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Bound States and Bootstraps in Field Theory
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We present a general, model-independent theory of composite particles. Starting from a general. local
Lagrangian containing an elementary particle, we show how this particle becomes composite (in a precisely
delned sense} as its wave-function renormalization constant tends to zero. As this limit is taken, the usual
dynamical type of 6eld equation changes its form. We show that the Green's functions of the theory still
possess the usual physical interpretation in the limit; in particular, for renormalizable theories, if a certain
coupling constant does not tend to zero, the "composite" propagator possesses a pole at the composite mass
and with nonzero residue. We show that the operator form of the Green s-function equations describing the
composite particle can be manipulated by natural approximations to explain a wide variety of known model-
dependent results on composite particles, and in particular to obtain all the usual types of bootstrap equa-
tions. We present a preliminary classi6cation of the operator equations, showing that many of them cannot
possess physically meaningful solutions. Our results agree qualitatively with earlier, heuristic discussions.
Finally we make some remarks about the possibility of "bootstrapped symmetry schemes. "

1. INTRODUCTION

~ UANTUM 6eld theory has been very successful
in numerous areas of elementary-particle physics,

especially in quantum electrodynamics. It also serves as
a useful heuristic framework in the discussion of both
strong- and weak-interaction symmetries. It may now be
possible to prove that the Geld equations have solutions
for a certain class of interactions. ' There are, however,
two main difhculties in the use of Geld theory in
elementary-particle physics. The 6rst of these difhculties
is to set up a general method for obtaining numerical
solutions to the 6eld equations for strong or weak inter-
actions; the second is to know which strong or weak
interactions to use. There are many possible interac-
tions, all consistent with known conservation laws.
Because we cannot yet obtain numerical solutions for
any of these interactions we cannot appeal to nature to
single out one or another of them. In particular, we
cannot say at present which particles are to be taken as
elementary and which as composite.

A partial solution to the computation problem has
been given by the analytic S-matrix approach. ' This
emphasizes analyticity and unitarity of S-matrix ele-
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ments, and enables equations for these quantities to be
set up which contain on-mass-shell quantities only. In
contrast, the equations of Geld theory (Green's-function
equations) involve oR-the-mass-shell quantities. ' It
has recently been shown' that 6eld theory and S-matrix
theory both have the same maximal analyticity (on the
mass shell), so that we may regard them as different
approaches to the same problem emphasizing diferent
properties of S-matrix elements.

It has been possible to discuss the problem of which
particles are elementary, which composite, in S-matrix
theory, 2 and even to consider the case of a system com-
posed only of composite particles. ' Such a system of
"bootstrapped'" particles may have certain natural
symmetries, ' similar to those found recently in the
strong interactions. '

From the equivalence of S-matrix theory and field
theory, it should be possible to discuss bound states and
bootstraps in Geld theory. In fact, we should be able to
discuss these things without making any such approxi-

' J. G. Taylor, Nuovo Cimento Suppl. 1, 857 (1963).
4 J. G. Taylor, Phys. Rev. 136, B1134 (1964).' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 349
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Phys. Rev. 131, 1888 (1963); J. S. Dowker and J. E. Paton
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mations (e.g. , keeping only two-particle intermediate
states) as are necessary in the present formulation of
5-matrix theory. This is what we will do in this paper.

The problem of describing composite particles in
Geld theory has been discussed already in numerous
publications. ' The general method of introducing quasi-
local and local Gelds for composites was discussed by
Haag and Zimmerman. " We use that method here. The
more detailed problem of distinguishing between ele-

mentary and composite particles has been discussed for
many model Lagrangian 6eld theories. ' The main re-
sult of these papers is that in suitable model theories an
elementary particle becomes composite as its wave-
function renormalization constant tends to zero. We
wish to extend this result so that it is independent of
any particular model.

A self-consistent set of equations in 6eld theory, hav-
ing no elementary particles, has been suggested by
Salam. "The equations are derived under the condition
that all vertex and wave-function renormalization con-
stants vanish. We consider that system of equations
here, and conclude that it is doubtful whether a non-
trivial solution of these equations exists.

An alternative self-consistent set of equations may be
set up under the weaker condition that only the wave-
function renormalization constants for all particles
vanish. We regard these equations as the complete
form of the bootstrap equations which have been used
in the two-particle approximation to generate sym-
metries. ' These complete bootstrap equations are of a
diferent type from that discussed in field theory so far.

The plan of the paper is to give, in the next section, a
discussion of elementary and composite particles in
field theory. This will enable us to de6ne our terms pre-
cisely. In Sec. 3 we discuss the relation between these
elementary and composite particles, and try to display
both types of particle in Geld theory so that they ap-
pear in as similar a manner as possible. This section con-
tains a good deal of discussion connected with the de-
tailed behavior of the theory in the limit of the vanishing
of the wave-function renormalization constant for the
composite particle. In the fourth section we consider
whether the vertex-function renorrnalization constant
for a composite particle may be set equal to zero. The
Gfth section reviews consequences of these possibilities
for the classification of particles as elementary or com-
posite. In Sec. 6 we discuss how bootstrap equations
arise in our general operator formalism, and how they

' See, for example, D. Lurie and A. Macfarlane, Phys. Rev. 136,
8816 (1964), and references quoted there. See also S. Weinbergi
gfrandeis 1964 Summer Instih~te Lectures {Prentice-Hall Inc. ,
Englewood Cliffs, New Jersey, 1965), Vol. 2, and references
quoted there.
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W, Zimmermann, Nuovo Cimento 10, 597 (1958).

Salam, Nuovo Cimento 25, 224 (1962). See also S.
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in Proceedings of the 1962 High Energy Physics Con-
ference, (CERN, Geneva, 1962).

reduce (by taking appropriate approximations) to the
conventional bootstraps.

In Sec. '7 we give a preliminary classification of our
operator bootstraps, and 6nally we make some remarks
about the way "bootstrapped symmetries" arise in our
theory. Three appendices are devoted to details of the
mathematical discussion in Sec. 7.

2. ELEMENTARY AND COMPOSITE PARTICLES

In this section we will give our definitions of the terms
"particle, " "elementary particle, " and "composite
particle, " We wish to do physics rather than meta-
physics, so we must give these de6nitions in some
reasonably precise physical framework. We take this
framework to be local Lagrangian quantum Geld theory.
By this we mean that there is a basic set of fields
iP&(x) Pz(x) for finite E, which satisfy a set of partial
diBerential equations derived from a local Lagrangian in
the fields tt & tt ~. We assume further that the solutions
to these equations satisfy the axioms of Wightman";
basically, the energy is positive and the P„(x) are local
operator-valued distributions defined on suitable do-
mains of some separable Hilbert space X,. We make no
assumptions about the discrete spectrum of P„' since
that is given by the Lagrangian. Finally we assume that
the Green's functions derivable from the fields exist.
It is possible that there are no theories satisfying the
above requirements, though it is likely that there are. '

In this framework we may consider the singularities
of the Green's functions in their momentum variables.
We say that there is a particle of mass m, composed of
the fields f, f „if aii the Green's functions

G(p, q)= II dx;dy, e ' ' '*

have a simple pole at (g p;)'= m' for any choice of p's
and q's. We further require that the residue at this
pole is factorizable into the product of a function de-
pending on the o's and p's only, and a function de-
pending on the P's and q's only. This de6nition is for a
stable particle only. The number of types of truly
stable particle in the world is very small; we expect at
most, six: the proton, electron, the two neutrinos, the
photon, and the graviton. There are many other
objects also called particles which decay in an observable
lifetime. We may accommodate these, as unstable par-
ticles, if we extend our above deGnition of a stable
particle to take account of complex singularities in the

A Wxghtman Phys Rev 101, 860 (1956) See also R Jost,General Theory of Quantized Fields (American Mathematical
Society, Providence, Rhode Island, 1965), and A. S. Vhghtmanand R. F. Streater, PCT, Spin, Statistics and All That (9/. A.
Benjamin, Inc. , New York, 1964).
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variable (P p;) ' on its unphysical sheets. "This requires
a knowledge of the analytic structure of the Green's
functions. Ke do not wish to go into this here, but
assume that enough structure can be found" so that
this definition of an unstable particle makes sense.

Now that we have particles we wish to introduce
fields for them. Ke do this for stable particles. Ke start
by obtaining the single-particle states. These are defined
from the residues of the Green's functions at the poles.
We denote the residue of the function G(p, q) defined
above to be equal to the product F(p;,Oi,)F(q, ,p, )
(i = 1 to m, j=1 to I) Th. e functions F(p;,a;) may be ex
tended to be linear in the Gelds P „so they may be re-

garded as the inner products of a certain state
~
1)

with a subset P(m) of these states obtained by apply-
ing polynomials in the Gelds iPi. iP~ to the vacuum.
The subset P(m) is taken from those tates with total
energy and momentum p„with p„'=m'. Cyclicity of
the vacuum ensures that the set P(m) is dense in the
set of all states with energy and momentum p„with
p„'=m', so that ~1) is well defined. We define ~1) as
the one-particle state of mass m.

It is evident that m' is a point in the spectrum of P„'-
where P'„ is the total energy-momentum operator for
our field theory. For us to call

~
1) a one-particle state it

is necessary that m' be an isolated point of the spec-
trum P„'. We would expect nz' to be in the continuum
of P„' if the Green's functions had a branch-cut type of
singularity in (p p,)' at m'. lt is the pole nature of the
singularity which we require in order for m' to be in the
discrete spectrum of P„'. It follows'4 that if m' were in
the discrete spectrum of P„' then pole singularities
would arise in the manner we have assumed VVe are
considering the converse of this, since we are given
initially the Green's functions for a given set of fields,
and not the spectrum of P„'.We cannot prove this con-
verse here, though it seems very likely, so we assume it
to be correct. Now that we know the discrete spectrum
of P„', we may use the Haag-Ruelle-Hepp' '4 theory to
define fields iP, (x) for each one-particle state ~u), as
quasilocal functions of the basic Gelds f,(x) (i = 1 to .7).

We require each held operator describing a particle of
definite mass and spin to transform according to the
corresponding irreducible representation under Lorentz
transformations. The only quasilocal functions are then
local functions of the Gelds iP;. Local functions of local
fields are not well dehned, as the ultraviolet divergences
in quantum electrodynamics show. We assume that a
suitable prescription may be given to define these local
functions. " The prescription is such as to enable an

"R. Peierls, in Proceedings of the Fourth High Energy Physics
Corlferenc, Rochester, 1954 (unpublished).

"See, for example, J. Gunson and J. G. Taylor, Phys. Rev.
119, 1121 {1960).This paper contains the 6rst published state-
ment of maximal analyticity; see also J. Gunson, J. Math. Phys.
6, 827, 845, 852 (1965).' J. Gunson and J. G. Taylor, Nuovo Cimento 15, 806 {1960).
K. Hepp, Institute for Advanced Study report, 1964 (unpublished)."M. M. Broido (to be published); J. G. Valatin, Proc. Roy.

algebraic structure to be given to the set of Gelds P; at a
given point x, with an associative law of multiplication.

It is possible that the laws of physics are most simply
expressed in terms of fields for unstable particles as well
as for stable ones. This appears to be the case in quan-
tum electrodynamics, since, for example, the muon is
described in terms of a field coupled via minimal cou-
pling to other charged particles. But the muon is un-
stable under weak interactions, so that the discussion
we have given above for stable particles no longer
applies. We may avoid this difIiculty by introducing
fields and Lagrangians only for stable particles, the
interactions being so chosen that they generate the
known unstable particles and their effective interactions.
This meets the problem we mentioned earlier: It is
difFicult to solve field equations. It may also require
starting from nonlocal interactions.

