

C. yT+A'Toln~B'/T~. (9)
'A. S. Migdal, Zh. Eksperim. i. Teor. Fiz. 40, 684 {1961)

LEnglish transl. : Soviet Phys. —JKTP 13, 478 {1961)g;S. Kngels-
berg and J. R. SchrieBer, Phys. Rev. 131, 993 {1963).' G. M. Eliashberg, Zh. Kksperim. i Teor. Fiz. 43, 1005 {1962)
/English transl. : Soviet Phys. —JETP 16, 780 {19631].
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H=P erick, atck, ~+ 2 Q Vkpicp —k &

k, a

where the density fluctuation operator

1
pe= 2 &p+V, e"&p, e.

Q p, a

(10)

The Fourier transform of the interparticle potential is

V~, and 0 is the volume of the system. For a hard core
potential, where V~ is in6nite, we will replace V~ for
small k by a number 2n.ao/m, a pseudopotential
independent of k. This pseudopotential describes the
low-energy helium atom —helium atom scattering and is
often called the s-wave scattering length. '

Impressing a long-wavelength density fluctuation
on the system implies, if there are soundlike excitations,
that we have created a state having a well-defined energy
which varies linearly with the momentum of the
density fluctuation. For the purpose of our present
discussion, we will assume that there are soundlike
excitations, and we will make no distinction between
zero sound and ordinary sound. Landau' has shown
that a system of fermions interacting via short-range
repulsive interactions will support such soundlike
excitations. Gottfried and Picman' have given a precise
formulation of the problem. They pointed out that such
an excitation may be found as a pole in the density
autocorrelation function. When we speak of the fermion
self-energy due to emission and reabsorption of a
phonon, we mean that starting with the particle-particle
Hamiltonian (10) we sum that infinite set of diagrams
which includes as a contribution to the integral a pole
corresponding to the propagation of sound.

In evaluating and discussing the analytical properties
of the He' single-particle self-energy, we will 6rst sum
the set of diagrams shown in Fig. 2. The shaded
regions are the irreducible polarization parts P(k), and
the dashed lines represent the interaction VA. The
solid line internal to the self-energy diagram is the
dressed He' propagator. within the framework of this

' J. Slatt and V. Weisskopf, Theoretical nuclear Physics (John
Wiley @ Sons, Inc. , New York, 1952), pp. 60-61. Reference 9
also uses this convention.

'L. D. Landau, Zh. Eksperim. i Teor. Fiz. 32, 59 (1957)
LEnglish transl. : Soviet Phys. —JKTP 5, 101 (1957)j.' K. Gottfried and L. Picman, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 32, No. 13 (1960).

III. COUPLING TO THE COLLECTIVE
EXCITATION 8

Ke now turn to the basic problem of determining the
coupling of He' atoms to sound. To solve this problem
we must understand precisely what we mean by writing
the Hamiltonian (1) for the system in terms of the
single-particle excitations and the collective excitations,
the phonons. Normally one would start with a Hamil-
tonian which takes into account the single-particle
energies of the He' atoms and the interaction between
them. If we take the interaction to depend only on
the distance between atoms, then

P G(P- k)

FIG. 2. Self-energy diagram for particle-particle interactions,
which includes a contribution from sound-like excitations. The
irreducible polarization part P(k) is represented by the shaded
regions and recurs an infinite number of times between the dashed
lines which represent the interaction Vk.

approximation the self-energy of the He' atom is

d'k
Z(p) = i — G(p —k)

(2s) 4 1—VgP(k)
where

G(p) =
t po —~(p) —~(p)+i»gnpoj ' (13)

The quantity

Vp P(k)
+V~,

1—VpP(k) 1 —VgP(k)
where

P (k)
S(k) —= = dt e+* "[—i(T(p), (t)p k(0)))

1—VpP(k) —(pg(t))(p g(0))j, (15)

defines the irreducible polarization part P(k). This may
be seen either diagrammatically or by use of functional
derivative techniques, outlined in the Appendix. The
poles of S(k), the collective excitations, occur in Eq.
(12) for the self-energy. This is true in the exact expres-
sion for the self-energy as well.

At this point, the diagram summation we have chosen
is only an approximation. Ke have not included all
possible diagrams. However, those we have chosen
contain as a contribution to the self-energy integral a
pole which corresponds to a coupling to a collective
mode of the system.

