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The eigenfunctions for spherical and deformed Saxon-Woods potentials with a Thomas-type spin-orbit
coupling are calculated for mass number A =185. The expansion coefjcients into oscillator functions and
the energies are tabulated for the spherical Saxon-Woods functions for %=4 and 5 proton shells and for
&=5 and 6 neutron shells. For states with a binding energy &2 MeV the first six coeKcients contain more
than 99% of the Saxon-Woods function. The overlap integral for these states with the corresponding
oscillator functions is always greater than 0.92. The basis for the spheroidal nuclei is confined to a single
N shell. The deformed potential reproduces the experimental level sequence in the rare-earth nuclei using
the optical-model parameters. The well depth, however, is fitted using the binding energy of the last particle.
The differences between the quadrupole matrix elements in the Saxon-'Woods and oscillator potentials are
as large as 60% for states with a binding energy greater than 2 Me&. The y-ray transitions between states of
small binding energy and more than one node are enhanced by several oscillator units. The quadrupole
matrix elements and the mixing coeKcients for the rare-earth nuclei are tabulated and the expressions for
the transition probabilities are given in the (jlE) representation.

1. INTRODUCTION
'

~ OR the last fifteen years nuclear-structure calcula-
tions were inconceivable without the shell-model

description for spherical' ' and deformed nuclei. ' The
great success of this approach brought very suitable re-
finement of the single-particle model involving the inter-
action between nucleons and the form and behavior of
the self-consistent field. But most of these calculations
have assumed an oscillator basis. It is well known that
for small binding energies the oscillator function gives
an inaccurate description of the real behavior of a
nucleon. For processes which depend on the conduct of
a bound state at great distances from the nucleus, e.g.,
radioactive capture or stripping and pickup, either a
square well with a finite well depth, 4 or a "cutoff" oscil-
lator potential, ' as well as Saxon-Woods potentials
have been utilized. ' ~

Often these refinements have less inhuence than the
differences between the oscillator functions and the
eigenfunctions for a Saxon-Woods potential. The
gamma-ray transition probability between two states
with small binding energies can be enhanced to several

Weisskopf single-particle units by using Saxon-Woods
functions, while for an oscillator basis a sophisticated
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residual-interaction calculation has to be done to get a
similar collective enhancement.

It seems, therefore, worthwhile to make a system-
atic comparison between the oscillator and the Saxon-
Woods functions for the spherical and the deformed
cases.

In this paper the Saxon-Woods functions for /=4
and 5 protons and X=5 and 6 neutrons are calculated
for spherical and deformed fields.

In Sec. 2 the Saxon-Woods Hamiltonian with the
Thomas-type spin-orbit coupling is given and the
numerical method for the solution is briefly outlined.
The Saxon-Woods functions are tabulated by expanding
them in oscillator functions. It is shown that all func-
tions with a binding energy greater than 2 MeV can be
represented by six coeScients with accuracy better
than 99%%u~. This is, therefore, a convenient way to
tabulate the Saxon-Woods wave functions. First, one
does not need the lengthy tabulation of numerical
values of the function and, second, the analytic expres-
sions for the oscillator matrix elements can be used.

In Sec. 3 the formulation of the Hamiltonian of a
multipole deformed Saxon-Woods potential is given.
The effect of the incompressibility of nuclear matter is
taken into account by volume conservation up to second
order in the deformation parameters. The formulas
are then restricted to a symmetric quadrupole deforma-
tion. The model yields the correct level sequence of the
deformed states in the rare-earth region, including the
neutron states with asymptotic quantum numbers

s+L633] and s —L521], for which the original Nilsson
model gives the wrong sequence. It also gives the right
value for the decoupling parameter of the —', —L510$
band. The mixing coeKcients for mass number A =185
are tabulated.

In Sec. 4, y-ray transition probabilities in the de-
formed region are discussed and formulas for the
(j/E) representation are given in the Appendix. The
matrix elements for Saxon-Woods functions and oscilla-
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tor functions are compared. It is found that values de-
pend strongly on the width of the potential near the
binding energy. For this reason differences between the
two potentials of up to 60% are observed for the r'
matrix elements. These Inatrix elements are tabulated
for the rare-earth region. The Saxon-Woods matrix
elements for states with a binding energy less than 2
MeV but involving more than one node are always
greater than the corresponding oscillator values for
positive powers of r. The E2 transition probability
between the 4s~f~ and the 3d5f2 neutron states is en-

larged by a factor of 2.85 owing to this effect and the
single-particle proton quadrupole moment increases
by a factor of two.

using a smaller well depth, Vo, and a smaller diffuseness
parameter, Op=0.52 F. The well depth is adjusted by
utilizing the binding energy of the last proton (Vs ——35.34
MeV) or the last neutron (Vs ——46.33 MeV) immedi-
ately before and after the deformed rare-earth region
(see Table I). The spin-orbit constant was extrapolated
from the optical-model fits to negative energies (Co= 10
MeV).

If one separates the solution of the Schrodinger
equation into a radial and an angular part,

~
ojim) =r—'u„, ,[j]'t'

2. THE SAXON-WOODS FUNCTIONS FOR
A SPHERICAL POTENTIAL

TABLE I. The 6ts of the well depth using the binding
energy of the last particle are listed.

Proton

Nucleus State

orbits
~B

(MeV) Ve

141Pr
'"Pm
197Au
203Tl
205 Q

2d5(2
2d5(2
2d3(2
3$1(2

5.43 36.34
5.39 35.56
6.32 34.43
5.78 34.57
6.68 35.31

Average Ve(MeV) 35.24

Neutron orbits
~B

Nucleus State (MeV)

'4'Nd 2f,ls 6.00
'4'Nd 2fr(2 5.96
149Sm 2f7(2 5.90
"'Pt 3p1(2 6.17

Hg 3p1(2 6.90
1'9Hg 3p1(2 6.68

Average VeLMeVg

Vo

47.54
47.13
48.06
44.82
45.44
45.01
46.33

e F. Bjorklund and S. Fernhach, Phys. Rev. 109, 1295 (1958).' F. G. Percy, Phys. Rev. 131, 745 (1963).

The plan of this section is to solve the Schrodinger
equation for a spherical Saxon-Woods function with a
Thomas-type spin-orbit coupling. These functions will

be used in the next section as a convenient basis for
the deformed potential. For the spherical case, elaborate
analysis of the experimental data' ' within the frame-
work of the optical model has given the following form
of the real potential:

8
V(r) = —Vof(r)+((t/m c)'Co——f(r)1 s,

r Br
with

f(r) = f1+exp[(r—roA't')/asj)

The length factor introduced in the spin-orbit term
is the s -meson Compton wavelength (1.4 F). The
Pauli-spin operator s and the orbital angular mo-
mentum operator l are given in units of A. The nuclear
radius, Eo——rod' ', is taken from the optical-model fits

(rs ——1.25 F), while the diffuseness parameter ao is
fitted by utilizing the experimental level sequence for
the deformed potential. For the neutrons this value is
a0=0.64F, which is also the best 6t for the optical
model. For protons the Coulomb interaction was not
taken into account. (The code was originally made for
neutrons only. ) This interaction was simulated by

then one gets for the radial equation

u„;," [l(lg1—)/r'+2(mc/A) '
X (mc') '(V(r) —E)]u„,t= 0. (3)

The Greek letter v=1, 2, 3, . denotes the radial
quantum number, which counts the zeros, including the
one at zero but not counting the zero at infinity. It is
related to the radial quantum numbers of the harmonic
oscillator by the equation

v=I+1= (iV—l)/2+1. (4)

The Greek capitals A and Z are projections of the
orbital angular momentum l and the spin, 5=2. The
caret symbol is an abbreviation for

2=22+1. (5)

The 3j and the 6j symbols in the notation of
Edmonds' will be used throughout this paper. If the
Compton wavelength of the proton and its rest mass,

tt/(mc) =0.210309 F,
mc'= 938.211 MeV,

(6)

and the coordinate r must be used in units of fermis.
The radial equation (3) is solved by the method de-
scribed by Hartree, "but the Haming method" is used
instead of the Xumerov method, for the numerical
integration.

'0 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

"D. R. Hartree, The Catcllatiort of Atomic Strlctlres (John
Wiley 8z Sons, Inc., New York, 1957).

» A. Ralston and H. S. Wilf, Mathematical Methods for Digital
Compttters Uohn Wiley tk Sons, Inc., New York, 1960), p. 95.

are written in fermis and in MeV, respectively, then the
parameters Vo and Cp must be written in MeV in the
potential

V(r) = —Vof(r)+Co(1.4) '

l for j=l+-,'
(7)—/ —1 for j=l——,

'
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FIG. i. The Saxon-Woods potential
in units of Vo and its erst two deriva-
tives are compared with the oscillator
potential in the same units. The dis-
tance from the center of the nucleus is
given in units of Ro (Ro= 7.12 F).The
diGuseness parameter has the value
a0=0.64 F. The oscillator potential is
normalized to the li13/2 state for
&=41/(185)'w MeV.
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Figure 1 shows the potential in units of t/'0 and its
derivatives for Rs = 1.25 X 185'"= 7.12 F and a diffuse-

ness parameter co=0.64 F. It is compared with the oscil-
lator potential in the same units for the oscillator energy
her=41/185''s MeV. The oscillator potential does not
fit the Saxon-Woods potential for negative energies too
well. In particular, it is to wide at the average binding
energy of about 6 MeV= Vs/8.

In Fig. 2 the single particle energies for the X=4 and
K=5 shells for the protons and the %=5 and %=6
shells for the neutrons are compared with the spherical
energies of Nilsson. '

The experimental values for the hole states in "'Pb
and for the particle states in ' 'Pb are normalized to the
3p», (the notation vtj is used) and to the 4stls of the
Saxon-Woods potential, respectively. The theoretical
levels are for the mass number 2=185, so that the
2g7/2 and the 3d3/2 are already unbound, while these
states are still bound in Pb.