To avoid these difhculties we will consider here only
those theories for which we may also introduce a local
function P of the basic fields P;. .iPg to describe each
unstable particle. To make sense of this requirement we
have to specify what it means for a field iP to describe an
unstable particle. Ke take this to correspond to the
condition that the momentum-space Green's functions
constructed from any number of ip, 's, and one ip has a
simple pole singularity in the invariant squared mo-
mentum corresponding to the P, at a given complex
point (independent of the number of iP s) on a suitable
sheet of the invariant variable. It may be possible to
show that such a held can always be introduced in the
same manner as for a stable particle, by extending the
space of states to include unstable particle states. This
extension will give rise to an extension of the operator
P„' which will have complex eigenvalues and so will no
longer be self-adjoint; however, there is no reason why
P„should not still commute with its adjoint, so that it
is norma/, in which case it generates a commutative
algebra closed under involution and we still have a rela-
tively familiar type of spectral representation. "It may
also still be possible to give a self-adjoint extension of
the original held operator, though again the contrary
case should not cause any trouble.

We thus have a Geld operator iP for each particle a.
We term a field theory a particle theory if we can
eliminate the basic Gelds ip; from the Geld equations and
replace them by the particle fields ip . If the resulting
equations are local, involving the P at the same space-
time point, we term the theory a local-particle theory.

We now wish to divide our particles into two classes,
which we call elementary and composite. We want the
composite particles to be "composed" of the ele-
mentary particles, and not vice versa. Thiis, we must
understand what is meant by a particle's being "com-
posed" of other particles. By this we mean that the

Soc. (London) A226, 254 (1954) and earlier references quoted
there; K. %ilson, Cornell University report(unpublished).

M. M. Broido, Proc. Cambridge Phil. Soc. 62, 209 (1966);
Courant Institute report (unpublished).
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description of the basic local interactions between par-
ticles does not require the use of the composite particles,
but only of the elementary particles. So if we start from

a basic local Lagrangian involving all the particle fields

f-, the composite-particle fields are those which maybe
eliminated in a trivial manner by means of the equations
of motion, giving rise to a local Lagrangian for the
elementary-particle fields only. To preserve locality,
this elimination must be in terms of local functions.
The elimination may be in terms of self-consistent

equations, in which the composite-particle field is a
local function of both the elementary- and composite-
particle fields. Such a possibility has to be included if we

want to discuss a system composed of composite par-
ticles only. Conversely, if we start from a local La-
grangian in terms of the elementary-particle fields only,
we are able by the Haag-Ruelle-Hepp theory to com-

pose the composites in terms of suitable quasilocal
functions of the elementary-particle fields. In order to
have correct Lorentz-transformation properties for the

fields, these quasilocal functions must be actually local.
We extend this class of functions to include self-

consistent functions, depending also on the composite
fields. This extension may not produce any new theories,
but we should consider it here to see whether it does or
not.

To sum up, then, an elementary particle is one whose

field enters in some local Lagrangian; a composite par-
ticle has a field which does not enter into the local
Lagrangian„but is an implicit local function of the
elementary fields.

This distinction can only be made if we have a local-

particle theory. If we cannot eliminate all of the basic
fields, from thelocalLagrangian, because, for example,
there are too few particles, then it does not seem possible
to talk sensibly about elementary or composite par-
ticles, but only about elementary or composite fields.

We define one of the fields P, to be elementary if it
cannot be represented from the equations of motion as a
local function of some of the other fields g, and so be
eliminated from the initial Lagrangian; a composite

field

is�anyloca

functionof the fields, tother than the
trivial function f(x) =x7.

We will only consider from now on a local-particle

theory; our discussion can be extended to a local-field

theory if we replace the work "particle" by "field" in

our results.
In finishing this discussion we note that an elementary

particle is that object which has a "core." This core

cannot be reduced by removing particles from it;
any further reduction by removal of particles beyond a
certain number is impossible, and no change is achieved

by this further reduction. In fact, it is possible to define

our elementary particle as being associated with a cer-

tain external line, say p;, in the Green's functions

G„(pi p„), by requiring that the reduced functions

G„,„(pi p ) obtained by removing all internal states

containing up to and including r particles between pi
(p2'' p), be the same given functions of the p;

for r beyond some given value E. It is then possible to
show that the coupled Green's-function equations arise
from a Lagrangian, which will in general be nonlocal. "
If we require our theory to be evidently local we arrive
at our previous definition of an elementary particle.

3. THE RELATION BETWEEN ELEMENTARY
AND COMPOSITE PARTICLES

We now wish to discuss the similarities and differences
between elementary and composite particles. We want
to include a composite particle so that it looks as
similar to an elementary particle as possible. YVe will do
this in our Lagrangian formalism. Ke will not consider
here what observational difference can arise, though
Levinson's theorem and its extension to relativistic
scattering indicate the sort of difference to expect. "

We suppose we have a local-particle field theory, with
a local Lagrangian density L(P ) at a spa~e-™point
x, in terms of the set of local elementary particle fields

at x. L will be the sum of two terms, the first repre-
senting the free Lagrangian density at x for the separate
fields/-, thesecondtheinteractionbetween these fields,
being a polynomial in the fields and their derivatives
evaluated at x. The field equations for the fields/ will
be the Euler-Lagrange variational equations

Bp +By&@ ' ' '=0)
ap. a(a„p.) a(a„a,ip.)

where 8„=8,/Bx& and the summation convention is
used.

We want to extend these Lagrangian equations to
include the composite-field equations. From our pre-
vious section these equations for a given composite
particle with field P,(x) will be

~.(x) =W.(W-,k")
depending only on the values of the set of elementary-
and composite-particle fields f-, f, , and their deriva-
tives, evaluated at x. The function P,(.) on the right-
hand side of (2) must transform under the Lorentz
group as a tensor or spinor of the correct spin to describe
the composite particle, and satisfying the corresponding
subsidiary condition to contain only one spin value. Let
us consider first the case that/. (.) does not depend on
P, for any c. We construct the new Lagrangian

'(~-,~")=~(4-)+a.L4" 4.()7' (3—)
The quadratic term in (3) is written formally; in detail
it will be the Hermitian invariant, formed by taking the
inner product off,—iP,(.) with its Hermitian conjugate

l7TJ. G. Taylor, in Proceedings of the Siena C'o~zfere&zce on Ele-
mentary Particles and High Energy Physics, edited by G. Ber-
nandini and G. P. Puppi (Societa Italiana di Fisica Bolo na

» This is discussed, for example, in Ref. 3, paper VI.
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in the tensor space. The quantity u, is an arbitrary real
constant. Then the 6eld equation for P„obtained by
varying (3), will be identical with (2), while the field

equations for the 6elds P will be unchanged. We may
extend L' to include all the other composites if they are
all given by Eqs. (2) without appearing on the right-
hand side. We can do this by adding to (3) the term
a,.[P, —tt, (.)]' where now P, (.) is chosen to be inde-
pendent of rP, by using (2). We add similar quadratic
terms, in turn, each term using the equation similar to
(2) so that it depends only on the composite 6elds com-

ing later in turn in the function P, .
In this process of extending L we expect that at some

state Eq. (2) will involve the same 6eld on each side, so
we will now take account of such a situation. In the case
of f,(.) in (3) depending on P, (not on derivatives of f,),
we then obtain from (3)

Now gP, (.)/8P, g1, since we are assuming (2) is not
the trivial case, and again we obtain (2). In the more
general case, when derivatives of f, appear on the
right-hand side of (2) it seems dif6cult to set up a
Lagrangian which will give rise to Eq. (2) alone. How-

ever, we have some freedom in the choice of the func-
tion P,(.) on the right-hand side of (2).~ We assume that
our choice is great enough to allow us to choose it so
that it contains no higher than first derivatives of any
fields, elementary or composite, and to be linear in any
of these derivatives. We further require that no deriva-
tives of f, itself appear on the right-hand side of (2). A
set of composite particles which are such that their set
of functions (2) all satisfy these conditions, and are
derivable from a single Hermitian Lagrangian, is said
to satisfy the unitarity condition. Ke use the word
unitarity because we may then quantize the set of
Gelds so as to correspond to a unitary 5 matrix, even if
there are no elementary particles present. We will not
discuss the details of how we do that for elementary
fields but refer to the discussion of this problem in the
first paper of Ref. 3:no derivatives higher than the first
must appear on the right-hand side of (2) for the ele-
mentary fields, basically so that the characteristics of
the resulting differential equations for these fields are
independent of the 6elds themselves. (A further general
principle emerges which we discuss in Sec. 4 of this
paper. ) We extend this requirement to the composite
Gelds by considering them as the limit, as Z, —+ 0, of
elementary fields. These elementary fields have then to
satisfy the unitarity requirements. VVe now turn to dis-
cuss this introduction of the wave-function renorrnaliza-
tion constant Z„and its vanishing.

The extended Lagrangian

where the quadratic functions of P, do not depend on the
6elds earlier in the summation in (5), will generate the

original field equations and the composite-field equa-
tions (2) if the unitarity condition is satisfied for each
term in (5). We can interpret the extra terms added to
1.(P ) in (5) by adding further kinetic terms to (5)
of form

for each composite field f„where Z, is a constant equal
to zero, and 1.0(P,) is the free Lagrangian for a particle
f, of arbitrary mass. The extra term

is to be interpreted as a,f,'= mass renormalization term,
a,= ~by'Z„where Z, is the wave-function renormaliza-
tion constant of the renormalized 6eld f.; —2a, =gZ, "'
where g is the unrenormalized coupling constant be-
tween P, and the 6elds which enter P,(.); and a,$.2(.)
is a self-coupling term between these fields. Then the
total Lagrangian (5), with Z,&0, is that for elementary
particles P and P., and as Z, —& 0 becomes the La-
grangian for the elementary particles f and the com-
posite particles P,. It may not be possible to write (5)
as the correct Lagrangian, since successive elimination
of the terms in the series in (5) may violate the unitarity
condition. This will actually occur in a self-consistent
model we consider later. In general, we require our
theory to be unitary if we may form an extended
Lagrangian

L(f )+L(f pP.)

for all the composites (with certain restrictions on the
way that derivatives enter, as discussed in paper I of
Ref. 3), whose variation in each of the composites f,
should result in (2). If we add to this the terms

and interpret the terms in LQ, iP,) as interaction terms
or self-mass terms, then again we may interpret

as a Lagrangian for elementary particles g, f. which
become composite as Z, —+ 0.

We may also reverse this step by starting from a
Lagrangian like P) for elementary P and f„and let
Z, ~O. The resulting equation for P. will be of the
form (2), the left-hand side of (2) arising from the self-
mass term and the right-hand side from the interaction
terms. If we require the field equation for any ele-
mentary Geld to have characteristics independent of the
solution, and be of second order, then as Z, —+0 the
right-hand side of (2) can depend at most linearly on
derivatives of the given field itself. Thus formally we
have proved the following result:
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Frc. 1. An amputated bubble without propagator.

Result

A composite particle in a unitary theory is an ele-

mentary patricle whose wave-function renormalization
constant is equal to zero.

In this frameworl. we may understand the results on
the relation between a four-fermion theory with a
boson bound state and a Yukawa theory, as discussed

by Lurie and Macfarlane (Ref. 8). We take one ele-

mentary particle described by a spinor operator f, and

~(4) =~0(0)+8(A)'
Then with &=X~ as the boson field,

~(4)+a(4 —&A)'= ~o(Wf')+ (9+&~')(A)'
+aqP —2aX~, (8)

and the four-fermion interaction is removed if g = —a~'.
Further the boson self-mass is

8p'=2a/Z,

where Z is the boson wave-function renormalization,

FlG. 2. De6nition of an amputated bubble.

and the effective Yukawa coupling constant is

Z'~'go ———2' .

Thus, the Lagrangian L(l ) is identical to that for a
Yukawa coupling to a boson with Z= 0 if

~= —aX' bp'=2a/Z gpZ'"= —2ah

or eliminating a and X, if

go'/28—

This is exactly the condition arrived at earlier. ' How-
ever, this extra condition is very closely related to the
particular type of interaction, while as we have seen
above the Z —+ 0 condition is the compositeness condi-
tion for any elementary particle interacting in a very
general way with a set of other elementary particles,
provided the theory is unitary.