It is a simple matter to determine the eQective cou-
pling for long wavelengths to the collective modes. %e
close the contour in the energy integration of (12) so as
to avoid the poles of 6 and pick up only the contribution
from the poles of V~/t I —V~P(k) j. This term should
have a pole corresponding to a collective mode at long
wavelengths if we are to be correct in our assumption
that soundlike excitations exist. The coupling constant
given in (2) is related to the residue at the pole by

gg-, '/2cog ———1/$(B/Bko)P(k, ko)j. (16)

An explicit approximation for the polarizability P will
be given later. However, we will show that one need
only have the functional form of P in order to determine
the k —+ 0 limit of g~'. The polarizability P(k,ko) may
be rewritten as

P (k,ko) = II (k/k p, k/2pg)—
The Fermi momentum py is used here just as a scaling
factor. In the limit k/2 pl ~ 0, we expect II (k/ko, k/2pt )
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t-o(p+ k) l 'k

FIG. 3. Lowest order contribution to the irreducible polar-
ization part, often denoted as the random-phase-approximation
contribution.

p-q p-q-k
I

p+q

(a) (b)

—II(k/ko, 0) to approach zero. The correction terms,
although small, need not necessarily be analytic in

k/2pf. If 1I did not exist at long wavelengths, that is,
if there were a pole of some kind at the origin, then the
sound mode would not exist. The dispersion relation
1—VkII =0 could not be satisfied. Infinite-order
perturbation calculations which have been performed
do not lead to such singularities. "With these restric-
tions, II may be written as

lim II(k/ko, k/2p~) =II' &(k/k&&)+Ot (k/2p~) j, (18)
k/2 p~
with o,)0. Given the form of (18), the residue at the
pole in the long-wavelength limit is easily computed
using (16)

(19)limg„'= 2sk'/II &o&'(1/s) .

0(p+ k) Go(p)
(2&r)4

= II& & (k/ko)+OL(k/2pf)'j (20)
'0A. J. Glick, Phys. Rev. 129, 1399 (1963); D. F. DuBois,

Ann. Phys. (N.Y.) 7, 174 (1959);8, 24 (1959).
~ J. Lindhardt, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 28, No. 8 (1954).

P(k, ko) = 2i—

The coupling at long wavelengths is deformation
potential in character as long as II&o'(1/s) does not
vanish. The value of the sound velocity may be varied
over a finite range by varying the coupling constant.
The derivative II' &'(x) is not related to the velocity of
sound. As we have seen, the velocity of sound is
determined by the equation

II &'& (1/S) =m/2&r&&o.

Therefore, it is impossible for the derivative II&o'(I/s)
to vanish for a finite range of s.

The above argument does not rule out an accidental
zero of II& &' for ko/k at the sound velocity of the given
system. If this were the case, however, we could change
the experimental results completely by altering the
velocity of sound very slightly. This may be done by
changing the pressure of the He' by a very small amount.
The experiments'' included such a variation, but no
significant change in the form of the specific heat was
observed.

To illustrate the above ideas in lowest order perturba-
tion theory, we compute the random-phase-approxima-
tion contribution to I' shown in Fig. 3 and generated
from (A6), (A8), and (A9) by the lowest order approx-
imation r(P,k) =—1, G=GO. This approximation gives
the I.indhardt dielectric function"

FzG. 4(a). Low-order vertex correction; (b) most general vertex
correction which makes the expression for the self-energy exact.
The wavy line labeled k represents the effective potential A(k)
given by the Fourier transform of Eq. (A4).

where

(21)

with
x= kor&4/pfk.

lim r (p, k) 1/k'.
k—R,kp/k=s

(23)

Perturbation-theory calculations do not lead to this
singular behavior.

However, let us assume that anomalous behavior
given in (23); it is possible to show that such an
assumption leads to a contradiction. We assume
piezoelectric coupling due to the form (23) of the vertex
function and obtain a singular self-energy Lsee (5)j.

To calculate P(k), given (A9), in the limit k ~ 0,
ko/k=s we factor out the 1/k' the vertex function
contributes. Thus

2i
P (k)

d4p

(p+ k)G(p)
(27r)4

(24)

No additional anomalous behavior of r(p, k) as a func-
tion of p in the neighborhood of the Fermi surface is
included. For self-energies of the form

~(p,p )= —p"( (p)),
where p is an arbitrary function, the result is of the
form

lim P(k) (1/k') f(s),
k~, k0/k=s

(25)

Thus, the sum of bubbles alone satisfies (18) and leads
to deformation-potential coupling.