In Fig. 3 the eigenfunctions for the 4s~12 and 3d5i2
neutron states and the 1g7/2 and 1hii/2 proton states are
compared with the corresponding oscillator functions.
The diBerence in the exponential tail for the Saxon-
Woods functions and the Gaussian slope for the oscilla-
tor solution can be seen for neutron wave functions,
which have a small binding energy. For greater binding
energy the functions are surprisingly similar.

The energies of the Saxon-Woods functions and the
expansion coeKcients into oscillator functions are tabu-
lated in Table II. (Such an expansion has also been
studied by Sliv and Volchock". ) For all states with a

"L. A. Sliv and B. A. Volchok, Zh. Eksperim. i Teor. , Fiz.
36, 539 (1959), I English transl. : Soviet Phys. —JETP 9, 374
(1959)g.
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FIG. 2. The single-particle energies for the spherical Saxon-
Woods potential and the oscillator potential (with the Nilsson
parameters) are compared for the mass number A =185. For the
Saxon-Woods potential the proton states 3piis and 2f5is and the
neutron states 2g7/2 and 3d3/2 are unbound, while the corresponding
states for the mass number A =208 are bound. This is important
in comparing the particle and the hole neutron states in 2'~pb and
"'Pb with this calculation.
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TABLE. II. The energies and the first six coefificients for the expansion into oscillator functions Iv= —,(N —l)+1, l) are tabulated for
the Saxon-Woods eigenfunctions

I vlj ) with mass number A = 185. In the last column the percentage of how well the first six coefficients
represent the Saxon-Woods function is given. The parameters for the potential are ro ——1.25 F, CO=10 MeV, U0=35.24 MeV, ug ——0.52
F for the protons, and ra=1.25 F, U0 =46.33 MeV, Co= 10 MeV and a0=0.64 F for the neutrons.

State ELMeVj 7=2 @=3

Proton orbits

igg/2
ig7/2
2d 5/2

2tE3/2

3$1/2
1~11(2
ihg/2
2f7/2
3p3/2

State

—12.96—8.57—8.32—6.02—6.31—7.27—0.83—2.09—0.46

EEMeVj

0.9836
0.9969—0.2853—0.1983
0.0733
0.9921
0.9935—0.2128
0.0753

0.1552—0.0099
0.9336
0.9688—0.2710
0.0814
0.0771
0.9481—0.1746

@=2

—0.0837—0.0496
0.1982
0.1169
0.9299—0.0765
0.0182
0.1958
0.8216

0.0232
0.0576—0.0592—0.0303
0.2173
0.0514
0.0789
0.0073
0.3299

v=4

0.0255—0.0011
0.0519
0.0814—0.0244
0.0171—0.0074
0.1126
0.1651

—0.0147—0.0087
0.0336
0.0218
0.0801—0.0162
0.0105
0.0540
0.2304

99.99
99.5
99.95
99.98
99.7
99.99
99.97
99.8
90.0

vl; Neutron orbits

1hl/2
ihg(g
2frn
2fs/2
3pl(2
3pl/2
1513/2
1211/2

2gg/2
3d 5/g

4sl/2

—14.88—9.08—9.68—6.44—7.24—6.00—8.11—0.28—2.70—0.81—0.41

0.9945
0.9818—0.1207—0.0190
0.0711
0.0675
0.9896
0.9703—0.0368
0.0750—0.0023

—0.0489—0.1810
0.9877
0.9920—0.1028—0.0555—0.1205—0.2218
0.9926—0.0189
0.0746

—0.0730
0.0048—0.0156—0.0889
0.9863
0.9900—0.0384
0.0783—0.0247
0.9403—0.0083

0.0540
0.0524—0.0580
0.0060
0.0298
0.0087
0.0653
0.0471
0.1222
0.1539
0.7964

—0.0024—0.0225
0.0775
0.0850—0.0225
0.0098—0.0156—0.0197
0.1085
0.1306
0.2546

—0.0120
0.0049
0.0001—0.0119
0.0991
0.1071—0.0048
0.0207
0.0051
0.1974
0.2247

99.98
99.999
99.97
99 9
99.9
99.9
99.98
99.98
99.9
97.0
73.0

binding energy of 2 MeV and greater, the erst six co-
efficients contain more than 99% of the Saxon-Woods
function. This occurs in spite of the fact that, e.g., the
2d5(~ proton state has an overlap of —0.28 and 0.20
with the next lower and next higher shell of the same
parity. With this tabulation one has not only the ad-
vantage of representing the wave function with only 6
numbers, but also one can use the analytic expressions
for the oscillator matrix elements. Furthermore, it is
possible with no great loss of accuracy, as has been
verified in a number of cases (see Tabie III), to use the
tabulated wave functions for the neighboring mass
numbers by choosing the appropriate oscillator constant

rr = [fi/(mu)] "s (8)
with

A(0=412 '~' [MeVj.

The phases of the Saxon-Woods and the oscillator
functions are chosen such that the tail is always posi-
tive. Kith this choice the oscillator functions have

I

OVERLAP: O. BO

0.2

v) -0.2
o K,/

0.6-
OVER

~ 04-
IJJ
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w
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0
OVERLAP: 0.94

04—

0.2-

I

4s I/2
/
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Neu&ron
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7 MeV
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TABLE III. Dependence of the —,
' —L510j

neutron state on mass number. -0.2

%1 —(5107 Cl /2, 1 C3(a, l C5/3, 3 Cg/2, 5 Cll /2, 5
-0.4-

A =169
A =173
A =177
A =181
A =185
A =193

0.173
0.153
0.135
0.118
0.102
0.074

0.634
0.639
0.643
0.647
0.651
0.657

0.559
0.563
0.566
0.568
0.569
0.571

—0.326—0.332—0.338—0.344—0.849—0.358

—0.380—0.368—0.357—0.347—0.337—0.320

0.070
0.073
0.075
0.077
0.079
0.082

I

0.5Ro RO l.5Ro
DISTANCE FROM THE CENTER OF THE NVCLE VS

FIG. 3. The same oscillator and the Saxon-Woods functions are
compared for our choice of parameters. The energy and the over-
lap integral (oscillator

I
Saxon-Woods) is given.
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the same phase as in the Nilsson paper':

I
vjE~)=r 'o ~(p)(—)' ' "P"Eszl II'~s(e,y)~*.'

Ex z

with
o,((p) = (—)" 'L2r(v+E+s)/(v —1)!]'~'r '(E+s)p'+'8 —»', gl g(—v+1, l+-,', p')

mc ( Egret ) '~s

p=r/~=r —
I

a E~cs)

@=i)2) 3)''')

o. '(p)&p=1

I'(v)1'(v )
(v'l'i p" ivl)=

r(v+t r) r(v'—+t r')—
I"(t+oy1)

r fr'! Q (10)
o!(v—o'—1)!(v'—o'—1)!(o+r—

r +1)!(o+r' —v'+1)!

—1/2

Nilsson' gives a very useful formula for the calculation of matrix elements of p" for E+E'+X= even:

where
r=-,'(E' —E+&), r'=-;(l—E'+X),

t= ', (E+E'+-7+1),

and the summation variable is limited by

&0)
p 1/

V T

P T 1
(12)

3. EIGENFUNCTIONS FOR THE DEFORMED
SAXON-WOODS POTENTIAL

To simplify the calculation of the single-particle
eigenfunctions for a deformed-rotating and vibrating
Saxon-Woods potential it is assumed that the wave func-

If no o ful6!ls relation (12), then the integral is zero.
Some of the most important special cases of Eq. (10)

are the following:

(v, l—1~r~v, E)=(v+E—-')"'

(v—1, E+1(r(v,E)=(v—1)«s

(v+1, l—1
)
r

( v, l) =v'",
(v, l+1i r i v, l) = (v+l+-')"'

and
(v, l

~

rs~ v, l) =2v+l ——', =E+-,s,
(v+1, E—2[rs(v E)=2)v(v+E—-',)]"'
(v —1 l+2trs]v E)=2/(v —1)(v+E+-',)]«s

(v—1, Eir'i v, E)= P(v —1)(v+E——,')]"',
(. l—2)rs)v l)=Lv(vyE+-', )]'&'

(v, l—2
)
r') v, l) = L(v+E——',)(v+l—-')]"'

(v, E+2~ r'~ v, l)= L(v+E+s)(v+E+s)]"'
(v —2, E+2 [

r'f v)E) = L(v—1)(v—2)]'
(v+2, E 2

I

rs
I v, l) = Lv(v—+1)]«s.

tion can be separated into collective and single-particle
constituents to a 6rst approximation. The collective part
is divided into rotational and vibrational eigenfunctions.
The eigenfunction can then be written in the form:"

) IME; EQ; vib) = [I/(16'')]'t'
X(D'MzXo+( —)' 'II,D'sr zx o]C'.;b. (15)

Here I is the quantum number of the total angular mo-
mentum. The symbol K is its projection in the intrinsic
system. The intrinsic system is defined by the symmetry
axes of the deformed potential. The Greek capital 0 is
the projection of the single-particle angular momentum

j in the intrinsic system.
The symbol II„ is the parity of the intrinsic single-

particle function Xg For the ground-state rotational
band it is E=Q.

The interaction between single-particle excitations,
rotations, and vibrations gives a linear combination of
functions (see Eq. 15). These interactions have been
studied in detail by Faessler. ' Here the intrinsic par-
ticle function Xg is calculated by expanding in the spheri-
cal-basis functions of Sec. 2. First, however, the Saxon-
Woods potential must be generalized for the case of
deformations.

There are two ways to generalize the potential (1)
for multipole-vibrations or deformations. Method A,
which can be used for any potential, assumes that the
equipotential surfaces are deformed.

r=r g(8,@)
=r (1—Z /(4 )+2 cs P ) (16)

One must replace the variable r in Eq. (1) by r/g(0, $)
The term P~„nq„tn~„/—(4m) guarantees volume con-
servation to second order in the deformation param-

"A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
26, No. 1.4 (1952).