So far the discussion has been purely formal in the
following sense: We have pointed out how certain for-
mal manipulations with the Lagrangian can cause a
theory with an elementary particle to become formally

FIG. 3. A bubble without certain cuts.

identical in the limit Z3 ~ 0 with a theory containing a
composite particle. Now although at each stage of the
limit process we have a well-dehned theory, it is not yet
clear in what sense the theory still exists in the limit.
If the various renormalization processes were inde-
pendent of one another, we could argue that since
physically observable quantities are independent of the
values of the renormalization constants, they must also
have the correct values in the limit. However, these
processes are not independent, as is clear from the model
we have just discussed, and so we have to make sure
that the theory still exists, and in particular, that there
is still a composite-particle pole in the correct place

FIG. 4. Cubic self-interaction of a scalar field in Green's-
function form, without charge renormalization.

with nonzero residue. This connection has indeed been
discussed in many model s, and also in qu a n tum
electrodynamics. "

What we must do, then, is to exhibit the mass and
charge renormalizations explicitly and show that the
quantities involved possess reasonable limits as Z3 —+ 0.
iXow the wave-function renormalization can be carried
out in the original operator form of the theory; this
cannot yet be done for the mass and charge renorrnaliza-
tions. For this reason we will have to pass over to the
Green's-function formalism' in which these other re-
normalizations can be carried out explicitly. ' We refer
the reader to those papers for detailed explanations of

+ I

2

FrG. S. Definition of a 2-cut-less amplitude.

this formalism (see also Ref. 20), but for clarity we in-
sert here a brief explanation which we hope will be
sufFicient for our further purposes and those of the
reader. It should be noted that all our arguments apply
outside perturbation theory.

The general n-particle "bubble" Q n represents the
formal sum of all unrenormalized perturbation graphs
with the corresponding number of legs and consistent
with the interaction under discussion. The line
represents the bare propagator and has the value

=i(P'—m') '.
"I.Bialynicki-Birula, Phys. Rev. 130, 465 (1963)."K. Symanzik, Hercegovni Summer School Proceedings,

Jugoslavia, 1961 (unpublished).
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The mass renormalization is carried out by removing
the self-energy parts and absorbing them into the bubble
to give a clothed propagator —+—and an amputated
bubble as in Fig. 1; the exact definition is given in Fig. 2.
More gene~ally we consider bubbles of the form given in

Fig. 3, which represent the sum of those graphs not
possessing s-cuts in the indicated channel. The case s= 1

represents the mass renormalization, so that for instance
the field equation for the cubic self-interaction of a

Fzo. 8. The Z, ~ 0 limit process in Fig. 7.

For Z,/0, then, we use the Lagrangian-with-
counterterms

s=a, c

+-,' Q Z,8m 2P;2+2; g (11)

Fu. 6. Green's-function equation for two
elementary particles $cf. Eq. (11}j.

scalar-meson leld is given in Fig. 4 $Eq. (17) of Ref. 3,
paper I7:

The charge renormalization corresponds to the case
s=2; it is given by definition, for instance as in Fig. 5

LEq. (20) of Ref. 3, paper I). Figure 3 says simply tha. t
certain contributions have been absorbed into the ver-

tex part. The charge renormalization is then carried
out by replacing the bare by the physical vertex every-
where, and removing the appropriate terms from the
bubble. For more details, see p. 88j. of Ref. 3.

We apologize to the reader for whom this extremely
cursory introduction has been insufhcient, and hope
that careful referencing wi11 help him through the fol-

lowing discussion.
Consider for concreteness a theory of two scalar

particles described by fields p„, P. with interaction

—X= lim
Ze 'Z6m'

In terms of g„, we must thus discuss (13)

g„Z,—X= lim
z.-"Z.bm, '

(where Z„ is the vertex-function renormalization con-

Fro. 9. Green's-function equation for a composite particle
arising from Fig. 6 Lcf. Eq. (12}'j.

and so in the limit Z, ~ 0, the equation for the c par-
ticle becomes

(12)
where

n y zf~~ ()
FIG. 7. EEect of Z, dependence in Fig. 6.

Lagrangian

stant of the c-particle) so that if Z,8m,' —+ 0, as has
been suggested for the Lee model, then also Z, —+ 0. We
shall discuss the condition Z„—+ 0 below in more detail
(where Z. is the vertex-function renormalization con-
stant of the c-particle).

Now let us pass over to the Green's-function equa-
tions for the c particle arising from (11).They are, by
the general methods of Ref. 3, of the form given in
Fig. 6. In Fig. 6 Lcompare Eq. (26) of paper I of Ref. 3j
~vhere

iaC= gag a', (10) ) '+Z, hm ' (14)

expressed in terms of unrenormalized quantities. De-
note by m, and bm, the physical mass and the mass shift
for the c particle, and by Z, its wave-function renor-
malization constant. Let g„be the coupling constant in

(10), renormalized with respect to the a particle. In
Green's-function equations we will denote the a-particle
propagator by a single line and the c-particle
propagator by a double line . The clothed propaga-
tors —-", and —'

,
— -= are defined as in Fig. 2.

and . denotes the coupling constant g, so that when we
write out Fig. 6 explicitly, we get Fig. 7. Then as
Z, —& 0, the first and fourth terms cancel and we have
(removing the factor ) the relation in Fig. 8, i.e.,
in terms of (13), provided the limit exists, we obtain
Fig. 9. Figure 9 is simply a restatement of (12). This

FIG. 10. Four-point function.
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FIG. 11.Schematic
dependence on the in-
dependent variables.

6xing g„' and approaching the curve Z, =0 in such a way
that the limit (13) remains 6nite and nonzero. If this is
not possible for any g„', then there will be no composite
particle, regardless of how attractive the theory may be
in other respects. If it is possible for many values of

accomplishes the 6rst part of our program, since it
shows that the equations obtained by letting Z, + 0 in
the Green's-function equations arising from (11) are the
same as those obtained by putting Z, ~ 0 in (11) and
then varying to give (12).

p'-,'+ ~ Z, + (Z-))(~'- ', )+ ~

FzG. 16.Diagram form of
the condition Z, =O.

m, ', we may have some choice in the selection of bound
states (further restricted, perhaps by Levinson's theorem
or by bootstrap conditions; we will deal with these
later).

One sees how restrictive or otherwise this is also by
considering the mass renormalization of the c particle in

FIG. 12. Propagator equation for the composite particle.

We repeat that (12) formally describes c as a bound
state of a. We still have to show that this correspondence
is more than merely formal. We now do just this.

In particular we must show that Fig. 10 has a pole at
m, , and that the residue is nonzero even in the limit
Z, —& 0. This is neither obvious nor trivial.

FlG. 17. Vertex-function and propagator in the
composite-particle description.

FIG. 13. Mass-renormaliza-
tion of Fig. 12.

the two prescriptions. In the Z,&0prescription, we have
the propagator equation for the c particle given in Fig.
12 $Eq. (93) of paper I of Ref. 3j. In terms of previously
introduced notation, this gives Fig. 13. As Z, —+ 0, we

To clear the ideas, we will state unambiguously what
are our independent variables. They will be the re-
normalized mass ns, and the coupling constant g„,
which has been renormalized with respect to the wave-
function renormalization of the elementary particle a
(since this will not cause any problems). These two
quantities are the ones nearest to having some de6nite

= 4'(p'--!)

y )'(p'- .') ~
obtain Fig. 14, so we require

Fto. 18. Subtraction
methods of Fig. 17.

Z, -' +(')+
FIG. 14. Effect of Z„~ 0 in Fig. 13.

X '= lim
Zc~o

—Z,6m,

physical significance which prevents us from regarding
them as functions of other parameters in the theory.
We take, then,

Z.=Z, (m. ',g,'),
bm, ' =8m, '(m, ',g,'),

and so forth. Now we consider Z, =O as a curve in the
(m, ',g, ') plane (see Fig. 11), and we imagine ourselves

g (p ~c)

FrG. 19. Form ot I'Ig.
18 at p2 m„.2.

to be given by the diagram in Fig. 15.

FIG. 15. Diagram for the bound-state
coupling constant X.

We also require the relationship expressed in Fig, 16,
which is a restatement, in terms of the self-energy, of
the requirement Z,=O. In fact, Z, is just the difference
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between the two sides of Fig. 16, and so we have the
functional dependence of Z, on m, ' explicitly and on
g„' implicitly.

Now we wish to do the same in the composite-particle
description. Consider Eq. (14). Figure 9 now gives us

FIG. 20. The composite propagator.

Fig. 17 (for m= 2) where the self-energy term consists of
an arbitrary constant and a finite function of p' which

does not have a pole at p'= ns, ', by the usual subtraction
methods. This gives Fig. 18. The last term drops out at
p' ta, ', giving Fig. 19. This is precisely the behavior
in Fig. 16. Now the diagram in Fig. 20 is, by definition,

FIG. 24. Behavior of P~

the vertex-function near
&the composite mass-shell.

Now at last we are in a position to show that the
scattering amplitude in Fig. 23 still has a pole with non-
zero residue ie Ihe limit Z, ~O of the elementary-
particle description of the c particle. More precisely,
the Gniteness of X as given by Fig. 15 is enough to
ensure this for Fig. 15 then gives Fig. 24. From Fig. 24

FIG. 25. Cut-structure of the scattering amplitude with
respect to the composite propagator.

we obtain by definition the relationship given in Fig.
25, where the second term is finite as p' —+ m, ', whereas
the third has the pole with nonzero residue.

This completes the proof of the assertion that, as
Z, ~O, the e particle becomes a composite of the a
particle, provided the expression in Fig. 15 has a finite
limit.

What we have shown is not exactly that the two
descriptions are equivalent, but that the elementary

FIG. 21. Behavior of the composite propagator about the pole.

equal to

(o I T(4.(*)4.(x)) I
o)e'"-"'&'(~—x)

FIG. 26. Behavior of a scattering amplitude with a bound state
of mass m, in the s-channel around the value s= m, '.

at p'

description gives the composite one in the limit. One

(OI &(~.'( )~.(y)) Io) '"'-"'~'(*-~) will not expect to be able to show the converse, because
there will be no means of recovering the terms that

I by Kq. (12)j drop out in the limit 2, —+0. Nevertheless, one can
I establish a partial converse.

Consider a particle described by a field p„and a
Lagrangian Z(P ). This time we suppose that there is a

In terms of the pole in the composite propagator, this

FIG. 22. Consistency condi-
dition arising in the composite
formulation.

gives Fig. 21, i.e., in both cases (checking the
consistency), we have Fig. 22.

This is precisely the same as the equation in Fig. 15
arising from the elementary-particle description as
Z, —+ 0, and shows the consistency of the two descrip-
tions with respect to the values of the coupling constants.

FIG. 27. 2-cut reduced amplitude
(or "potential" ).

bound state of mass m, ' as in Fig. 26. We also suppose
that the reduced amplitude (Fig. 27) has no pole at
s= m, ', so that the equation in Fig. 28 Lwhich is actually
the definition of the reduced amplitude (Fig. 27)) can
be viewed as a Bethe-Salpeter equation which generates
the bound state by iteration of the "potential"

(=) g+
FIG. 23. Scattering amplitude.

FIG. 28. Definition of the reduced amplitude.



1002 M. M. BROIDO AND J, G. TAYLOR

FIG. 29. Bound-state vertex-function.

Fig. 2'I. (Note that the argument is crossing symmetric
and relativistic; it is the analogy that is not. ) In par-
ticular, on the mass shell of the composite particle,
Fig. 28 reduces to a homogeneous Bethe-Salpeter equa-
tion for the bound-state vertex function, Fig. 29.

We will attempt to describe the bound state by the
field Xp ' J la Zimmermann. ' We immediately ob-
tain Fig. 9, which can be written as in Fig. 30, with
g=(p' —m, ')X. This is similar to Fig. 6; in fact, the
only difference is that we have lost the mass counter-
term given in Fig. 31 (which anyway underwent a

great transformation as Z, -+ 0), and that we have a
momentum-dependent coupling constant p, . The theory
will be internally self-consistent provided X is deter-
mined by the usual residue condition, Fig. 22.