In summing the diagrams shown in Fig. 2, we have
omitted all the vertex corrections of the form shown in
Fig. 4(a) or, more generally, those of Fig. 4(b). The
inclusion of such vertex corrections modifies (12), so
that

d4k r(p, k)
Z (p) =+i V&,.G(p —k) . (22)

(2&r)' 1—V&,P (k)

This expression for the self-energy is exact (see (A7)].
If the vertex function is singular as k ~ 0, with k,/k = s,
then our conclusions in (19) are incorrect. In order to
have the coupling to phonons gk, go to a constant, we
must have
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where f(s) is a function which is not identically zero
and represents the value of the integral. " Thus we

cannot obtain a solution to the dispersion relation for
soundlike excitations

and the contradiction is apparent.
As before, we may be at a particular value of s for

which f(s) in (25) accidentally vanishes. In this case we

need even better luck to have that value of s satisfy

Once again these extraordinary results would change
drastically under the slight application of pressure.

The above analysis prescribes some of the conditions
that the Green's function and vertex function must
satisfy in order to obtain piezoelectric coupling without
an inconsistency. Perturbation theory and the proposal
of Balian and Fredkin4 do not satisfy these condi-
tions; on the other hand, we have not shown that it is
impossible.

From a qualitative point of view it is clear that the
coupling to soundlike excitations must go to zero as the
wavelength of sound approaches infinity. "The excita-
tion of phonons with wave vectors approaching zero
corresponds to a uniform translation of the system.
The scattering of He' atoms from these phonons must
go to zero since the force between He' atoms is not of
infinite range. A He' atom cannot distinguish a small
uniform translation from no translation at all. Hence
the coupling to the phonon displacernent field vanishes. "

"Using a self-energy of the form Z{p,p0) = —p0&(~{p)), and
taking the limits indicated in (25) we find

1
2f(s) =—, p'd p1+ ( )

)C In s ——— s+——
with e=(p'/2m) —p, E=~/L1+q (~)g. Since s and the chemical
potential p are independent parameters, we can see that f(s) is
not identically zero. This may be shown, for example, by looking
at the power-series expansion of the integrand for large s.

The proposal of Balian and Fredkin corresponds to setting

q {c)=+I 2o{1+v/c)ln~B/ej j' .
"There is a discussion of the deformation-potential theorem in

solids given by P. W. Anderson, in Concepts in Solids (W. A.
Benjamin, Inc. , New York, 1963), pp. 116—119."It is perhaps of interest to mention that some time ago one of
the authors (S. E.) noted that an electron coupling to phonons
which went to a constant for long wavelengths resulted in the
singular behavior given in (5). At that time it was noted that this
singularity could lead to a fit of the observed tunneling anomalies
in metals and semiconductors (Ref. 15) and also lead to specific-
heat anomalies. However, as in the case of He, the impossibility
of such coupling in the materials used ruled out this as a possible
explanation. One reason such coupling is impossible in metals and
heavily doped semiconductors was pointed out by Dr. C. Herring
(private communication). Such coupling implies that an almost

IV. CONCLUSIONS AND DISCUSSION

We have presented a method by which the coupling
of collective excitations to single particles may be
calculated within an infinite-order perturbation approx-
imation. Such a technique may often be useful for
choosing an approximate Hamiltonian which describes
the effects of collective excitations on the single-particle
behavior. An example which may be calculated using
this technique is the coupling of electrons to plasmons.

We have used this technique to calculate the coupling
of soundlike excitations to He' atoms and found that the
coupling gI,

' k' at long wavelengths. The conclusion is
that the coupling to zero sound in lowest order perturba-
tion theory cannot lead to a contribution singular
enough to correspond to Anderson's suggestion that the
specific heat of He' has a T ln1" term.
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APPENDIX A

Using the functional derivative techniques developed
by Schwinger, " we outline here the derivation of the
relations between the functions introduced in this paper.
These relations are implicit in a paper by Martin and
Schwinger. "We include this Appendix as a guide for the
definition of the various functions. To the Hamiltonian
(10) we add a driving term

d'r U(r)f, t(r)P, (r) = d'r U(r)p(r), (A1)

where U(r) is an externally applied potential. The
Fourier transform of the density autocorrelation
function

~(x,x') = —f(&2'(p(x)p(*'))) —&p(*))(p(*'))) (A2)

may be written in terms of the Fourier transform of
the irreducible polarization part,

8G '(xg, xg)
I'(x,x') =2~ ' dgdx'x 2(Gx,xi) G(x2, x+), (A3)

8A (x')
uniform ionic displacement (creation of a phonon) causes an
infinite-range electric field. The presence of amost free electrons
will screen this field out. In fact this is precisely the qualitative
argument given above. Of course such behavior can be found in
some insulating crystals, which are then called piezoelectric.
We have received a report prior to publication of work by G.
Mahan and C. Duke which discusses the above idea in relation to
tunneling in semiconductors.