"A. Faessler, Nucl. Phys. 59, 177 (1964).
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eters. For numerical convenience the potential is ex-
panded in powers of f(8,$) 1—

V (r/g(8A)) = Lg(8A) —1)
Bg g —]

1 O'V+-, La(8,&)—1)'+ " (17)
2 8g g —y

By inserting g(8,&) of Eq. (16) into the potential (17),
one gets for the deformed part of the potential

V~(r,a~„,8,4) =a~,»„(8,4)

X Vo f'(y)—Vo —~~,—'~~„f'(y)/4~+~~, »,(8,y)

general but is very convenient for the Saxon-Woods
shape. This is denoted as method B.The nuclear radius,
Rp, is replaced in B, in Eq. (1) by

Z =EpL1 —gg„o,g„tag„/(4or)

+Z.. ..&&».(8,~)) (20)

Instead of Eq. (18) this procedure leads to the following
expression:

Rp
Va(r, ~),„8,4)=~a,V~,(8,4) Vo f'(y—)

QP

E() f'(y)—Vo—~~,'~)„+o (~o/«) ~~X~,(8,4)
ap (4o-)

&& .V.(8A)f'(y) (21)

CP Cp-

1r
&& &oV»(8»)l f'(y)+ f"(y—) I

+"., (18)
2« i

where y= (r—Ep)/«and

f(y) = (1+e") ',
f(y) = eo(1+e—p)

f"(y) =e"(1+e") 'L~e"(1+e")-' 1). —

In Eq. (18) the convention is used to sum over all double
subscripts.

It is also possible to derive a deformed potential
from a spherical one by a method which is not very

The main difference between methods A and 3 is that
in method 8 one obtains the constant factor Rp and Rp'
instead of the variable r and r'.

For an axially symmetric deformed nucleus the equa-
tion for the equal-mass surfaces in method A LEq. (16)]
becomes

r = rqL1 —Q&, P& o'/(4or)+Pq Pqp»p(8)). (22)

Correspondingly, in method 3 the nuclear surface is

~=~OL1—Px Pxo'/(4o)+PL Pxp»p(8)) (23)

Using Eqs. (22) and (23) the deformed potential of a
symmetric nucleus is given in Eqs. (24) and (25) for
methods A and 8, respectively:

f'(y)-
V (r,P o,8)=P oV o(8)Vo f'(y) Vo—Po' — —+»o'(8)l f'(y)+ f"b') I- —«ao -(4~) & 2 «

I'o Eo f'(y) 1 Ro
V.(,P",8)=P.V"(8)V. f (y)-V. P—: + —». (8)f- (—y),

Cp ao (4') 2 ao

where y= (r—Ep)/«and f'(y) and f"(y) are given in Eq. (19).
The deformation parameter Poo is related to the parameters used in the paper of Nilsson' by the equations

(24)

(25)

P=1.058t 1+0.51—+0(8')), 8=0.95PL1—0.48P+0(P')], q= (8/K)L1+(2/9)&'+ ]. (26)

One can now restrict the equations for symmetric quadrupole deformations P»=Pp. The spherical Hamiltonian is

&o= +V(&).
2m

(27)

The potential V(r) is defined in Eqs. (1) and (7). It contains a Thomas-type spin-orbit coupling for which the de-
formation (as in the Nilsson calculations) is not taken into account. The nonspherical part of the potential is

Vz(rPo8) =PoVo(r/ao) f'(y) &oo(8) Po'Vo(r/«) (f'(y)/(2—o)+(r/«) f"(y)/(87r)
+(2/7) (5/47r)"'Yoo(8) Lf'(y)+ g~(r/«) f"(y))+ (6/7)(1/47r) '"V4o(8)$f'(y)+ o (r/«) f"(y))} (28)

V ( Po, 8) =PoVo(~o/ o)f'(y) V o(8) Po'Vo(&o/ o)Lf'(y—)/(4 )+(~o/ o)f"(y)/(8 )
+(1/7) (5/4~)"'(&ol«)f" (y) I"»(8)+(3/7) (1/«)"'(&o/«)f" (y) V4o(8))
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TABLE IV. The mixing coeKcients for the -', —[510]neutron state are compared for method 8 (Table VII), and method A, the Nilsson
model, and the experimental value from the (d,p) reaction for the nucleus "'Yb P =0.25). The deformation for the theoretical values is
P =0.2, which is the experimental deformation in I8'W.

8
A
Nilsson
Experiment

0.102
0.092—0.058

~0.13

C

0.651
0.654
0.675

&0.58

C&&5n

0.569
0.571
0.569

&0.63

—0.349—0.352—0.371
&0.41

CIy gi2

—0.337—0.329—0.268

ClhII )2

0.079
0.078
0.079

0.18
0.14—0.17
0.22

The product of the two spherical harmonics is expanded
into a Clebsch-Gordan series.

The volume conservation is incorporated in the per-
turbation Hamiltonian. Nilsson has included it in the
spherical part by letting the unperturbed potential
depend on the deformation. This can also be accom-
plished by introducing a deformation-dependent radius
&=As(1—Pss/4'). If one has analytic solutions for the
spherical potential, then this method is feasible. But for
the Saxon-Woods potential it wouM mean the numerical
recalculation of the basic functions for each deformation.
Following Nilsson, ' we diagonalize the matrix:

(v' j't'n
i
Hp )

vjln)
=Z„,,a, ,,', „„+("j'Vn[V,[vjfn), (30)

ol

(v'j 't'n
il
Hg

i vj ln)
+ jl~ 'j'i', t+(v'j'i''n

i Vai vjin), (31)

where the vectors ivjtn) are confined to a single
X=2v+f 2shell. Her—e, to be sure, the vectors

i
v jtn)

are Saxon-Woods eigenfunctions, and the quantities
V~ and V~ are given in (28) and. (29).

The results of method B are given in Table VII at
the end of this paper for rare-earth nuclei. The mixing
coeKcients for the spherical basis ivjln) are tabulated
for the mass number A=185 and the deformations

P =0.1, 0.2, 0.3, 0.4. The optical model 6ts for protons
of Bjorklund and Fernbach' and of Percy have been
utilized as the starting point for the choice of the param-
eters. The values rp=1.25 F, Cp= 1.0 MeV and up=0. 64
F have been used for the neutrons as in the optical
model. Because the Columb interaction has been
neglected, a steeper well has been utilized for the pro-
tons. For the same reason the well depth for the proton
Vp=35.24 MeV is less than the neutron well depth
Vp=46.33 MeV by about the Coulomb interaction of
one proton with the nucleus. Both have been 6tted
utilizing the binding energy of the last particle in the
appropriate spherical nuclei (see Table I). Unfortu-
nately, in this case it is not possible as in the case of an
oscillator potential'" to perform the calculation inde-
pendent of the mass number. (This is obvious because
of the fact that for different masses the same state can be
bound and unbound. ) Therefore, the tabulated coeflici-
ents are only correct for the mass A=185. However,

"&.R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Skrifter 1, No. 8 (1959).

Table III indicates that variation of the coefFicients C;i
with the mass number is small.

In Table IV the neutron eigenfunction rs—$510$
(where the classification of the state utilizes the asymp-
totic quantum numbers' nrr(NrI„A'j) using methods A
and 8 is compared with that using the Nilsson functions
for P=0.2. Although the differences in the mixing co-
efficients are small, the decoupling parameter a for
[5101 is changed by 22/o in going from method B to
method A. The Nilsson function (shown in row 3) gives
the wrong sign for the decoupling parameter. "The ex-
planation lies in the coeKcient cia»„which is too small.
In the last row the experimental mixing coefficients are
given. ' To extract the coefficients from the experimental
data, a truncated oscillator potential has been utilized.
They have been measured by the (d, p) rea, ction in the
nucleus Yb"', which has a deformation of about P =0.25.
The experimental values for the decoupling parameter of
the —',—$510] rotational band show a tendency to de-
crease" as the mass number increases. This calculation
reproduces this effect as Fig. 4 shows, although it can-
not fully account for the diminution. The augmentation
of the mass number enlarges the binding energy of the

o P
ZI O. I

1,2—
N

w I.O—
i-
I-

O.B-
I13x

0.6—
O

5 O.g —02
IIJ

ce 0.2—
0.3

(5
0.4

o-020
UJ
O

I

l69
I

l73
I I I

I 77 IB I I B5

MASS NUMBER

I

IB9
I

l93

Fro. 4. Dependence of the decoupling parameter of the 2
—$510j

band for the deformations P =0.1, 0.2, 0.3, 0.4 on the mass number
A. The decrease of this value with increasing mass is observed
experImentally.

'7 M. N. Vergnes and R. K. Sheline, Phys. Rev. 132, 1736
(1963)."3.Harmatz, T. H. Handley, and J. W. Mihelich, Phys. Rev.
128, 1186 I;1962).
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TABLE V. The decoupling parameters for the rare-earth region
are tabulated. The first column lists the state for which the func-
tion has the largest mixing coeKcient at P =0.1. Column two gives
the decoupling parameter for the spherical state Lao ——(—)& '~'

&&(j+2')j. Columns three to six give the decoupling parameter
according to the Saxon-Woods potential. The decoupling param-
eter for infinite deformation is calculated with the asymptotic
functions La„= (—)+8&,pg. In the last column the asymptotic
quantum numbers Qm-L1Vn, A7 are given.