All these arguments can be extended without trouble
to particles of different spin types and having diBerent
interaction Lagrangians. This is clear from the general
graph structure developed in Ref. 3, which is the essen-
tial foundation of all the above discussion.

FIG. 30. A bound
state looking similar to
an elementary particle.

We have attempted by similar methods to discover
whether the self-consistency of the theory at this stage
requires some definite behavior of the vertex-function
renormalization constant Z. of the system. The manipu-
lations involved are complicated; we will not go into
them here. We have concluded that the theory does not
yet impose a condition on Z.. As we will see later, this
conclusion does not necessarily hold when one con-
siders the more demanding conditions associated with
bootstrap mechanisms. Finally, we remark that if we
attempt to identify a coupling constant in the standard
way from Fig. 9, this "constant" would be X(p' —m, ')
and so would vanish on the mass shell. One might inter-
pret this as a requirement that Z, =O, though such an
interpretation is evidently inconsistent in field theory,
since Z. would be dependent on p'. In the next section
we turn to a more complete discussion of whether or not
Z„need vanish.

Ãofe added in proof It seems that t. he condition Za= 0
may not be the only one for compositeness in the quite

FIG. 31. Mass counter-term in the elementary description (Fig.
6) not arising in the composite description (Fig. 30).

special case where one starts with two elementary
particles having the same quantum numbers and tries to
make them composite LR. L. Zimmermann and D.
Alexanian (private communication); J. C. Houard and
J. C. le Guillou, College de France (unpublished)$.

One may wonder whether this has any physical
significance. The problem seems to arise only in the case
of P-co mixing. We may try to deal with this problem
by the method of bootstrapped synunetries (see Sec. 7D
below). If the symmetry is SU3, since p and co belong
to diferent representations, the situation of identica, l
quantum numbers does not really arise. In the case of
SV&, we have to deal with a badly broken symmetry. A
natural way of introducing symmetry-breaking terms
into our bootstraps is by kinematic terms, which will
tend to give increasing violations at higher energies, a,s
is needed experimentally. But then the particles are,
after all, still elementary; the problems encountered in
the above discussions do not arise. Altogether we feel
that the case of two diGerent particles with all the same
quantum numbers is unlikely to be physically very
lmpol tan t..

However there remains the formal problem of justify-
ing the method of the present paper in this special case
by showing that the results of the above authors can be
obtained by our methods. We have done this. Since
certain special considerations arise, we will give the
details elsewhere.

4. FURTHER COMPOSITENESS CONDITIONS

Our discussion of the previous section results in just
one essential difI'erence between an elementary and a
composite particle, depending on the value of Z, the
wave-function renormalization constant for the particle.
Z is defined in any local Lagrangian theory, since it is
always possible to expose the self-energy in the propaga-
tor, and to define Z as the residue at the resulting pole.
Thus, we may define Z even for a theory which is non-
renormalizable in the usual sense. "Earlier discussions
of composite particles have used the further condition
of the vanishing of the corresponding vertex-function
renormalization constant, not just at a single value of
p', 2' but for all values of p' (where p is the momentum
of the composite particle entering the vertex function).
Such a condition has also been used as a residue con-
dition"; this aspect has been discussed in Sec. 3. Ke
wish to consider here whether such an additional con-
dition is required or even consistent in order to make
composite particles look like elementary ones.

We first remark that our discussion in the preceding
section shows that this additional condition is not in
general required; any composite particle can be con-
sidered as the limit as Z, —+ 0 of an elementary-particle

"This question of mass renormalization is discussed further in
Ref. 3, particularly paper I of that reference."See Ref. 3, paper VI.

2' P. Kaus and F. Zachariasen, Phys. Rev. 138, 31304 (1965).
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C interacting in a local fashion with the original ele-

mentary particles through a possible local interaction
2; &&'&. Provided a local interaction 2; &&'& may be
chosen which is renormalizable, then we expect the
limit Z, —+ 0 to exist for all the Green's functions of the
theory. Thus, we have only to consider whether one can
impose the additional condition consistently.

In order to discuss this consistency, we may proceed
in either of two possible ways. The 6rst is to look at
models which are soluble, and discuss the consistency
for them; the difhculty is that our results may not ex-
tend to more realistic theories which cannot be solved
completely. The alternative is to discuss realistic 6eld
theories in some approximation scheme.

We can consider as models illustrating the 6rst alter-
native potential-scattering theory, '4 the Lee model, "
the Zachariasen model, ' the Chew-Low model, " and
two-particle unitarity models. "In potential scattering
the additional condition arises that the vertex-function
renormalization constant vanishes. But if this condi-
tion is imposed we 6nd that the corresponding vertex
function F(E) vanishes except at the bound-state
energy 8, when it takes a 6nite value. Evidently such a
function cannot be treated in a consistent fashion with-
out vanishing efI'ectively everywhere. To avoid this
paradox, we should interpret the nonrelativistic re-
sults not in terms of a local 6eld theory, but rather in
terms of a nonlocal 6eld theory with an energy-dependent
coupling constant vanishing at the bound-state energy.
However, the condition does arise in a special way in
the Lee model"

When we turn to discussions associated with more
realistic 6eld theories" we see that they are completely
nonrigorous. The models discussed are of nonrenor-
malizable theories, so they are even more "beyond the
pale" of rigor than is usual in such discussions. We may
consider the problem for a slightly less pathological

"N. Bertocchi, Nuovo Cimento 31, 1352 (1964);R. Rockm«e,
Phys. Rev. 132, 878 (1963) and Brookhaven National Laboratory
report 8388 (unpublished); S. Weinberg, Phys. Rev. 132, 776
(1963)."I.S. Gerstein, University of Pennsylvania report (unpub-
hshed); J.-C. Houard, Ann. Inst. H. Poincarb 2, 105 (1965);
J.-C. Houard and B. Jouvet, Nuovo Cimento 18, 446 {1960);
M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258
(1961').

"R. Acharya, Nuovo Cimento 24, 870 (1962); J. S. Dowker,
ibid. 25, 1135 (1962); 29, 551 (1963); C. R. Hagen, Ann. Phys.
(N. Y.) 31, 185 (1965); M. L. Whippman and I. S. Gerstein,
Phys. Rev. 134, B1123 (1964). {In the paper of C. R. Hagen there
is an independent derivation of the degenerate equations arising
from the Zg=0 condition; however we disagree with his further
discussion of these equations. )"K. Huang and F. E. Low, J. Math. Phys. 6, 795 (1965);
K. Huang and H. Mueller, Phys. Rev. Letters 14, 396 (1965).~%'. Guettinger, Nuovo Cimento 36, 968 (1965};B. Lee, K.
Mahantappa, I. S. Gerstein, and M. Whippman, Ann. Phys.
(N &.) 28, 466 (1964); M. Ida, Progr. Theoret. Phys. (Kyoto} 34,
92 (1965).

~ B. Jouvet, ,Nuovo Cimento 5, 1 (1957); (this appears to be
the erst published discussion of the Z3=0 condition in relation
to composite particles. } E. G. P. Rowe, Nucl. Phys. 45, 593
(1963). See also the papers of Refs. 8 and 28 and references
quoted therein.

theory, say a theory in two space dimensions. Here it is
still not possible to say anything exact about the exis-
tence of solutions to the equations when the vertex-
function renormalization constant is set equal to zero.
However, there are indications that no such solution
exists. This is the case for the two-particle-exchange
approximation equations for pion scattering, ' and also
in a suitable region in function space for any approxi-
mate equation obtained by neglecting the Green's
functions with more than a certain number of variables
for any local interaction. "Such results lead one to be-
lieve that no solution to the complete equations, except
the trivial free-6eld equations, will exist if the vertex-
function renormalization constant is set equal to zero.
We will thus not consider this condition further, but go
back to the condition we discussed in the previous
section —that the wave-function renormalization con-
stant alone vanishes.

We saw that this condition allows us to regard a
composite particle as an elementary one, and to intro-
duce a suitable interaction between it and the original
elementary particles. In so doing we have not done
anything new. Of course, it may be a very helpful re-
shufIiing of perturbation expansions to introduce the
"elementary" composite, as has been much advocated
by Weinberg, with his quasiparticles. Thus, it may help
us towards the problem of computing, which we dis-
cussed in the Introduction. It may also help us to de-
cide which interactions we should be using. However,
it will not help us in any simple or direct fashion in this
latter investigation, at least not at present. We now
wish to see if we can understand better the possible
interactions which may occur.

Many difI'erent interactions may give rise to the same
physical predictions. In the case of a system of ele-
mentary particles interacting with each other our
problem is then to divide possible local interactions into
equivalence classes, each class containing all these
interactions with the same on-the-mass-shell predictions.
This is a very interesting task, but is at present im-
possible, since we have not yet got the tools to deal
effectively with a single interaction.

When we turn to the problem of classifying inter-
actions when "elementary" composite particles are
included, we see that there is one case in which there is
only one class—that is, when there are only composite
particles. For we know that any quasilocal 6eld func-
tion of the other 6elds may be used to describe the
composite, provided the vacuum-to-one-composite-
particle matrix element is nonzero. ' Hence, for a world
in which there are only a certain number of composite
particles almost any interactions may be used, and
will give the same physical results. This system —the
bootstrap system —is evidently of interest because of

' M. M. Broido, J. Math. Phys. 6, 1702 (1965)."J.G. Taylor, J. Math. Phys. 6, 1148 (1965); J. G. Taylor,
ibid. (to be published).
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this lack of arbitrariness in physical predictions. We
will have either that such a system of composites can-
not "glue each other together, " or if they can then the
type of glue is unimportant. This result is very ap-
pealing; we would like to find further that there is
only one such possible bootstrapped system, .which is
our world. However, the results turn out to be rather
diferent from what one would expect, namely, the Geld-
theoretic equations which (as we see in the next sec-
tion) reduce in the single-particle-exchange approxima-
tion to the usual bootstrap equations, turn out in

many cases to have no nontrivial solution. Now the
principle we have just enunciated allows us to claim
that if one given form of interaction leads via our
bootstrap mechanism to particle-like solutions and a
(perhaps trivial) 5 matrix, then any other interaction
with the same mass spectrum satisfying the given
conditions will give the same 5 matrix. It does not,
strictly speaking, allow us to infer that if a given inter-
action fails to give particle-like solutions, then so must
any other; yet it is to this latter, heuristic extension of
the "glue is unimportant" principle that we will have
to appeal if we are to avoid considering separately
each possible interaction. This is an important general
problem of quantum field theory to which no attention
has yet been paid in the literature, except in general
relativity. In order to give some foundation for this
extension of the principle, we will consider in Sec. 6
examples where different I agrangians do in fact all f i,il
to give particle-like solutions. Thus, what we now wish
to do is to consider in detail bootstrapped systems and
the possibility of their existence.

Pote added in proof. Since this paper was originally
written, innumerable articles have appeared proposing
further compositeness conditions related to Zi=0. This
work is almost all dependent on two-particle unitarity.
We mention in particular the ingenious classification
proposed by Ida, '8 based on the asymptotic behavior
of the Lehmann spectral function, and applied by him
in a series of papers [e.g. M. Ida, Progr. Theoret. Phys.
34, 990 (1965);K. Hayashi et al. , ibid 34, 636 (19.65)],
and also new work based on the Zachariasen model
[see N. G. Deshpande and S. A. Bludman, Phys. Rev.
143, 1239 (1966) and references quoted there]. The
various conditions which arise (Zr/Z3=0: Kaus and
Zachariasen"; ZP/Z3=0: Deshpande and Bludman)
are not in any way unique, as has been emphasized by
Ida. It seems likely to us that such conditions arise only
in two-particle unitarity, and are not at all general. In
the absence of reasonably realistic soluble models with
inelasticity, we therefore still feel that Z3=0 should be
the only general condition, as suggested by our Green's-
function analysis.

5. CLASSIFICATION OF PARTICLES

There have been a number of discussions in the
literature concerning the classiGcation of particles into

elementary and composite. In this section we will re-
view these attempts in the light of the work of the last
two sections.