"A. Wyatt, Phys. Rev. Letters 13, 401 (1964); R. I.ogan andJ. Rowell, i'. 13, 404 (1964).
16 J. Schwinger, Proc. Natl. Acad. Sci. (U.S.) 37, 452 (1951)."P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959),

(see p. 1371).
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where x+ denotes (x, t+0+) T. he effective field A(x)
generated by the external potential U(x) is given by Z(p) = d4(x —x') e '"'&*—*'&Z(x,x')

& (x) = U(x)+ d'*" V(I»—x" l)(u(x")) («) =+i VI,G (p+ 0)I'(p, k)K(k) . (A/)
(2m.)4

The vertex function is defined by the equationThe reason for calling E' the irreducible polarization part
can be seen diagramInatically or from the equation for
the change in the potential A generated by a change in

the external potential,

Z(x,x')

bA (x)
=b(x —x')+ d'x, V(ix —x, i)S(x,,x')

bU(x')

1'(p, k) = d4(x x'—)d4(x z)—
bG-' (x,x')

Xe—ip ~ (z z') i—k ~ (z——z) (AS)
W (z)

We note from (A3) that the irreducible polarization
part may be written as

d4

(A9)=(p+k)G(p) 1 (p,k)
(2n.)4

The equation for S(x,x') is obtained by calculating

P(k) =2i

Thus the quantity usually denoted as the inverse
dielectric function is given by

K(k)=L1—VpP(k)] '. (A5)

The equation for the single-particle Green's function
may be written as

S(x,x') =

b

i
i—+—~(x) iG(*,*')

\ bt 2m )

where the self-energy is

Z(4'(x)0" (x))= -2i ~(x,x')
b U(*') ~ b U(x')

bG—'(x„xg)= 2i d4x,d'xg'xg G(x,xg)
bA (xg)

bA (x3)
XG (x2,x+), (A10)

b U(x')
where the factor of 2 arises from the sum over spins.

d4x& G(x,x&)Z(x&,x') =b(x—x'), (A6) Using (A5), (AS), and (A9), we may write the density
autocorrelation function as

S(k) =P(k)/[1 —M'(k)]
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Theory of Liquid Helium Three
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The present work contains a detailed study of two types of heat-capacity anomalies present in liquid He'.
One of these is the plateau formation at intermediate pressures, P 10atm. The other anomaly consists in the
appearance of a flat constant-pressure heat-capacity maximum, followed by a shallow minimum, between the
temperatures of 0.15 and 0.30'K, and the pressures of 10 and 30 atm, approximately. At somewhat higher
pressures, over a small pressure range, only the heat-capacity maximum becomes observable. These heat-
capacity anomalies originate with the competition of the thermal excitations of the spin and nonspin degrees
of freedom, within the theoretical approach advanced here. The observation of the predicted low-amplitude
heat-capacity extrema in compressed liquid He' may require heat-capacity measurements of increased ac-
curacy, preferably at higher pressures. The problem of the heat-capacity behavior at low and very low tem-
peratures has also been explored under a restrictive hypothesis. It will be assumed that the nature of the
thermal excitations which appear in incontrovertible and independent heat-capacity data, available only at
saturation and at temperatures above 0.2'K, persists on the spin and nonspin degrees of freedom down to
the absolute zero. Kith the recently established universal character of the nuclear-paramagnetic-suscepti-
bility ratio law of liquid He', down to 0.05'K, the stated assumption leads one to predict that the ratio
of the total heat capacity to the temperature approaches parabolically in temperature its 6nite limit at the
absolute zero. In the present theory, deviations from this behavior require a new paramagnetic-susceptibility
law at the lowest temperatures.

1. INTRODUCTION
' 'N our initial approach toward a theoretical formu-
~ - lation of the equilibrium thermal properties of

' L. Goldstein, Phys. Rev. 96, 1455 {1954).

liquid He', it was possible to prove that the observed
peculiar shape of the saturated-liquid heat capacity as
a function of the temperature had to arise with the
competitive behavior of two component sets of degrees
of freedom. One of these sets referred to the nuclear-spin