0 O. I

I I

NEUTRON LEVELS

0.2 0.3
l

0 0 0en'
+ I I

& nt

0.4
I 1 I

O
sn

I

It/2+ [6I5]

7/2- [503]

3/2- {5 I 2]
I/2- [5 Io]

ig7/2
2d5/2

2d 8/2

3S1/2

ihII/2
2f7/2

—4.00
3.00

—2.00
1.00

—6.00
—4.00

0.1

-2.13
1.07

—0.65
—0.21
—5.93
-3.82

0.1

0.2 0.3
For protons

-0.68
—0.38
—0.70

0.02
—5.74
—3.66

—0.25
—0.67
—0.69

0.14
—5.44
—3.67

0.2 0.3
For neutrons

0.4

0.06
—0.71
—0.68

0.22
—5.06
—3.78

0.4

0
1.00
0
1.00

—1.00
0

)+$431j
$+t 420j
-,'+$411j
$+1400j
$ —P501
~2 —

t 5411

0-rXn Aj

(9
K
LLI
X
LLI

Ii I3/2

3p 3/2

-IO—

Ih 9/2

2f 7/2

"I2

-6—3p I/2

2f 5/2
X

9/2+ [624]
7/2- [SI4]

5/2" 512
II/2 —f505]

I/2- [52 I]
7/2+ [633]

5/2- 523
3/2 - 52

5/2+ f642]
I/2 - [530]
9/2- [SI4]
3/2- f 532]

3/2+ [65I]

—-8

—-IO

-12
2f7/2
ih 9/2

3P 3/2

2f5/2

3P1/2
1213/2

2gQ/2

—4.00
5.00

—2.00
3.00
1.00
7.00
5.00

—3.43
4.41

—0.26
0.94
1.25
6.92
4.73

—1.59
2.35
0.51
0.18
1.20
6.66
4.41

—0.62
1.01
0.73

—0.07
1.15
6.25
4.32

—0.39
0.22
0.79

—0.21
1.13
5.74
4.37

0
—1.00

0
—1.00

0
1.00
0

~x —P41
~2 —$530j
~2

—P21j
—,
' —$510j
$ —

t 501)
~+$660j
$+L6511

state and therefore makes the difference between the
oscillator and the Saxon-Woods functions smaller.

In Table V the decoupling parameters for the rare
earth region are tabulated. The most striking change
compared with the values of Mottelson and Nilsson"
(p. 84) involve the —,

' —[510]orbital mentioned above.
The calculations presented here move in the right
direction in improving the agreement between theory
and the experimental results, especially in the W
isotopes.

Figures 5 and 6 show the proton and the neutron
levels versus the deformation for the mass region

0 O. I

I I

PROTON LEVELS 2f 7/2

0.2
I

0.3 0.4
I I

II/2-[505] 3/2t[402] I/2+ [400]

9/2-[5 I 4]
5/2~ [402]
7/2+ [404]
I/2- [54I]

6 2d 3/2
3s I/2

0:
trjz
tLj -8—

2d 5/2
I g 7/2

Ih 11/2

-IO-

I/2t [4 I I]

7/2- [523]
3/2+ [4II]
9/2+ [404]
5/2+ [4I 3]

5/2- [532]

I/2 i [420]
3/2 t [422]
3/2- [54 I]

?/2+ [4 I 3]
I/2- [550]
I/2% [43I]

—-6

—-IO

Ig 9/2
I

O, l

III 9/2
I I I

0 0.2 0.3 0.4
DFFORMAT ION BETA

FIG. 5. The single-particle proton levels versus the deformation
p=1.058=1.057/K are shown for the Saxon-Woods potential for
the mass number 185 in the rare-earth region. The well depthis
't/"0=35. 24 MeV the radius parameter ro= 1.25 F, the diffuseness
parameter a0=0.52 F, and the spin-orbit constant C0 ——10 MeV.

I) II

O.I

Ih II 2 I/2 [54I] I/2+ [660]
I I

0.2 03 0.4
DEFORMAT ION BETA

Fxo. 6.The single-particle neutron levels versus the deformation
p =1.055 =1.05qK are shown for the Saxon-Woods potential for the
mass number A =185 in the rare-earth region. The well depth is
Vp=46.33 MeV, the radius constant r0 ——1.25 F, the dif'fuseness
parameter a0= 0.64 F, and the spin-orbit constant C0 ——10 MeV.

4. ELECTROMAGNETIC TRANSITION
PROBABILITIES IN DEFORMED

NUCLEI

As successful as the Nilsson model is in explaining the
energy sequence and the intrinsic nature of the states in
deformed nuclei, the calculations of absolute values of
electromagnetic transition probabilities have not been
satisfactory. A compilation of the hindrance factors
derived from the Nilsson model F„=PN;t„,„/E, „„,„t,

150&2&190. For the proton orbits the state rs+[400]
lies lower than the —',+[402], in contrast to the calcula-
tions of Nilsson. Until now there has been no definite
experimental evidence for either of the two sequences.
If the assignment of the E=s+ —band in Re"' at 646
keV as the —',+[400] band is correct, this favors the
sequence of orbitals of this calculation. It seems proba-
ble, however, " that this band is the E=0—2 y vibra-
tional band built on the intrinsic state s+[402].

The neutron orbits in Fig. 6 show the right sequence
of the s7+ [633]and the s —[521]states. These are the
ground state for the 99th and 101st neutrons. In the
original Nilsson" calculation these two single-particle
levels have the wrong order of succession for the ex-
perimental deformation. Probably, however, they could
be reversed without seriously affecting the otherwise
good agreement.

Thus the present experimental evidence on orbital
sequences in the rare-earth nuclei does not allow a clear
choice between these calculations and those of Mottelson
and Nilsson.
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is given by Loebner. "The E1 transitions fall into two
groups with AK=O and 6K=1. The former agree
reasonably well with the experimental results, while the
latter are larger than the Nilsson values by a factor up to
10'. If one takes into account the short-range correla-
tions of the nucleons the electric y-ray transitions are
reduced by a factor" "

(E, Er)'—(E;+Ef)s
Rs= (u I;—nrv, )'=

~ ~

—1
4E,Ef kE; Egl—

:(E,-Er)-l(E'-Ei+A)

Here the E's are the quasiparticle energies and 6 is the
half-energy gap. The gap is given by the odd-even mass
differences in the binding energy.

6=
~
F„(Z,Ã)

~

= )-', [2S„(Z,iV)
—S„(Z, iV+1)—S (Z, X—1)]i (33)

for odd-neutron nuclei and

6=
)
F„(Z,X)

~

=
~

-', [2S (Z,X)
—S„(Z+1)E) S~(Z 1)—E)]i

—(34)

for odd-proton nuclei. The neutron separation energies
S„and the proton separation energies S„are tabulated
by Vamada and Matumoto" and by Mattauch, Thiele
and Wapstra. "For the rare-earth nuclei, one finds 6 in
Ref. 24. In Eq. (32) the difference of the quasi-particle
energies E;—Ef is the bandhead-to-bandhead transition
energy. The final simplification in Eq. (32) is only possi-
ble for single-particle energies of&(A. Vergnes and
Rasmussen" and also Monsonego and Piepenbring'
have shown that with the reduction factor R' the
AE = 1, E1 transitions agree fairly well with the experi-
mental results. Then, however, the 6K=0, E1 transi-
tions are too small. The solution of the problem'~
seems to lie in a mixing of the initial state and the
octupole vibration of the final state, and vice versa.
This mixing enhances only the 6K=0, E1 transitions
because the octupole-vibrational band with 6K=0,
respectively, to the ground-state rotational band, is
expected to be situated much lower in energy and to have
a greater collective strength than the 6K=1, 2, and 3
bands.

"K.E. G. Loebner, thesis, Amsterdam, 1965 (unpublished).
'0 L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.

Selskab, Mat. Fys. Medd. 32, No. 9 (1960).
'I H. Ikegami and T. Udagawa, Phys. Rev. 133, $1388 (1964).
'2M. Yamada and Z. Matumoto, J. Phys. Soc. Japan 16, 1497

(1961)."T.Mattauch, Ml. Thiele, &and A. H. Wapstra, Nucl. Phys. 67,
1 (1965).

'4 S. G. Nilsson and O. Prior, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 32, No. 16 (1960).

'~ M. N. Vergnes and F. O. Rasmussen, Nucl. Phys. 62, 233
(1965).

'6G. Monsonego and R. Piepenbring, Nucl. Phys. 58, 593
(1964)."A. Faessler, T. Udagawa, and R. K. Sheline (to be published).

Although only a few absolute E2-transitions have
been measured, the available data show two groups, '
the E2 DE=1 and the E2 DE=2 transitions. The
E2 DE=1 transitions are enhanced by a factor 10' to
10' compared with the Nilsson model. Faessler" "has
shown that these discrepancies can be removed by con-
sidering the Coriolis interaction between the particle
and the collective rotation. But in Refs. 15 and 28 it is
also shown that the rotation-vibration interaction en-
hances this effect by the factor

9k' 1 3h' 1-'
f= 1+ +

2 Jp Ep 2 JpE~
(35)

. 28 A. Faessler, contribution to Internal Conversion Processes
(Academic Press Inc., New York, to be published).

where Jp is the moment of inertia and Ep and E~ are the
P and p vibrational energies, respectively. This factor
is about 1.3 for the Sm and the Os regions. The collec-
tive enhanced transition probability is not reduced by
the pairing interaction because the Coriolis force is
positive under time reversal.

The BE=2 E2 transitions are enhanced by the
rotation-vibration and the vibration-particle" interac-
tions and reduced by the pairing reduction factor. But
because the phenomenological interactions give only a
mixing of final and initial states in second-order per-
turbation theory, it does not outweigh the pairing reduc-
tion factor.

For electric-octupole transitions the absolute values
are known with certainty only for the 6K=3 transi-
tions. In the other cases the mixing ratio E3/M2 is
uncertain. Loebner" reports hindrance factors F~ be-
tween 3 and 6 for these transitions.

The 3f1-transition probabilities depend strongly'5 "
on the collective gg factor. It is possible to fit the transi-
tion probabilities in most cases with reasonable values
gg. Loebner, " however, calls attention to two cases
(in s4"'Gd, ss+[642]~ ss+[6517, FR=200; and in
rs"'Ta, ss+[402] ~ 7s+[404], F~) 1200) which still
demand explanation. In Table VI the r' matrix elements
with Saxon-Woods functions (first row) and with oscilla-
tor functions (second row) are compared. The oscillator
matrix elements are in many cases smaller than the
Saxon-Woods matrix elements. With our choice of
parameters, the oscillator potential (particularly in the
region of 6 MeV binding energy) lies outside the Saxon-
Woods potential (Fig. 1). This compresses the Saxon-
Woods functions more that the oscillator functions. For
small binding energies and more than one node the
Saxon-Woods functions have a greater probability of
being outside of the nucleus and the r matrix element is
larger by a factor of up to 2.5 in the case of (4ss

~

r'
~
4ss).