The deuteron has been discussed by AVeinberg. "
Using the I.ow equation, he has shown that, in the
limit of vanishing binding energy, the success of the
eQ'ective-range approximation can be explained by put-
ting Z3&0.01.His theory exists in the limit Z3 —& 0. The
Z3 —0 results can also be explained in the Zachariasen
model (Dowker, Ref. 26).

Weinberg's results have been used by Amado et al. 33

to discuss the triton, taking the value Z~= 0.048 for the
deuteron and putting the deuteron potential into the
Fadeev equations.

These results appear to show that Z3= 0 is a physically
viable condition in nonrelativistic situations. Their
importance for us is based mainly on the fact that they
are model-independent.

Passing to the most relativistic problem of all, we
consider the possibility that the photon is a bound
state. Now if we consider the usual wave equation for a
massive vector boson with interaction:

( '+m')A„= kl„
+ (1—Z3) ( '+m')A„+Z3bm'A„(15)

and put the physical mass m=0 from experiment (see
below) and the bare mass zero by gauge invariance, we
get simply J„=0. [Strictly speaking, we have Z& 'J„=0;
but there seems to be no reason why Z& should vanish
either in general (Sec. 4) or, in particular, in quantum
electrodynamics. ]We may consider the possibility that
X=Z3/Z& approaches a finite limit [(cf. Eq. (13)];but
the completely renormalized wave equation for the
photon will be

Zog '3 & "& = e„ZiJ (")

where we suppose that as Z3 —& 0, we have Zi Z3 say,
for some real o.. There are now three cases:

o, &1~ Q'A„&"'=0: free field,

cx = 1 ~ Q 2A „&"&= eJ„": elementary photon,

«r~ J„&)=o: no photon at all.

This argument is independent of power behavior of Zi
in Zs since if Z& is more singular than any power of
Z3, evidently we still get the third case. The conclusion
that the photon is elementary thus seems inescapable,
as long as the physical mass really vanishes.

Now the upper limit on the physical mass of the
photon is given (to order of magnitude) by the inverse
of the radius of the universe; we have 1/EIr 10 "g
As is so often the case with arguments of this type based

"S. Weinberg, Phys. Rev. 137, 8672 (1965). The work of
YVeinberg has recently been extended by Ida LM. ada, Progr.
Theoret. Phys. (Kyoto) 35, 104 (1966)j. For our purposes this
new work may be regarded as further con6rmation of the
conclusion in the text.

33 R. D. Amado, R. Aaron, and Y. Y. Yam, Phys. Rev. Letters
13, 5'N (1965).
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on experiment, a hostile critic can always assert that
the mass could be still lower and yet nonzero.

Ignoring this possibility, we can thus see why the
ingenious arguments of SiaIynicki-Sirula" fail. This
author showed that quantum electrodynamics can be
obtained from the four-fermion theory discussed in
Sec. 3 by an appropriate interpretation of the re-
normalization constants in the two theories, i.e., the
photon appears as a bound state of positron and electron.
It has been claimed' that he did not take the condition
Z3 —+0 into account, and that "identification of p, o'

with uo is not justified at all since Birula [sic) has used
po'=0 whereas uv is strictly undetermined " (see
Ref. 8, footnote 47). The first of these remarks is
factuaUy incorrect, " as one sees from Eq. (36) of
Ref. 19.The second seems to us to be equally erroneous;
po' is an arbitrary parameter in Ref. 8, and any appropri-
ate value may be chosen. There is no reason why one
should not take the same value for p, o in Ref. 19.

Summing up, the photon is not a bound state because
as Z3 —+ 0, either the current vanishes, or the dynamical
term fails to vanish, depending on the behavior of Z~.
We have gone into this problem in some detail because
of the importance of quantum electrodynamics as a
physical theory and because of the above-mentioned
confusions in the literature.

The same arguments will also be valid, of course, for
the neutrino.

With regard to other types of particle, we do not
know exactly what is the correct interaction by which
to describe them. However, we can write down the
appropriate composite-particle equations corresponding
to certain types of interaction, and can discuss the
possibility of Ihose particllcr interactions giving rise to
a composite particle in the limit Z3-+ 0.

Consider for example the possibility of describing
the neutron as a bound state of neutral pions. Starting
from a Yukawa-type interaction

gz= gNxx

we obtain, in the limit as the wave-function renor-
malization constant of the neutron tends to zero,

where X is a spinor Geld and x a scalar. Now clearly this
equation holds for each component E say of X. If we
can cancel the factors E, we would have an equation
m =const. This would appear to be inconsistent with a
m having nontrivial dynamics. The following questions
then arise:

(a) When can we cancel factors?
(b) Does an equation v.= const imply an essentially

trivial m P

It turns out that for a bootstrapped system we can
discuss (a) in many cases of interest; this is done in

'4 I. Bialynicki-Siru1a (private communication).

Sec. 7 of this paper. Again, question (b) can be answered
in the bootstrap context. (The answer is "yes" because
the equation x=const then determines the dynamics of
the n, which it does not now do.)

Ke will now consider briefly a few nonbootstrap
possibilities, assuming that we can give a positive
answer to both questions posed above.

Scalar v with derivative coupting: The composite
condition is X= (B„v.)&„X and we can say nothing be-
cause the p„cannot be simultaneously diagonalized.

Pseudoscatar n with I'uhawa coupling: We get

and if our assumptions are correct, m is again trivial.
Pseudoscalar v. with derivative coupling:

&=at@ (V.VP')

and we can say nothing.
Our conclusions are as follows: If cancellations are

allowed and if our "triviality condition" is correct, we
must have derivative coupling in order to describe the
neutron as a composite of m and E. This agrees with a
recent result of Huang and Low. '7

In particular, if the particles are completely boot-
strapped, we can give a much fuller discussion of our
two conditions; see Sec. 6.

6. BOOTSTRAPPED SYSTEMS

We de6ne a bootstrapped system of particles to be one
composed of a system of particles interacting through a
local Lagrangian, with each particle having its wave-
function renormalization constant tending to zero. That
is, we 6rst quantize with all Z, 's nonzero, then we let
them tend to zero. In this case the resulting system of
field equations reduces to a system of constraint equa-
tions. We have already discussed in Sec. 3 the manner
in which we may interpret the field equations for one
particle as its wave-function renormalization constant
tends to zero; this interpretation was in terms of the
Green's functions of the theory. We now extend that
discussion to the case of a bootstrapped system. Our
previous discussion showed that the composite par-
ticles we were describing were identical to those con-
sidered by others. Now we wish to relate our bootstrap
equations to those discussed elsewhere.

As a preliminary problem, we could discuss the
partially bootstrapped system of Sec. 3, in which a
composite particle bootstraps itself out of itself and an
elementary pa, rticle. Thus Eq. (2) becomes, in terms of
the composite-particle field P, and the elementary-
particle 6eld P, :

y.(x) =ay, (u)y. (u). (17)

The corresponding Lagrangian for this mill be, for
constant p, ,

~'= ~(~.)+~.(le.+'.~op.)
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FIG. 32. Charge-renormalized vertex-function equation.

so can be derived, in the limit Z, ~ 0, from the com-
plete Lagrangian

~=~(~.)+L1-(1—Z.)j~.(O.)
+ ',Z.5m-. 'p, '+ gp, 'p„(18)

where Z,bm, 2=p, g= —xzXp and Z(f,) is the free La-
grangian for the c particle with physical mass m, . Thus,
we may calculate with (30), treating c as elementary,
and add the condition Z, —+0. Alternatively we may
attempt to solve Fig. 2 directly by operator methods. "
We can make the whole system bootstrapped if we take
Z, ~O in Z(P.). With

~(~.)= L1 (1 Z-.)~-.(~.)+,'Z.& .-'~.'+.~.~(~.),
the resulting equation is

by using the potential approximation of Fig. 33 in dis-
persion theory. The equation of Fig. 34, evaluated by
dispersion methods keeping only two-particle inter-
mediate states, is the condition that the D function
D(s) vanish at s=M, ' in the E/D bootstrap method
(Rockmore, Ref. 24). This follows because we are dealing
with single-particle exchange, and so the left-hand dis-
continuity for the E function is given. Further, Fig. 16,
evaluated by dispersion methods, is the residue condition

g
'= f(dD/d—s)/8zE(s) j~, ~„,

in the E/D bootstrap method (Rockmore, Ref. 24). We
see that this type of bootstrap is only an approximation

(= )

Fn. 34. Approximate ver-
tex-function equation.

4.=~&'(4.), (19)

where v=limz 0( 2r/Z 8m, '). Thus, our complete
bootstrapped system is composed of the two coupled
equations (17) and (19).This is the type of equation we
wish to discuss.

As we saw in Sec. 3 we may write down such a system
of equations in terms of Green's-function equations; the

Fxo. 33. Approximation
to the relativistic "po-
tential. "

extension of the discussion in Sec. 3 to Fig. 9 or to the
more general equations with all wave-function re-
normalization constants equal to zero is straightforward
and need not be given here.

We would like to relate our bootstraps to those of the
iV/D and vertex-function type. This cannot be done
directly, because of the approximations in the latter
equations. We proceed from the composite equations of
Sec. 3. The charge-renormalized vertex-function equa-
tion is given in Fig. 32, where the composite particle is
not present in the potential of Fig. 27 but is generated
by its iteration (cf. Fig. 28). We now approximate the
relativistic potential as indicated in Fig. 33. Thus Fig.
32 becomes Fig. 34.

When we approximate the vertex function (Fig. 35) to
be a constant go in Fig. 34, we see that on the mass shell
of the composite particle, Fig. 34 is now just the vertex
equation of Cutkosky (see his paper in Ref. 6). We may
also reduce Figs. 34 and 16 to the more usual set of
bootstrap equations given by Rockmore. '4 We do this
in the approximation of constant vertex functions and

to our composite equations; it is not a complete boot-
strap. However, if the a particle is treated in a similar
fashion, we arrive at a complete system of E/D or
vertex-function bootstraps. These will be an approxima-
tion to the complete set of Green's-function equations
with all the wave-function renormalization constants
now put equal to zero.

We may extend this argument to the two-particle
unitarity approximation, following the arguments of
Lee et al. and Ida."For our theory with an elementary
particle 2 in it will satisfy unitarity and have the usual
analyticity properties. 4 Ke now keep only two-particle
intermediate states in the dispersion analysis of the
A-particle propagator and vertex-function and the two-
particle scattering amplitude. The resulting equations,
in the limit Z~ ~0, will be identical with the V/D
equations arising from a model in which the A particle
is composite, as shown by the above authors.

AVe can also relate our equations to the Reggeized
bootstraps discussed by Kaus and Zachariasen" and by
Pran Nath. 35 This discussion is carried out in the two-
particle unitarity approximation by means of the
identi6cation of composite particles as Regge poles in

Fro. 35. Form of the vertex approximated by a
constant in certain bootstraps.

"' Pran Rath, University of Pittsburgh report (unpublished).
Since the present paper went to press, considerable further work
has appeared on Reggeized bootstraps: See W. J. Abbe, P. Kaus,
P. Fath, and Y. N. Srivastava, Phys. Rev. 141, 1513 (1966) and
references quoted there. The detailed connection of such Regge-
pole discussions of bootstraps with field theory is not yet veil
understood, at least by the present authors. We wish to thanl.
Dr. Pran Nath for a correspondence about this connection.
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the Bethe-Salpeter equation, "The first-named authors
find that the vertex-function renormalization constant
has to be set equal to zero. Ke have already mentioned
our general objections to this, although it may arise in
certain approximations.

Summing up, then, our bootstrap systems are a com-
plete operator form of all the currently used approximate
bootstrap systems.

P=gP' where g=G(bm') '. (21)

There is a vast literature, reviewed, for instance, in
Ref. 3, on field equations similar to (20); but for (21)
there is virtually nothing. In this section we will set up
an apparatus by which such equations can be handled.