The E2-transition probability between the 4s&~2 and
the 3d&~2 states of Fig. 3 would be enhanced by a factor
2.85 according to Table VI. This effect is very important
in light nuclei where the excited nucleons often have only
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TAaLE VI. The (~r' ) matrix element is tabulated for the rare-earth region. The first row gives the Saxon-Woods
value and the second the oscillator value both in units of LS/eicoj with (i~=41/185"' MeV.

Neutrons

3p3/2

3p1/2

2/:i2

1h11/2

1hg/2

4$1/2

3d5/2

2gg/2

1513/2

Neutrons

6.158
6.500
6.233
6.500
5.352
6.000
5.151
6.000
3.043
3.838
2.213
3.838
5.595
5.700
6.491
6.299
6.416
6.782
3.906
5.033
3p3/2

5.594
5.500
6.332
6.500
5.499
6.000
5.337
6.000
3.277
3.838
2.446
3.838
5.809
5.700
6.608
6.299
6.531
6.782
4.143
5.033
3pl/2

2d 5/2

5.221
5.292
5.462
5.500
5.875
6.500
5.828
6.500
3.768
4.690
2.921
4.690
3.619
4.374
4.542
4.985
6.167
6.599
4.557
5.751
2f, i2

2d3/2

5.067
5.292
5.402
5,500
5.426
5.500
5.884
6.500
4.226
4.690
3.430
4.690
3.599
4.374
4.355
4.985
5.971
6.599
4.962
5.751
2fii2

1gg/2

3.503
3.742
3.919
4.243
4.271
4.243
6.201
5.500
6.291
6.500
5.906
6.500
1.446
2.222
1.965
2.592
3.039
3.751
6.535
6.867
ihl1/2

1g7/2

2.572
3.742
3.018
4.243
3.434
4.243
5.739
5.500
5.468
5.500
5.668
6.500
1.035
2.222
1.327
2.592
2.122
3.751
6.022
6.867
1hg/2

3PB/2

5.833
5.278
4.514
4.514
4.355
4.514
2.277
2.579
1.489
2.579

12.911
6.500

18.523
7.500

12.380
7.348
6.270
6.155
2.243
3.476
4$1/2

2f7/2

6.102
5.830
5.778
5.593
5.567
5.593
3.186
3.439
2.159
3.439
7.317
6.000
7.113
6.500

10.510
7.500
6.860
6.633
2.885
3.903
3d5/2

1h11/2

4.347
4.801
4.688
5.184
4.982
5.184
6.473
5.865
5.856
5.865
3,268
3.838
4.185
4.690
6.896
6.500
7.254
7.500
4.011
5.099
2gg/2

1hg/2

3.491
4.801
3.863
5.184
4.251
5.184
6.145
5.865
5.728
5.865
2.779
3.838
3.264
4.690
6.415
6.500
6.169
6.500
6.917
7.500
1$]3/2

Protons

3$1/2

2d 5/2

2&3/2

igg/2

Ig7/Q

3p3/2

2/i/2

1hl 1/2

ihg/2

small binding energies. An enlargement of a transition
probability between such states may not indicate a
collective nature. (Strocke ef al. 29 give also an extensive
tabulation of this matrix element in connection with the
Bohr-Weisskopf effect. )

S. CONCLUSION

The Schrodinger equation for nucleons with a Saxon-
Woods potential and Thomas-type spin-orbit coupling
has been solved numerically for the mass number
3=185 and for the X=4 and 5 proton shells and the
X=5 and 6 neutron shells. The overlap integral with
the corresponding oscillator function is always greater
than 0.92 for states with a binding energy of 2 MeV or
greater. The most serious discrepancy is the neutron
4s&~& state with binding energy of only 0.41 MeV and an
overlap integral of 0.80. To get an analytic expression
for the Saxon-Woods functions they have been expanded
in Table II into oscillator functions. The first 6 coeffici-
ents represent the wave function to better than 99% for
binding energies of 2 MeV and greater. For small bind-
ing energies, however, the convergence is very slow, a
big exponential tail not being easily represented by
Gaussian slopes. In the case of the 4s~/2 state the erst
6 coe%cients represent 73% and the first 10 coefficients
88% of the whole Saxon-Woods function.

In Sec. 3 the Schrodinger equation for an axially
symmetric quadrupole deformed potential with Saxon-
Woods shape and a Thomas type spin-orbit coupling
has been solved. The single particle energies reproduce
the experimental level sequence including the orbitals

'g M. H. Stroke, R. J.Blin-Stoyle, and V. Jaccarino, Phys. Rev.
123, 1326 (1961).

—,'+L6331 and xx—P21]. Furthermore, this calculation
gives the right value for the decoupling parameter in
the ~

—P10j rotational band. It explains also the de-
crease of this decoupling parameter with increasing mass
number which is observed experimentally. The mixing
coeScients for the rare-earth region are tabulated in
Table VII. The application of these calculations to
gamma transition probabilities has been considered in
Sec. 4. Expressions for the transition probabilities in
the (j/E) representation are given in the Appendix.

The transition matrix elements depend strongly on
the width of the well near the binding energy. For posi-
tive powers of r the matrix elements are greater, the
greater the width. The diGerence increases with the
power of r. The Saxon-Woods r' matrix elements deviate
as much as 60% from the corresponding oscillator matrix
elements. For matrix elements between states with a
small binding energy, ((2 MeU) and more than one
node Saxon-Woods matrix element is always larger
than the oscillator matrix element. This is especially
important in light nuclei. Pote added ie proof. After
finishing these calculations, the authors were informed
that similar calculations have been done and are being
done by Rost et al. ' and by Tamura. "Davies, Krieger,
and Baranger" did Hartree-Fock calculations employ-
ing an oscillator basis. They found the same fast con-
version of the Hartree-Fock functions for an expansion
into an oscillator basis as it is reported here for Saxon-
Woods functions.

"E.Rost and G. E. Brown, Bull. Am. Phys. Soc. 10, 487
(1965);E.Rost, Princeton University Report No. PUC-937-66-202
(unpublished).

'i T. Tamura (unpublished)."T.R. Davies, S. J. Krieger, and M. Baranger, Nucl. Phys.
(to be published),
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TAar, EVII. The eigenfunctions for a deformed Saxon-Woods potential are tabulated. The expansion coeKcients C;i for the spherical
Saxon-Woods function i vjlX) of Eq. (2) are listed for the deformations P =0.1, 0.2, 0.3, 0.4. The proton coefficients are calculated for the
E(=2v+l —2) =4 and the %=5 shells. The parameters are: A =185; rp=1.25 F' up=0. 52 F' Vp=35.24 MeV; Cp=10 MeV. The free
states 3piis and 2fsis have been dropped. The neutron coeKcients are calculated for the N=5 and N =6 shells. The parameters are:
A =185; rp

——1.25 F; ap ——0.64 F; I/'p ——46.33 MeV; Cp=10 MeV. The free states 2g7/2 and 3d3/2 have been dropped. The 6rst column
lists the quantum numbers v, j, and I,.

Proton mixing coeQicients

N=4 0=1/2

p
Energy [MeV)

v j L

1 9/2 4
1 7/2 4
2 5/2 2
2 3/2 2
3 1/2 0

p
Energy [MeV]

v j
1 9/2 4
1 7/2 4
2 3/2 2
2 3/2 2
3 1/2 0

p
Energy [MeV)

v j l
1 9/2 4
1 7/2 4
2 3/2 2
2 3/2 2
3 1/2 0

0.1
—13.6686

0.9817—0.0109
0.1889—0.0058
0.0198

0.1
—8.8937

—0.1540
0.5130
0.8033
0.0316
0.2583

0.1
—5.5090

0.0200—0.1415—0.1711
0.6243
0.7487

0.9358—0.0206
0.3446—0.0234
0.0667

0.8704—0.0281
0.4716—0.0505
0.1292

[NN&] = [420]
0.2 0.3

—9.2067 —9.2558

—0.2296
0.6761
0.6160
0.1474
0.2982

—0.2971
0.6971
0.5260
0.2182
0.3185

[Nn.h]= [40.0)
0.2 0.3

—4.5475 —3.4043

0.0543—0.1940—0.2677
0.5604
0.7574

0.0877—0.2258—0.3227
0.5303
0,7457

[Nm&] = [440)
0.2 0.3

—14.2884 —14."/626
0.4

—15.0730

0.7879—0.0324
0.5747—0.0849
0.2017

0.4
—9.0334

—0.3581
0.6943
0.4552
0.2735
0.3282

0.4
—2.1077

0.1191—0.2503—0.3583
0.5107
0.7307

0.1
—9.2088

0.1013
0.8150
0.4500
0.2917—0.1947

0.1
—6.6935

—0.0434—0.2288
0.2953
0.7240—0.5/83

0.2342
0.5991
0.4980
0.4480—0.3708

0.3364
0.4934
0.4138
0.5254—0.4429

[NN, A] = [411]
0.2 0.3

—6.6309 —6.2243

—0.1170—0.3819
0.4267
0.6804—0.4421

—0.1826—0.4677
0.4749
0.6266—0.3602

[Ne+] = [431)
0.2 0.3

—10.0050 —10.6622
0.4

—11.0810

0.4248
0.4212
0.3085
0.5682—0.4734

0.4
—5.5706

—0.2376—0.5261
0.4888
0.5781—0.3059

P
Energy [MeV)

j L'

1 9/2 4
1 7/2 4
2 3/2 2
2 3/2 2

p
Energy [MeV)

v j
1 9/2 4
1 7/2 4
2 3/2 2
2 3/2 2

0.1
—13.4/90

0.9868—0.0303
0.1588—0.0084

0.1
—8.2629

—0.1371
0.3647
0.9185—0.06/2

0.9575—0.0547
0.2820—0.0258

0.9217—0.0706
0.3788—0.0450

[Nm, x)= [411)
0.2 0.3

—7.9298 —7.3867

—0.2347
0.4227
0.8708—0.0892

—0.3218
0.4464
0.8318—0.1049

[NN, A] = [431]
0.2 0.3

—13.8923 —14.1411

N=4 0=3/2

0.4
—14.1944

0.8831—0.0782
0.4582—0.0635

0.4
—6.6434

—0.3782
0.4649
0.7923—0.1145

0.1
—8.9368

0.0841
0.9169—0.3371
0.1964

0.1
—5.3129

-0.0178—0.1593
0.1322
0.9782

0.1608
0.8725—0.3492
0.3016

0.2164
0.8445—0.3257
0.3660

[Ne,A] = [402]
0.2 0.3

—4.3121 —3.1047

—0.0472—0.2391
0.2006
0.9489

—0.0764—0.2874
0.2420
0.9236

[NssA] = L422)
0.2 0.3

—9.2045 —9.2915
0.4

—9.1947

0.2576
0.8212—0.2994
0.4118

0.4
—1.7148

—0.1035—0.3215
0.2695
0.9018

P
Energy [MeV)

v j
1 9/2 4
1 7/2 4
2 3/2 2

0.1
—13.1044

0.9936—0.0445
0.1041

0.9798—0.0829
0.1820

0.9632—0.1143
0.2433

[Ne&]= [422)
0.2 0.3

—13.1396 —13.0420
0.4

—12.7972

0.9456—0.1397
0.2937

0.1
—8.4431

0.0671
0.9719—0.2254

0.1242
0.9656—0.2286

0.1687
0.9618—0.2157

[NN&] = [413]
0.2 0.3

—8.1666 —"/.7390
0.4

—7.1693

0.2039
0.9582—0.2006
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Tash, z VIl (con$inzced)

N= 4 0=5/2 (continued)

p
Energy [MeV]

j l
1 9/2 4
1 //2 4

5/2 2

0.1
—7.4271

—0.0911
0.2310
0.9687

—0.1568
0.2466
0.8563

—0.2093
0,2488
0.9457

PiVn.s]= [402]
0.2 0.3

—6.3344 —5.0743
0.4

—3.6522

—0.2535
0.2495
0.9346

p
Energy [MeV]
v j
1 9/2 4
1 7/2 4

0.1
—12.5419

0.9989—0.0472
0.9959—0.0905

0.9916—0.1294

[1Vn,h] = [413]
0.2 0.3

—11.9908 —11.3107

7t/ =4 0= 7/2

0.4
—10.5008

0.9865—0.1639

0.1
—7.7485

0.0472
0.9989

0.0905
0.9959

0.1294
0.9916

[en~] = [404]
0.2 0.3

—6.7251 —5.4996
0.4

—4.0725

0.1639
0.9865

p
Energy [MeV]
v j
1 9/2 4

0.1
—11.7836

1.0000 1.0000 1.0000

Prn, ~]=[404]
0.2 0.3

—10.3864 —8.7721

JV =4 0=9/2

0.4
—6.9409

1.0000

p
Energy [MeV]
v J l
1 11/2 5
1 9/2 5
2 7/2 3
3 3/2 1

p
Energy [MeV]
v J
1 11/2 5
1 9/2 5
2 7/2 3
3 3/2 1

0.1
—8.1281

0.9833—0.0057
0.1806
0.0204

0.1
—1.3005

0.0022
0.9997
0.0170
0.0192

[En.h] = [550]
0.2 0.3

—8.9647 —9.8068

0.9373—0.0098
0.3404
0.0748

0.8643—0.0120
0.4785
0.1543

0.0034
0 9994
0.0125
0.0308

0.0048
0.9993
0.0049
0.0354

[1Vn,A] = [530]
0.2 0.3

—1.4179 —1.1840

g =5 0=1/2

0.4
—10.7209

0.7705—0.0127
0.5876
0.2467

0.4
—0.5987

0.0065
0.9992—0.0038
0.0402

0.1
—2.7903

—0.1765—0.0218
0.9217
0.3446

0.1
—0.5482

0.0434—0.0123
0.3428
0.9383

—0.3277—0.0248
0.7868
0.5224

—0.4631—0.0227
0.6375
0.6152

[Sn,~]= [521]
0.2 0.3

—0.3071 0.1299

0.1190—0.0201—0.5147
0.8489

0.1960—0.0254—0.6038
0.7723

[Ãn,X] [541]=
0.2 0.3

—3.4910 —4.0346
0.4

—4.3179

—0.5762—0.0211
0.4763
0.6638

0.4
0.7263

0.2726—0.0326—0.6541
0.7049

p
Energy [MeV]
v j l
1 11/2 5
1 9/2 5
2 7/2 3
3 3/2

p
Energy [MeV]
v j l
1 11/2 5
1 9/2 5
2 7/2 3
3 3/2 1

0.1
—7.9701

0.9865—0.0165
0.1626
0.0124

0.1
—1.1611

0.0043
0.9968
0.0733
0.0313

0.9526—0.0291
0.2999
0.0411

0.9055—0.0366
0.4156
0.0781

[En&]= [521]
0.2 0.3

—1.1933 —0.9356

—0.0057
0.9925
0.1057
0.0616

—0.0194
0.9898
0.1139
0.0828

[En~]= [541]
0.2 0.3

—8.6116 —9.1690

1V=5 11=3/2

0.4
—9.6453

0.8495—0.0399
0.5124
0.1191

0.4
—0.3882

—0.0340
0.9883
0.1100
0.1004

0.1
—2.4276

—0.1620—0.0767
0.9582
0.2282

0.1
—0.0153

0.0243—0.0143—0.2235
0.9743

—0.2970—0.1170
0.8856
0.3374

—0.4093—0.1349
0.8024
0.4128

$17n,A] = [512]
0.2 0.3
0.5584 1.1994

0.0654—0.0218—0.3385
0.9385

0.1106—0.0259—0.4129
0.9037

[En,A] = [532]
0.2 0.3

—2.5966 —2.5562
0.4

—2.2914

—0.5015—0.1443
0.7105
0.4721

0.4
i.8956

0.1602—0.0304—0.4697
0.8676
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TAnr. z VII (cont~nncd)

P
Energy [MeV)

j l
1 11/2 5
1 9/2 5
2 7/2 3

P
Energy [MeV)
v j l
1 11/2 5
1 9/2 5
2 7/2 3

P
Energy [MeV)
v j l

1 11/2 5
1 9/2 5
2 7/2 3

P
Energy [MeV)

j l
1 11/2 5
1 9/2 5
2 7/2 3

0.1
—7.6579

0.9913—0.0260
0.1293

0.1
—0.8651

0.0059
0.9882
0.1532

0.1
—7.1929

0.9961—0.0322
0.0824

0.1
—0.3942

0.0138
0.9765
0.2153

0.9712—0.0475
0.2336

0.9454—0.0635
0.3198

[Nn&] = [512)
0.2 0.3

—0.6426 —0.1590

—0.0350
0.9409
0.3369

—0.1173
0.8489
0.5153

[Nn&] = [523]
0.2 0.3

—7.0075 —6.6950

0.9871—0.0619
0.1478

0.9753—0.0884
0.2027

[Nn, A] = [503]
0.2 0.3
0.3358 1.3713

—0.0322
0.8268
0.5615

—0.1024
0.6318
0.7683

[Nn, A) = [532)
0.2 0.3

—7.9565 —8.1288

N=S Q=S/2

0.4
—8.1607

0.9164—0.0740
0.3935

0.4
0.5757

—0.2127
0.7425
0.6351

N=5 0=7/2

0.4
—6.2486

0.9615—0.1118
0.2511

0.4
2.5881

—0.1571
0.5260
0.8358

0.1
—1.8'?24

—0.1317—0.1511
0.9797

0.1
—1.2049

—0.0874—0.2133
0.9731

—0.2358—0.3353
0.9121

—0.3042—0.5247
0.7951

[Nn, A.]= [514]
0.2 0.3

—0.3426 0.4642

—0.1569—0.5590
0.8142

0.1960
0.7701—0.60'?1

[Nn, A) = [523)
0.2 0.3

—1.4849 —0.9706
0.4

—0.3334

—0.3392—0.6657
0.6647

0.4
1.3331

0.2255
0.8431—0.4882

Energy [MeV)
v j l
1 11/2 5
1 9/2 5

0.1
—6.5708

0.9995—0.0314
0.9981—0.0620

0.9958—0.0912

[Nn.~]= [514)
0.2 0.3

—5.7286 —4.7404

N=S 0=9/2

0.4
—3.6068

0.9929—0.1186

0.1
0.2461

0.0314
0.9995

0.0620
0.9981

0.0912
0.9958

[Nn&] = [505)
0.2 0.3
1.5424 3.0586

0.4
4.7954

0.1186
0.9929

N=S 0=11/2

p
Energy [MeV)

j l
1 11/2 5

0.1
—5.7837

1.0000 1.0000 1.0000

[Nn.A)= [505).
0.2 0.3

—4.0688 —2.1212
0.4
0.0592

1.0000

Neutron mixing coefBcients

N=S 0=1/2

p
Energy [MeV)
v j l
1 11/2 5

9/2 5
2 7/2 3
2 5/2 3
3 3/2 1
3 1/2 1

0.1
—15.8551

0.9777—0.0079
0.2077—0.0040
0.0293—0.0030

0.9167—0.0170
0.3836—0.0196
0.1064—0.0207

0.8194—0.0300
0.5233—0.0532
0.2174—0.0611

[Nn, A] = [550]
0.2 0.3

—16.8342 —17.8178
0.4

—18.8683

0.6911—0.0466
0.6145—0.1046
0.3414—0.1227

0.1
—10.6582

—0.1994—0.1476
0.8746—0.1196
0.3865—0.0991

0.4
—14.4687

—0.3208—0.3087
0.5736—0.3439
0.5299—0.2717

—0.4087—0.3287
0.3136—0.4632
0.5221—0.3734

—0.4847—0.3125
0.0938—0.5182
0.4583—0.4242

[Nn, A)=[541).
0.2 0.3

—11.9751 —13.3419
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TABLE VII (continued)