Obviously the first question about such an equation
as (21) or, say, (1/), is: Can one cancel the factor com-
mon to both sides' If one can, there result the essen-
tially trivial equations $'=constant (or Q, constant).
If not, even the apparently simple equations (17) or
(21) may perhaps have physically nontrivial solutions
(compare HagenM). This can partly be reduced to an
algebraic question, and we have summarized brieQy
some of the relevant algebraic concepts in the Ap-
pendices 1 and 2.

Related to this is the following physically interesting
problem: Under what circumstances does the structure
of the Eq. (17) or (21) impose a restriction on, or
even fix, the values of the coupling constants g or X?
Ke will see that it is possible in certain cases to give a
definite answer to this question.

Just as do the usual field equations, our equation in-
cludes interaction terms containing products of fields
at the same point. We (and others) have discussed this
question elsewhere. ""In any case, it will not matter
how we define the product, provided it is associative
and commutative.

There are evidently serious difIiculties to be faced in
making these assumptions. The basic one is that in
general we expect the fields to be operator-valued dis-

"B.Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962), J. G.
Taylor, paper V of Ref. 3.

'7 J. G. Taylor, Nuovo Cimento 17, 69S {2960), and further
references quoted therein. See also H. G. Bremerman, Berkeley
report (unpublished).

'7. ARE THERE SOLUTIONS TO THE
BOOTSTRAP EQUATIONSP

Ke have seen how the usual Lagrangian variational
equations such as (1), which would "normally" be ex-
pected to have a typical form (pseudoscalar-meson
theory')

(CI'+m')Q=GQ' (or other interaction term), (20)

may lead instead, through the use of elementary-
composite particles and the associated conditions on the
renormalization constants, to an equation of a com-
pletely different type, namely

tributions, and so not defined (as perhaps unbounded

operators) at each point of space-time. The necessity
of considering such distributions has been proved in

local field theory under very natural assumptions by
Vhghtman. " Since we do not wish to put ourselves
"beyond the pale" of general Geld theory by violating
one or other of these assumptions, it is necessary for us
to say a few words on this point here.

The problem we face in defining a theory of products
for operator-valued distributions is already present when

one tries to set up a theory of products for scalar-valued
distributions. " There is the well-known paradox of
Schwartz" which shows that an associative product of
distributions cannot in general be defined. However, one
can set up an associative and commutative product for
the distributions arising in perturbation theory; these
products are local."The extension of this discussion to
field operators has not yet been done, but there is no
reason why it should not be possible. By contrast with
many people working in Geld theory, we regard this
problem as one of the central ones of the subject, be-
cause of its intimate connection with the renormaliza-
tion. In all the usual cases the corresponding Green's
functions become well-defined through renormalization'
and so implicitly define a product. The experimental
successes of quantum electrodynamics may be regarded
as a further justification of such a way of thinking. Thus,
our assumption that the fields generate at a point an
associative and commutative algebra of polynomials is
fully supported by the known renormalization pro-
cedure in the case of renormalizable interactions and is
not at all inconsistent with the basic properties of
fields which we have been using in earlier arguments.

On the basis we will deal first of all with a single
scalar particle bootstrapping itself; this case can be
treated in detail and all the essential ideas carried
through explicitly. Then in succeeding subsections we
treat more briefly several different scalar particles, par-
ticles of higher spin and derivative couplings, and finally
the possibility of building symmetries (SU3, etc.) into
the crossing matrix.

correspondingly we get the bootstrap system

gm2$= P g„P" ' (22)

'8 A. S. Wightman, Ann. inst. Henri Poincar6 1, 403 (2964).
'9 L. Schmartz, Compt. Rend. 239, 84'l (29S4).

A. A Single Scalar or Pseudoscalar Particle
Bootstrapying Itself

Ke already know' how to make sense outside per-
turbation theory of a Green's-function treatment of a
field equation with interaction term
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or, more simply and generally,

p(~) =0, (23)

where p is a polynomial whose coefficients are to be
interpreted as coupling constants.

As throughout the paper, we assume we possess an
adequate theory of products. Then the Geld generates
algebraically at each space tim-e point a commutative
ring 4.

Because no derivatives appear in the bootstrap
equation, it can be regarded as a relation on the ring +,
and so the ring %' of solutions will be a quotient ring
of ~, as discussed in reference. "

Ke now pass on to a discussion of the other physical
conditions which will aGect the structure of the ring.
Because of our special construction in which each point
can be considered separately, the Lorentz group will not
enter in, nor will causality, except insofar as it is con-
nected with the use of canonical commutation relations
(CCR). The CCR's themselves will not appear in the
discussion either, since the equation contains no deriva-
tives; however, they must be fixed a priori in accord-
ance with our earlier discussion in Sec. 3, since the
bootstrap is a Z3 —+ 0 limit of the quantized Geld equa-
tion. The asymptotic condition will alter the values of
the constants in the equation in a way we will demon-
strate in detail below, but will not have any other e8ect.
For the moment, then, we can ignore all these features;
it is not that they are irrelevant, but rather that we have
chosen a method which isolates aspects of the dynamical
equation unconnected with them.

Our arguments will thus have a satisfying generality,
but will certainly be incomplete; on the other hand, we
can derive from them enough information to give a
preliminary classihcation, as we shall see. Thus, the
structure of our ring is determined solely by the boot-
strap itself.

Denote then the complex field by C, and let 8 be an
indeterminate. Considering for definiteness equation
(21) the ring of solutions will be isomorphic to the
polynomial domain CE87 of all polynomials with co-
efBcients in C, in which polynomials diGering by diGer-
ences of which m'8 —g8' is a factor are to be identified.
In other words, %' is the quotient of CE87 with respect
to the ideal generated by the bootstrap:

CE87
lg ——

(8—g8')
(24)

where as usual in ideal theory" (Appendix 1), ( )
denotes the ideal generated by whatever appears be-
tween the brackets.

Now the polynomial 0—g8' is, for nonzero g, without
repeated factors. Hence the ideal (8—g8') is the inter-

"M. M. Broido, Cambridge University report, 1964 (un-
published).

4'B. L. van der Vfaerden, rtloderrb Algebra {Frederick Ungar
Publishing Company, New York, 1953), especially Chaps. 12-13,

section (cf. Theorem A9) of prime (Def. A4)—and not
merely primary, Def. AS—ideals.

Correspondingly, %' is isomorphic to the direct sum
of the three Gelds

CE87

(8) (Iaaf't'8)
(25)

4x= gsPi'+b, (26)

where the constant b and the renormalized coupling
constant g~ are chosen so that there is no vacuum
polarization:

(Oi 1tr(x) i 0)=0 (2&)

and in particular is semi-simple. This is just the "com-
pound" situation described in Appendix 2, and is of no
interest because within each of the three direct sum-
mands the quantized Geld reduces to a constant. We will

have to use the word "field" ambiguously in the mathe-
matical and physical senses. We adopt the convention
of always associating the physical use of the word with
a symbol or with such a word as "quantized" or
"operator. "

We conclude, then, that the bootstrap system (21)
cannot lead to anything of physical interest. This
argument can be extended to the more general poly-
nomial bootstrap (22) or (23) and indeed to other situa-
tions capable of description by commutative rings.
This is done in Appendix 3. In the ring structure we
have been dealing with, the result is the following:

Itesllt: Let P(f) =0 be a bootstrap in the quantized
field variable f, where p is a polynomial and the varia-
ble f takes values in some as yet unspecified ring
%'. Then if p has no repeated zeros, all solutions of the
bootstrap p(P) =0 will come from the superimposition
of trivial solutions f= const. However, if p has repeated
zeros, then p($)=0 will have other solutions, the
"peculiar" solutions (Appendix 2) in appropriate
rings %'.

More explicitly, the semi-simple case will be a direct
sum of n solutions of the form P(x) = f(x)I, where f(x)
is a distribution and I is the identity operator; there
can be no particle creation or annihilation.

We note that one of the main problems of this (and
other) discussions of quantum field theory is that no
suitable criteria are known for restricting the classes of
rings (or other categories, in the sense of homological
algebra) in which solutions should be sought. In fact
we consider the category to be one of the variables in the
problem since we are certainly not in a position to talk
about correctness classes, etc. We return to this
problem below.

The simplest case of a bootstrap of this type is that
for scalar or pseudoscalar mesons bootstrapping them-
selves through a square interaction and is of the form
/=A. We now discuss the effect of the asymptotic
condition. This causes one to modify the equation to
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and so that there is a pole of the right type at the physi-
cal mass:

d4x e*'&'(p' —m')(0
~
T(gg(x)gg(0)) ~0) ~

„=„=1,

where T denotes the time-ordered product. Here the
double root condition for (26) is

1—4gyb=0,

while (2'/) gives us

grllAI0)ll'+&=o

so that the double root occurs only if

1+4g"ll~.l»ll'=o,

which is impossible. One again concludes that the equa-
tion cannot have "peculiar" solutions of physical
interest.

One can apply similar arguments to the case of a
single higher interaction term, with the same result.
Tentatively, then, we draw the following conclusion:
a scalar or pseudoscalar meson bootstrapping itself
cannot be described by a Geld theory of the usual type
with a single nonderivative interaction. Though such a
system may perhaps be described approximately by,
say, an X/D calculation, one now knows that such a
calculation cannot be an approximation to a full field-
theoretic description.

In spite of the physically negative result, it may be
worth mentioning the problems associated with the
calculation and interpretation of the "peculiar" solu-
tions. In more usual situations one can most simply
consider function algebras (obtained for instance from
analogs of the Gelfand-Neumark theorem" ). Since
these are always semi-simple, they are useless here.
One would have to use non-normal operators, which of
course generate algebras without involution. Any de-
tailed work will then have to be done without the aid of
representation theorems. Since there is no physical
continuity because of special values of the coupling
constants, calculations would have to be done by
algebraic and not transcendental methods. This last
diKculty is likely to arise in any theory which aims to
determine the constants internally rather than feeding
them in from the outside, and so should not deter one.
It should be observed that the situation is not similar
to that of a linear eigenvalue problem, since there is no
"eigenfunction expansion" available.

On the credit side we see that we may have here a
6eld-theoretic way of obtaining bootstrap solutions for
special values of coupling constants. This has been
constantly advocated by Chew as the way the world
may work; we may have here a definite way of achieving
this possibility. We hope to return to this elsewhere.

E=)2m%,

X=X,~E.
(2g)

Even if we regard the variations in K and E as inde-
pendent, the last two equations are not independent.
% e then have to consider the ring obtained by elimina-
ting one of the variables, say m.

C[81r,8g1

(K)(1—XgXW')
(29)

which is obviously semisimple.
If E and E are varied together, it is convenient to go

over to the usual linear combinations

and the Lagrangian

EL2=EWE

giving

(3o)

We are now dealing with three quantities which are
independent over the real 6eld, so we can discuss the
ring

8[8,8Ir„81r,j
(A 1)(IY2)(r Xl A 1K2)(1 X2 7r)

(31)

where E is the real field.

B. Several Scalar Particles

Again we use the "glue is unimportant" idea; any
interaction Lagrangian with a genuine interaction must

give the same result, so we try the simplest possible.
An Z,=P, P,2 is trivial (mass terms only), so we con-

sider a Yukawa-type 3-6eld interaction. Ke nien-

tion brieH. y various cases:

(1) All particles have the sa,me quantum numbers.
Then, according to the previous section, one can in

principle use just one 6eld and the arguments of the
previous subsection apply.

(2) Consider a neutral ~ and a neutral Z interacting
through Zl =GvrE': we get the bootstraps

m=) jE'
E=XgxE,

and immediately K=X&X~', which is clearly uninter-
esting by the arguments of the previous subsection.

Now suppose K is charged, KgE, and that we have
the interaction

sr =~E;E.,
there will also be the usual self-mass term EE, so we get

m =XgKX,
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That this is the correct ring, and that it is semi-simple,
are nontrivial statements; they are justi6ed in Ap-
pendix 3.

which is trivial in spin space (though not yet necessarily
in the space of operators). However, it can now be
treated by the arguments of subsection B, and again the
result is negative.