X=-5 0=1/2 (continued)

p
Energy [MeV]
v j l
1 11/2 5
1 9/2 5
2 7/2 3
2 5/2 3
3 3/2 1
3 1/2 1

p
Energy [MeV]

l
1 11/2 5
1 9/2 5
2 I/2 3
2 5/2 3
3 3/2 1
3 1/2 1

p
Energy [MeV]
v j
1 11/2 5
1 9/2 5
2 7/2 3
2 5/2 3
3 3/2 1

p
Energy [MeV]
v j l
1 11/2 5
1 9/2 5
2 7/2 3
2 5/2 3
3 3/2 1

p
Energy [MeV]

j l
1 11/2 5
1 9/2 5
2 7/2 3
2 5/2 3
3 3/2 1

p

Energy [MeV]
v j l

11/2 5
1 9/2 5

p
Energy [MeV]

j l
11/2 5
9/2 5

2 7/2 3

0.1
—9.9910

—0.0320
0.9182
0.1884
0.3357
0.0324
0.0809

0.1
—6.9300

0.0229—0.2554—0.1871
0.6952
0.6080
0.2151

O. T

—15.6761

0.9821—0.0223
0.1862—0.0079
0.0175

0.1
—9.6332

—0.0515
0.8969
0.3812
0.2065
0.0700

0.1
—5.9177

0.0071—0.1791—0.0902
0.7218
0.6624

0.1
—14.8023

0.9949—0.0407
0.0926

0.1
—8.3175

—0.0522
0.5775
0.8147

—0.1730 —0.3072
0.7369 0.6209
0.4136 0.4240
0.4426 0.4536
0.2197 0.3574
0.1084 0.0829

[Xn.~]= [51O]
0.2 0.3

—6.5178 —5.7519

0.0786—0.3370—0.3488
0.5696
0.6509
0.1023

0.1330—0.3826—0.4282
0.5154
0.6193
0.0583

[tVn,A] = [541]
0.2 0.3

—16.4258 —17.0640

0.9388 0.8816—0.0429 —0.0603
0.3359 0.4535—0.0284 —0.0560
0.0558 0.1019

[tVn,h] = [521]
0.2 0.3

—9.8426 —9.6900

—0.1949 —0.3089
0.7072 0.6192
0.6164 0.6374
0.1935 0.1684
0.2108 0.2914

[&n,h] = [501]
0.2 0.3

—4.7184 —3.3251

0.0309—0.2077—0.1938
0.5636
0.7750

0.0550—0.2263—0.2522
0.5070
0.7906

[En,A] = [523]
0.2 0.3

—14.6105 —14.2759

0.9839 0.9707—0.0771 —0.1084
0.1610 0.2144

[tVn,A]= [503]
0.2 0.3

—6.9076 —5.2946

—0.1250
0.3459
0.9299

—0.1754
0.2904
0.9407

[En,A] = [530]
0.2 0.3

—10.8857 —11.4536
0.4

—11.6609

—0.4146
0.5495
0.3566
0.4561
0.4331
0.0585

0.4
—4.7316

0.1825—0.4175—0.4712
0.4789
0.5827
0.0395

tV=5 0=3/2

0.4
—17.5638

0.8168—0.0736
0.5453-0.0864
0.1500

0.4
—9.2217

—0.3971
0.5785
0.6031
0.1584
0.3448

0.4
—1.7943

0.0779—0.2446—0.2902
0.4800
0.7871

iV=5 0=7/2

0.4
—13.7856

0.9566—0.T350
0.2583

0.4
—3.5125

—0.2162
0.2659
0.9394

0.1
—8.0306

0.0523
0.2438—0.3422—0.4143
0.6413—0.4875

0.1
—5.0955

0.0075
0.1015—0.0652—0.4669
0.2602
0.8365

0.1
—10.2131

—0.1785—0.3546
0.8694—0.1865
0.2276

0.1
—6.7747

0.0315
0.1929—0.2367—0.6337
0.7101

0.1
—8.7499

0.0866
0.8154—0.5724

[Xn A]. . [=5-21]

0.2 0.3
—8.4822 —8.4270

0.1416 0.2188
0.4726 0.5678—0.4655 —0.4898—0.3469 —0.2514
0.3657 0.2238—0.5345 —0.5259

[Xn.~]=[5O1]
0.2 0.3

—3.8213 —2.3886

0.0232
0.1564—0.1199—0.4905
0.3197
0.7860

0.0400
0.1919—0.1573—0.4981
0.3446
0.7550

—0.2708 0 3298—0.5805 0.6185
0.6032 —0.4330—0.3814 0.4842
0.2834 —0.2946

[En,h] = [512]
0.2 0.3

—6.2403 —5.4370

—0.0797—0.3433
0.3251
0.7062—0.5210

—0.1249—0.4234
0.3700
0.6906—0.4374

[En,A] = [514]
0.2 0.3

—8.0876 —7.2736

0.1274
0.9351—0.3307

0.1643
0.9507—0.2629

[Xn,X] [532]=
0.2 0.3

—10.8392 —11.3553

0.4
—8.0017

0.2813
0.6124—0.4802—0.1736
0.1400—0.5154

0.4
—0.8224

0.0564
0.2211—0.1840—0.5030
0.3559
0.7310

0.4
—11.6542

0.3765
0.6119—0.3135
0.5461—0.2957

0.4
—4.3961

—0.1653—0.4751
0.3955
0.6625—0.3894

0.4
—6.2869

0.1955
0.9545—0.2252
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TABLE VII (continged)

p
Energy [MeV)
v j
1 11/2 5
1 9/2 5

0.1
—14.1081

0.9992—0.0389
0.9972—0.0749

0.9942—0.1077

[Nn, A)= [.514]
0.2 0.3

—13.1755 —12.0783

N=S 0=9/2

0.4
—10.8161

0.9906—0.1368

0.1
—7.8043

0.0389
0.9992

0.0749
0.9972

0.1077
0.9942

[Nn, ~)= [505)
0.2 0.3

—6.2684 —4.4725
0.4

—2.4171

0.1368
0.9906

p

Energy [MeV)
v J
1 11/2 S

0.1
—13.2345

1.0000

0.2
—11.3241

1.0000 1.0000

[Nn, a)= [505]
0.3
—9.1446

X=5 n=ii/2

0.4
—6.6961

1.0000

p
Energy [MeV)
v j
1 13/2 6
1 11/2 6
2 9/2 4
3 5/2 2
4 1/2 0

0.1
—9.2461

0.9792—0.0046
0.2008
0.0291
0.0027

0.9193—0.0082
0.3780
0.1075
0.0183

0.8236—0.0104
0.5210
0.2181
0.0509

[Nn, A] = [660)
0.2 0.3

—10.4452 —11.7966

N=6 0=1/2

0.4
—13.4052

0.7084—0.0115
0.6150
0.3330
0.0942

0.1
—3.6893

—0.1949—0.0092
0.8913
0.4001
0.0862

—0.3593—0.0104
0.6969
0.5883
0.1977

—0.5008—0.0089
0.4893
0.6563
0.2811

[Nn, k) = [651)
0.2 0.3

—4.8089 —5.7768
04

—6.4344

—0.6019—0.0072
0.2816
0.6624
0.3459

p
Energy [MeV]
v j
1 13/2 6
1 11/2 6
2 9/2 4
3 5/2 2
4 1/2 0

0.1
—1.3469

0.0540
0.0222—0.3803
0.7616
0.5215

0.1514
0.0776—0.5493
0.5371
0.6171

0.2477
0.1046—0.6039
0.3582
0.6593

0.3373
0.0876—0.6031
0.2047
0.6877

[Nn&) = [640)
0.2 0.3 0.4
—1.5413 —1.4655 —1.1598

0.1
—0.9858

0.0015
0.9997
0.0172—0.0119—0.0128

—0.0079
0.9969
0.0523—0.0329—0,0482

—0.0215
0 9944
0.0721—0.0274—0.0687

[Nn.A) = [631]
0.2 0.3

—1.2711 —1.1366
0.4

—0.5840

—0.0253
0.9961
0.0605—0.0068—0.0593

p
Energy [MeV)

j
1 13/2 6
1 11/2 6
2 9/2 4
3 5/2 2
4 1/2 0

0.1
—0.0407

—0.0165
0.0024
0.1427—0.5088
0.8488

—0.0522
0.0031
0.2590—0.5939
0.7599

—0.0953
0.0034
0.3454—0.6266
0.6921

[Nn, A] = [620).
0.2 0.3

—0.5283 —1.1754
0.4

—1.9012

—0.1464
00.039
0.4184—0.6391
0.6285

p
Energy [MeV)
v j l
1 13/2 6
1 11/2 6
2 9/2 4
3 5/2 2

0.1
—9.0950

0.9821—0.0134
0.1866
0.0221

0.9350—0.0241
0.3456
0.0758

0.8675—0.0313
0.4747
0.1450

[Nn, A] = [651]
0.2 0.3

—10.0880 —11.0975

N=6 0=3/2

0.4
—12.1466

0.7900—0.0353
0.5723
0.2171

0.1
—3.3635

—0.1842—0.0298
0.9294
0.3183

—0.3395—0.0423
0.8117
0.4734

—0.4690—0.0471
0.6837
0.5571

[Nn~) [642]=
0.2 0.3

—3.9231 —4.2198
0.4

—4.1909

—0.5689—0.0511
0.5516
0.6079

p
Energy [MeV)

j l
1 13/2 6
1 11/2 6
2 9/2 4
3 5/2 2

0.1
—0.8516

0.0114
0.9947—0.0009
0.1022

0.0131
0.9977
0.0201
0.0641

0.0124
0.9974
0.0226
0.0671

[Nn, A) = [631]
0.2 0.3

—1.0482 —0.8740
0.4

—0.3291

0.0096
0.9969
0.0197
0.0749

0.1
—0.6690

0.0379—0.0976—0.3183
0.9422

0.1017—0.0481—0.4705
0.8752

0.1652—0.0443—0.5537
0.8149

[Nn.A] [622]=
0.2 0.3

—0.1887 0.4827
0.4
1.3058

0.2284—0.0473—0.6065
0.7601
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TABLE VII (continned)

p
Energy [MeV)
v j l
1 13/2 6
1 11/2 6
2 9/2 4
3 5/2 2

p
Energy [MeV)
v j l
1 13/2 6
1 11/2 6
2 9/2 4
3 5/2 2

0.1
—8.7969

0.9868—0.0213
0.1600
0.0119

0.1
—0.5702

0.0131
0.9979
0.0490
0.0397

[Nn, A) = [642)
0.2 0.3

—9.4294 —9.9717

0.0114
0.9946
0.0891
0.0527

—0.0009
0.9903
0.1197
0.0707

0.9554 0.9144—0.0390 —0.0519
0.2902 0.3957
0,0376 0.0684

[Nn, A) = [622)
0.2 0.3

—0.5582 —0.2500

X=6

0.4
—10.4113

0.8685—0.0604
0.4816
0.1007

0.4
0.3530

—0.0214
0.9853
0.1430
0.0913

0.1
—2.8363

—0.1601—0.0531
0.9660
0.1962

0.1
—0.0275

0.0195—0.0295—0.1973
0.9797

[Nn, h) = [633)
0.2 0.3

—2.7568 —2.4321

0.0513—0.0246—0.2958
0.9536

0.0848—0.0227—0.3597
0.9289

—0.2905 —0.3959—0.0934 —0.1269
0.9057 0.8365
0.2942 0.3570

[Nn.A) = [613)
0.2 0.3
0.8667 1.8112

0.4
—1.8587

—0.4803—0.1585
0.7615
0.4054

0.4
2.7915

0.1208—0.0217—0.4096
0.9040

p
Energy [MeV)
v j l
1 13/2 6
1 11/2 6
2 9/2 4

p
Energy [MeV)
v j l
1 13/2 6
1 11/2 6
2 9/2 4

p
Energy [MeV)

j l
1 13/2 6
1 11/2 6
2 9/2 4

p
Energy [MeV)
v j
1 13/2 6
1 11/2 6
2 9/2 4

p
Energy [MeV)
v j l
1 13/2 6
1 11/2 6

p
Energy [MeV)
v j l
1 13/2 6

0.1
—8.3556

0.9920—0.0274
0.1228

0.1
—0.1316

0.0180
0.9969
0.0771

0.1
—7.7720

0.9966—0.0304
0.0761

0.1
0.4827

0.0242
0.9964
0.0816

0.1
—7.0427

0.9996—0.0276

0.1
—6.1612

1.0000

[Nn, A)= [633.)
0.2 0.3

—8.5011 —8.5094

0.9744 0.9524—0.0515 —0.0712
0.2189 0.2963

[Nn, h) = [613)
0.2 0.3
0.2561 0.8819

0.0150
0.9862
0.1651

—0.0109
0.9637
0.2667

[Nn&) = [624)
0.2 0.3

—7.2997 —6.6761

0.0326
0.9814
0.1891

0.0229
0.9483
0.3166

[Nn~) = [615)
0.2 0.3

—5.7931 —4.3611

0.9985—0.0541
0.9969—0.0792

[Nn,k)= [606)
0.2 0.3

—3.9364 —1.4347

1.0000 1.0000

0.9892 0.9797—0.0588 —0.0844
0.1344 0,1819

[Nn, h) = [604)
0.2 0.3
1.4632 2.6641

0.4
—8.3625

0.9284—0.0866
0.3614

0.4
1.7486

—0.0613
0.9235
0.3786

@=9/2

0.4
—5.8931

0.9689—0.1073
0.2228

0.4
4.0777

—0.0013
0.8987
0.4386

@=11/2

0.4
—2.7470

0.9947—0.1025

n= 13/2

0.4
1.3439

1.0000

0.1
—2.1752

—0.1246—0.0743
0.9894

0.1
—1.4205

—0.0783—0.0795
0.9937

0.1
1.2952

0.0276
0.9996

—0.2244—0.1575
0.9617

—0.3046—0.2572
0.9171

[Nn, A) = [615)
0.2 0.3

—0.0494 1.3939

—0.1430—0.1826
0.9727

—0.1992—0.3060
0.9310

[Nn, a)= [606)
0.2 0.3
3.1412 5.2592

0.0541
0.9985

0.0792
0.9969

[Nn, A) = [624)
0.2 0.3

—1.4471 —0.5518
0.4
0.4902

—0.3665—0.3736
0.8521

0.4
2.9088

—0.2473—0.4252
0.8706

0.4
7.6493

0.1025
0.9947
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Nilsson' has given the expressions for the electromagnetic transition in the (/AZ) representation. In the
case of an r-dependent spin-orbit potential considered here one has to choose the (j/E) representation for the
spherical basis.

The electric and the magnetic multipole operators in the laboratory system are given by

Z
M(» ~)=~.

l '«+(—)"—c I""Y"(0.,C.)+(3/4~)«~o"~i.',
gX

(36)

M(3fk, p) = QJ g.s„+ gi/„~ &~fr„"Yq„(e„,p~))+ —gii R(r)V fr"Yq„(8,$))dr.
2mc k X+1 I„mcX+1

(37)

The first term gives the single-particle operator, which sums over the transforming nucleons p. The effective charge
e,«depends on the mul. tipolarity and on the charge of the nucleon. The multipole deformation parameters o;z„are
defined in Eq. (16).The symbol Ro is the nuclear radius and R(r) is the collective angular momentum density.

For magnetic dipole transitions the operator has an especially simple form

eIg

M(M1,p) = [g~I„+(gi gg)/„+(—g, gg)s„)—
2mc

[g I + (g —
g )/»+(g —

g )j )
2mc

(38)

The letters gg, g„g~ indicate the collective, the spin, and the orbital angular momentum g factors

5.59 for a proton

—3.83 for a neutron,

1 for a proton

0 for a neutron,
(39)

The value for g& is only correct in the hydrodynamic approximation. The experiment yields smaller values. 4 "
In the expression for the transition probability

(40)

the reduced probability is defined by

&(&;IPE,~ Ip r&f) (1/I') ((IfiVf+f lorn(~)l!II&A~)l (41)

We have used the reduced matrix element as in the definition of Edmonds. "A very useful connection between the
transition probability for ) =1 and for X=2 and the reduced probability is

T(1)[1/sec) = 1.59X 10'(E f[keV)) 'B(1)[10 "cm'e')

T(2)[1/sec)=1.23X10 '(E,f[keV)) XB(2)[10 8 cm4e').
(42)

To calculate the reduced matrix elements one has to transform the multipole operators into the intrinsic system.

M(x,p) =P,D„,"MP,p) (43)

"E.Sodenstedt, Fortschr. Physik 10, 321 (1962}.
'4 A. Faessler and K. Greiner, Z. Physik 177, 190 (1964)."W. Greiner, Phys. Rev. Letters 14, 599 (1965}.
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(IPrErllM(») lfI'1V'E') =
i e.«+(—)'—e [(I'/Ir)'"( )—'

lr) j; Z jr — I; X I,
XZs;;rc;,c,,(l,l,J,J,/(4»))'/'

0 0 0/' l, -,'l; E, E,+—Er Er —K, E;+—Er E—rj
(I, 1 Ir j, X jr+(-)"-:farl (&rirlr I"I1V'i'l')(h/~~)"". (44)
&E K E—, K—, E

Here the abbreviation l—=2l+1 is used and it is assumed that the radial matrix elements

(Ãsj rig
~

r"
~
1V,lj „) (45)

are calculated in oscillator units (A/nuop) x/' The r' matrix elements are tabula, ted (in Table p) for the Saxon-broods
and oscillator functions of the rare-earth region. For other powers of r the matrix elements can be calculated using
the expansion of the Saxon-Woods functions in Table II. For the oscillator functions a general formula is given in
Eq. (10). For the calculation of the reduced M1 matrix element,

(IP~ErllM(IrI1) III'&'E') =g~l I(I+1)I]"'4;;z,4;;»,&», , »,&....,+[I—/Irg'/' P C;„C,,
Ii 1 If j, $ j,

&&(—)' '* »' +~»,», , pp( —)'/ —'&r
Ei Ef—Ei —Ef IC, ICf—E, —Ef

i~i~

~
~ i ~

~

I

i~i!

f~ i ~

I

~

i f ~
~~I

f

/I' 1 If f 1' 1 Jf
(g. g)( )"-»'Li'-(i*+1)i ~j"'~;; ~;;

ji 1 jf ek
+(g —

g/) Ll'(l'+ 1)l'7"'(—)'+" »'La'i'll"' ~/, ;v, (46)
25ZC

the last expression of Eq. (38) was used. The Greek subscript n labels the different wave functions for the same IV

and E.The symbol 8, z indicates that this term applies only to the same initial and final intrinsic states. The re-
duced M1 transition probability between the state I and I—j in the same rotational band is given by the expression

ls

eh q' (I—K)(I+K)
Ilyrl; IIVE~I 1, 1V, E)= —

i (g» g,)PEP-
2mci I(2I+1)

The gz factor defined by the equation

(1VEn
~ (g, g»)sp+ (g/ g»—)lp~ 1VKn) =—K(g» g»)—

ji 1 jf ji
g +E—

1(gl g ) Q $/„l c' c' (j jr)j/2( )~+l » . — (l(l+1)l) /2

jiff EOE

(4&)

(48)