The other natural Lagrangian is

but this is identically zero by Green s theorem, since
the current gyp' is conserved.

If the meson is a pseudoscalar, we may consider
2r= gPyqfp, giving

so that
(33)

C. Mesons and Fermions

As usual, we will consider Yukawa-type Lagrangians.
For a scalar meson, we have Zr=ygp with the

bootstraps /=X~, &=X'g giving for the spinor
components

Now we can ignore the part of the expressions a, b

which are not in the ideal of the total algebra generated

by C[Pj, since for those parts the Eqs. (35) vanish

identically. From (35) we have the relations

b(1—X'P') =0,
a(1—X'qP) =0.

(37)

If we had enough relations of this form relating to dif-

ferent variables a, b, say, c, d. . . we could immediately
infer that the common factor (1—X2qP) must vanish,
which would be enough to show that there were no
peculiar solutions. Even the relations 0/a/6/0 repre-
sent a strong plausibility argument for claiming that
necessarily (1—V$') =0 identically. In other words, if
we add the Matthews term @&4, there can be no solution
unless X'= p, and this peculiar solution is even more
pathological than usual, if it exists at all. This is an
excellent illustration of our extension of the "glue is
unimportant" principle of Sec. 4. This and subsection
78 are the examples of the way this principle works in
practice that we promised in that section.

So far we have failed to 6nd a set of bootstraps which
could be hoped to give a nontrivial result, even admit-
ting very general rings. However, when we come to
consider derivative couplings, the situation cannot be
handled by our methods. Consider, say, the partially
conserved axial-vector current (PCAC) derived from
the Lagrangian

which gives either /=0 or /=const: no solution. We
may also consider adding in the Matthews term p&4,

say, to the Lagrangian. This does not change the boot-
strap (32), but the bootstrap (33) now becomes

The coupled equations (32) and (34) can be handled as
follows: Write

a=4'7 0

Then the system (32), (34) becomes

a= Xbqb,

b=X~,
@=X'a+@/a,

so that

This equation in P will have double roots if X'=p. Then
we have

P(P9,'—1)'=0.

Passing to the quotient ring as usual, we see at once
that the factor p can be cancelled. (This is also an ex-
ample of theorem A6.) We get

(36)

The bootstraps are

and these do seem to be nontrivial, even if we can some-
how cancel factors.

This gives, we feel, excellent support to the result of
Huang and Low, who suggest'7 that only the PCAC
interaction can lead to anything. Ke will not here con-
sider further how to solve the resulting equations, since
they are outside the scope of the above discussion, but
will return to this topic in a later article.

D. Symmetries

Ke 6nally discuss whether it is possible to bootstrap
symmetries by our operator methods; much work has
been done on this in the XjD approach, ' and we may
regard our discussion as an attempt to go beyond the
two-particle unitarity and one-particle-exchange ap-
proximations made there. In the process of doing this
we will, of course, have to make certain a priori un-
justified assumptions concerning the nature of solutions
to our bootstrap equations; we will spell out these
assumptions in full whenever we make them, but will
not justify them here. Ke feel that our results are of
enough interest to warrant this. We hope to give such
justifications elsew'here.



BOUND STATES AND BOOTSTRAPS IN F IELD THEORY

Let us consider first a set of scalar neutral fields

Pi, . . ., P~, and let them interact with each other
through a Lagrangian

&= &o+A'~~id A,+~pi+ Q &m,'p;2Z, , (38)

~ = ~0+-'j r~afg'gqg'f;gf, (41)

where now A;, ~~ is antisymmetric in the pairs (i,j) and

where the summa, tion convention is being used, and Zo
is the kinetic energy part of Z. Here A;;~~ is a corn-
pletely symmetric tensor of rank 4. In the limit Z; —& 0
the equations of motion derived from (38) become

(39)

where 8;;k~=limz, . o A;,~~j8mPZ, is assumed to exist
a,nd be nonzero, as we discussed earlier, in Sec. 3, for a
composite. The problem we are now faced with is:
Under what conditions does (39) have a nontrivial solu-
tion? This problem is more dificult than the similar
ones met earlier in this section since we ca,nnot, in
genera. 1, obtain a polynomial equation involving only
one of the 6elds from (39); if we can, then we may de-
duce that there are only trivial solutions except when
there are repeated roots, in which case a peculia, r solu-
tion may occur. It has not been possible to obtain simple
conditions on 8;,~~ corresponding to the requirement of
obtaining a polynomial in a single field which ha, s a.

multiple root. We may attempt to argue in a less precise
fashion as follows. We suppose that the X equations
(39) will have only trivial solutions unless they are
linearly dependent, so at least one of the equations is
redundant. In this case we would require a linear rela-
tion between the n equations, so that there exists a set
of n real numbers X~ P ~ so that

[4' ~Kg~i4&4~4—~]=0 (40)

for any pj, , p~. This is evidently not possible, so we
conclude that, barring peculiar solutions, it is unlikely
that (38) allows a bootstrap. If we use the "glue is un-
important" argument we may conclude that it is un-
likely that a system of neutral scalar particles can boot-
strap itself, independent of any symmetry. We note that
this further condition on (39), that it have less than X
independent equations in order that a bootstrap be pos-
sible, is a very reasonable one; it allows for an infinite
number of values of the field at a point, and this is a
prerequisite for obtaining a particle-like structure.

We may immediately extend our argument to scalar
charged particles and particles with higher spin and find
similarly that no bootstrap is possible, unless, of course,
derivative couplings are admitted. If we do not allow
these —we would like the world to be as "smooth" or as
"renormalizable" as possibl"---then we have to turn to
fermions to get a possible bootstrap. Let us consider,
then, a set (q~ q~) of spin--', fields. The Lagrangian
for them will be similar to (38)

(k,l) and A;;&&*= A&&;;. The bootstrap equations arising
from (41) are

g'= g'~A i~atg ~g&,

pa= g.q A'. r ~pi.
(42)

X;0;= [(F V),, (qr 0)j+,
(45)

where X; is a suitable nonzero real constant for each ~.
We wish to reduce the number of independent equa-
tions arising from (45). To see how this may be achieved
we will derive some conditions from (45) and attempt to
make these conditions become identities. For this we
take any XXÃ Hermitian matrix M and construct
(gMq) =&~;;q;. We now specialize further, and choose
);=X, all i. This corresponds to taking the eBective com-
posite coupling constants to be equal. We then obtain
from (45) that

x(gMq) = [(gMr.q), (gr q)j —(gr Mr. q)
= [(qr Mq), (qr q) j+—(qr.Mr.g),

so

[(&[M,r.j g), (gr q)j =0. (46)

We see that there are as many equations in (46) as
there are independent E&(Ã Hermitian matrices, i.e.,
(1P—1) (where we have taken out a common modulus,
so chosen all to have determinant +1, say). We wish
that a number of the equations (46) are identities in q
a,nd g. Ke have not yet obtained the general condition
under which this is possible; but an evident possibility
is when the set {r }are the generators of a simple Lie
algebra, so

(47)

where C p~ is totally antisymrnetric in its indices. Sup-
pose that we take {F } to be the generators of the Lie
algebra, SU„; then if M is in the algebra it is a linear
combination of elements F~, and for each of these (47)

We may proceed as we did for (39), and attempt to re-
duce the 2X equations (42) by a condition of linear de-
pendence between them. In this case the impossibility
of the equation similar to (40) is not so immediate, since
the fields q; and g; are complex, and satisfy the condi-
tions arising from anticommutation:

(43)

It is condition (43) that prevents us from concluding
that the linear dependence of the Eqs. (42) is impossible.
We may still attempt to reduce the number of inde-
pendent equations in (42) as follows; since we are most
interested in symmetries and conjecture that the glue is
unimportant we will proceed from the interaction term
in the Lagrangian

2 (8 v)(P v)

where 1~&n&~$ and {I' } is a set of X)(1V matrices.
The bootstrap equa. tions are now
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glIIr 1 P lg2gdg ittt1 7

pe'2 =P2gzgig2$2,
(48)

where p~, p, 2 are nonzero constants. If we denote q~gi= u,
qmqm

——b, we have a=grab=gib/F2, since a and b com-
mute. Thus u=p2u', and we see easily that p, i=p, 2=1
and u2=u=b=b~. The dynamical information in Eq.
(48) is completely contained in these equalities, and
therefore (48) cannot give rise to bootstrapped particles.
Thus, it does not seem to be possible to bootstrap
SU2 by our methods. This corresponds to reality, in
that we should get SV3. We hope to discuss SU3 and
other Lie algebras elsewhere.

Note added in proof Since this p. aper went to press,
there has been great interest in the subject of boot-
strapped symmetries. VVe mention briefly the relation
of some of the prominent currents in this region to our
present work.

(a) Mass formulas and coupling constants. An ex-
tensive series of calculations has been carried out by
Chan and others [e.g. Chan Hong-Mo and C. Wilkin,
CERN report, 1965 (unpublished) and references
quoted there7 using the Zachariasen-Zemach bootstrap
mechanism [F.Zachariasen and C. Zemach, Phys. Rev.
128, 849 (1962)j, together with SU3, dominance of one-
particle exchange and various other assumptions. There
is reasonable qualitative agreement with experiment.
As these authors themselves admit, their work can be
criticized for lack of generality (see the Pote added in
proof at the end of Sec. 4); it is diflicult to see to what
extent their conclusions are independent of their special
assumptions.

(b) Weak and electromagnetic effects. Dashen and
Frautschi [e.g. Phys. Rev. 143, 1171 (1966)j have
written down a kind of generalized set of coupled dis-

is true for all q, g':

[(q[r,,P g q), (qI' q)) = —C e [(qp q), (qp-q) j+=—o

because of the antisymmetry of C p~ in n and y. Since
there are (e' —1) independent Hermitian generators of
SU„ then if X~&e the equations (46) are identities for
any M; if X)e then there are (1V'—n') equations
which are not necessarily identities following from the
argument related to (47); while the remaining (n' —1)
equations of (46) will be identities in q and q. The best
chance of having a bootstrap will be when $ ~& n; we do
not expect a bootstrap at all if the number of nontrivial
equations in (46) is larger or equal to X, i.e., if
E'—n'&~X. Thus, a bootstrap will have a chance of
occurring if X(X—1)(ns, and so only if X=n He.nce
we can only bootstrap the fundamental representation
of any SU„group (since we cannot have X&n).

It is still possible that particular values of n may be
rejected because all fields except one can be eliminated
and the resulting polynomial in this field is trivial. As an
example of this, let us look at SU2 with I"0=1 I' =0';.
Then (45) becomes, after suitable algebraic reductions:

persion relations for amplitudes (in the various channels)
of the type y+u ~ b; these will be linear if one works
to first order. They discuss general properties of such
sets of equations. This discussion can be regarded as an
5-matrix-theory equivalent of part of our work in the
present paper, inasmuch as it is substantially model-
independent. However the work in Sec. 5 of the present
paper suggests that the photon cannot (a,t least in field

theory) be included in such a bootstrap discussion. The
discussion of Dashen and Frautschi appears to contain
a determination of the subtraction constant in the
nucleon electromagnetic form factor, i.e. a bootstrap
mechanism for the photon. These authors have, in all
fairness, already considered a difFiculty of this type
arising in S-matrix theory [S. Mandelstam, Nuovo
Cimento 30, 1113 (1963); 30, 1127 (1963)j, and have
advanced counter-arguments. However our objection is
more serious. Until S-matrix theory is capable of ac-
counting for quantum electrodynamics with a mecha-
nism containing a composite photon (say a bootstrap)
it will be dificult to understand S-matrix treatments
of electromagnetic corrections to strong-interaction
processes bused on bootstrap calculations.

A number of authors have also considered certain
weak decays of strongly-interacting particles by similar
methods: we cannot go into details here.

(c) Dynamical information on strong interactions.
The present authors have performed a preliminary
analysis of the bootstrap equations (39) and (45) for
the SU3 case, in a quark model. Without further as-
sumptions we have been able to show that commutation
relations are actually inconsistent with SU3', an6com;
nsutution relations are not only consistent with SU~,
but allow a partial dynamical explanation of octet and
decouplet enhancement. Details will appear elsewhere.

8. CONCLUSION

In this paper we have shown how bound states and
composite particles can be described in a Lagrangian
field theory without reference to specific models. In
particular, we have shown how field equations arise
which describe systems of particles which are all com-
posites of each other. We have called these bootstraps,
and have justified the description by showing that, in
suitable approximations they give rise to the usual types
of bootstrap system. Until this point, the discussion is
(we claim) conceptually complete and as rigorous as
the present condition of Lagrangian Geld theory allows.

It follows unambiguously from these arguments that
the photon is an elementary particle and cannot take
part in bootstrapped symmetry schemes.

Ke have then gone on to classify the field-theoretic
bootstraps which we have obtained into those a priori
capable and those a priori incapable of determining the
dynamics of a particle-like system. The mathematical
treatment of individual equations is here quite rigorous
and is complete modulo the solution of the product
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problem. However, in order to assert that there can be
no bootstrap generating the types of particle we have
discussed, we have been forced to appeal to an extension
of the Haag-Zimmermann "the glue in unimportant"
principle. This principle is well-established provided the
equations have particle-like solutions; our heuristic
extension is to the case when they lack such solutions.
If this extension can be justified, we have the following
statement:

(1) In our description of composite particles, there
cannot be unapproximated bootstrap systems describ-
ing the following sets of particles: one or several scalar
or pseudoscalar mesons, charged or neutral; neutral
scalar mesons coupled to fermions; "bootstrapped sym-
metries" of a Lie algebra type for integer spin particles.

%e cannot make this statement about pseudoscalar
mesons coupled to fermions (PCAC model, necessarily
with derivative coupling).

Under certain added assumptions, we have shown
that it may be possible to bootstrap a set of n spin--',

particles interacting through an SU„-invariant La-
grangian, for n& 2. It does not appear possible to obtain
5U2 or any m-dimensional representation of an SU'„
with m&n.

We cannot prove that ours is the only Possible 6eld-
theoretic method of obtaining the usual bootstraps, but
we regard it as likely. If we are correct in this, the fol-
lowing further statement will doubtless hold:

(2) In the cases where statement 1 holds, any physi-
cally meaningful results which apparently arise from
standard bootstrap techniques in fact merely reQect
the inadequacy of the approximations which are used.

Our work appears to bring the following problems into
the limelight in this field:

(1) Devise methods of dealing with bootstraps in-
volving derivative couplings.

(2) Continue the preceding discussion of symmetries.
(3) Discuss symmetry breaking of possible symmetric

bootstraps due to small nonzero values of wave-function
renormalization constants (especially for SUe).
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APPENDIX 1:IDEALS IN COMMUTATIVE RINGS

References are to van der AVaerden's 3fodern Algebra
(Frederick Ungar Publishing Company, New York,
1953).

Definition A1. Let R be a ring, I an ideal of R. I is said
to be maximal if it is not properly contained in any
other ideal of R.

Theorem AZ. If E. is a ring with identity and I a maxima, l
ideal of R, then the residue class ring R/I is a field
(Sec. 17).

For the remainder of this appendix, let E. denote a
commutative ring. One can then go some way towards
classifying the ideals according to how "near" the resi-
due class rings are to being fields:

Definition A3. The ring R is said to be a domain oj
integrity if it has no divisors of zero.

Definition A4. The ideal I of R is prime if the residue
class ring R/I is a domain of integrity.

Definition A5. The ideal I of R is primary if in the resi-
due class ring R/I, every divisor of zero is nilpotent.

Theorem A6. Every primary ideal I is contained in some
prime ideal I', which can be taken as the ideal of those
elements of R, each of which has some power in I (Sec.
86, Prop. 1).I is said to belong to I'.

Definition A7. The divisor chain condition is said to hold
in 8 if for every chain of ideals I&, I2 ~ ~ for which I„is
properly contained in I„+& for all n, the chain comes to
an end after a finite number of terms.

Theorem A8. The divisor chain condition holds in every
field, in the ring of integers, in every finite ring; if it is
valid in R, it is valid in every residue class ring R/I;
if it is valid in the ring R with identity, it is valid in the
polynomial domain RLOj (Sec. 84).

Theorem AP. If the divisor chain condition holds in R,
every ideal can be represented as the intersection of a
finite number of primary idea, ls (Sec. 87).

Definition A 10.An ideal which belongs to only one prime
ideal (cf. Thm. A6) is said to be single primed-

Theorem All. If the divisor chain condition holds in 8,
every single-primed ideal is primary (Sec. 90).

APPENDIX 2: THE USE OF RINGS IN
FIELD THEORY

The purpose of this appendix is to give an informal
account of the types of ring structure which are relevant
to quantum field theory and in particular to the special
type of problem discussed in this paper. Although one of
us has done something of the sort elsewhere in connec-
tion with the use of Banach algebras~ that discussion
was not wide or detailed enough for the present context.
%e will by no means attempt a complete survey, will
deal with algebraic matters only (no topology), will
not be in any way rigorous, allowing oursevles some
vagueness for the sake of more intuitive clarity. In short,
we simply attempt to supply some general reasons why
certain types of ring structure might be thought to lend
themselves to use in certain problems of field theory.
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Semi-simyle Rings

A simple ring is one without proper ideals. A semi-
simp/e ring is essentially one which is the direct sum of
simple rings. The usual rings of functions are semi-

simple; so are the types of operator algebra normally
used in 6eld theory; see Ref. 42. This is why when in the
paper we need to discuss more general situations, we
find ourselves using rather unusual constructions.

The radical" of a ring is the intersection of all its
maximal (say left) ideals. lf R is a ring and I is its radi-
cal, which is always a two-sided ideal, then the residue
class ring is semisimple. Thus if we have a local 6eld
theory described by a ring E. with radical I, then any
concrete realization of it, i.e., any representation of it
as an operator algebra (in Hilbert space), is always a
representation of R/I and is semisimple. We might just
as well have used R/I in the fzrst place, and this is why
C* algebras (which are always semisimple) are used in

local Geld theory-.

In the present paper the following problem frequently
arises: Vnder what circumstances is it permissible to
cancel a factor say from both sides of an equation on a
ring

and to assert that g= p, P The solution &=0 is usually of
no interest.

Even if the ring is not semisimple we may have the
following situation: it is the direct sum of two ideals I~
and I2 with 4t in I~ and q —p, in I~, such that I~I2=0.
In such case we cannot cancel a factor (each factor is a
divisor of zero). This situation is normally of no inter-
est, since the problem has been split up into two sub-
problems (about the ideals Iz a.nd Iz) zzbozzl zzzIzzclz the
equation gizzes zzo informatiozz

More generally, if the ring describing the solutions of
the equation is a direct sum, we shall refer to the
problem as compound. Such a problem always splits up
into a collection of similar subproblems, one for each
direct summand.

As far as quantum 6eld theory is concerned, the point
is clearest when (as always in this paper) there is a
6nite number of direct summands. This corresponds
essentially to a finite number of degrees of freedom,
whereas for particle-like solutions we require an in6nite
number of degrees of freedom. We require also that the
physical quantities associated with these degrees of
freedom be determined by the equation itself; in the
mutually annihilating case we mentioned above, this
does not happen, i.e., the equation contains insu6icient
physical information. We continue this discussion after
some remarks about the other cases.

4' Essentially because a11 irreducible operator a1gebras are
semisimple: M. A. Xeumark, Norm~S R&sgs (English translation:
P. Noordhoff, Ltd. , Groningen, The Netherlands, 1959), Sec. 7.5,

4' M. A. Neumark, Ref. 42.

Consider now another situation: the ring is a domain

of integrity (Defn. A3). In this case we may certainly
cancel factors: p(zz —zz)=0 does imply either @=0 or
p= p, and so if for instance we have an equation in one
unknown:

which (for example) factorizes in the form

we can conhdently assert that Q=bl, for some k. This is
also of no interest to us, at least when the constants bI,

are multiples of the identity, for the cancellation sim-
plifies matters too much. This situation (direct de-
composition possible into trivial factors) we shall refer
to as trivial.

In Sec. 7 of the present paper we are essentially
trying to classify the bootstrap equations which have
arisen into two classes, those which are obviously
trivial in this sense, and the others, which we shall call
peculizzr We give m. ore detailed discussion of the peculiar
cases in the text; they are the ones which have to be
considered most carefully, whose special features give
rise to physically interesting possibilities such as re-
strictions on the coupling constants.

We may sum the possibilities up by a little table:

Description
of situation Type of ring Interpretation

Compound Direct sum Consider each direct
summand separately
as below

Trivial Domain of integrity We can cancel common
factors

Peculiar Not a domain of Must consider for each
integrity, but also case separately whether
not a direct sum cancellation is possible.

We can now discuss in more detail how we break down
the situations which we described above as compound.
Suppose the ring R is the direct sum of mutually annihil-
ating ideals I„, where n runs over some index set. As
usual, we consider an equation of the form

but we do not suppose that p and q are in mutually
annihilating ideals.

We have to solve the problem separately for each I„,
and each I„(ifit is not itself a direct sum) can be treated
as trivial or peculiar as briefiy mentioned above. In
particular, if each I„ is simple, 8 is semisimple; if in
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addition R is commutative, and so (as is the case in all
the usual situations of analysis) the I„are fields with
unique factorization, then the whole solution in R is
built up from the trivial solutions in each of the I by a
kind of orthogonal superposition. Consider for example
a problem about a self-adjoint operator in Hilbert
space satisfying an equation p(A)=0, where p is a
polynomial. Solutions will be those operators A whose
spectra consists only of points X satisfying p(X) =0, and
so may be regarded as superpositions of one-dimensional
projections with those weights.

If now the ring R is semi-simple but not commutative,
the simple rings I„will in general be comp/etc matrix
rings over some 6eld, i.e., essentially, rings of all linear
operators on some space. The subproblems may then be
very difficult to deal with (a problem of this kind is dis-
cussed in Ref. 30), but one of the main purposes of the
way the bootstrap problems are formulated in this
paper is to avoid having to consider this kind of non-
commutative situation.

APPENDIX 3: SOME IDEAL-THEORETIC
ARGUMENTS FROM THE TEXT

We develop in detail the ideal-theoretic argument by
which one can analyze a bootstrap of the form (22) or
(23) taking values in a commutative ring. We rely
heavily on the terminology and results of the ideal
theory of commutative rings as given in Ref. 41 say,
some of which we summarized in Appendix 1; and we
also refer by implication to the general discussion of
our use of rings given in Appendix 2.

If the polynomial P in the domain C[85 is without re-
peated roots, then the ring C[85/(p) is the direct sum ofI copies of C, where n is the degree of p. The proof is
trivial.

Equally important for us, in view of the classi6cation
remarks in Appendix 2, is the converse: if p has a re-
peated root, then C[8]/(P) is rjcwr semi-simple.

For consider the repeated factor 8' in P. This situa-
tion is easily shown to have all features of the most
general one, provided that the base Geld is algebraically
closed or at least has a unique factorization theorem.
It is possible~ to consider other situations, but they are
rather pathological and we will not go here into the
complications of interpreting them.

Now the ideal (8') of C[85 is not itself prime, but in
the description given by Theorem A6 and the remark
after it, it is single-primed (Defn. A10). Now the divisor
chain condition (Defn. A7) holds in C[85 (Theorem AS),
and so by Theorem A11 the single-primed ideal (8') is
also primary, so that every divisor of zero in C[85/(8')
is nilpotent.

In order to show that C[85/(8') is not semi-simple, it
then suffices to show that it possesses a divisor of zero,

~ M. M. Broido, Churchill dissertation, 1965 (unpublished),
especially Chap. 2.

for the radical (Appendix 2) of a ring can be defined as
the ideal generated by the nilpotent elements. " In the
particular situation we are dealing with, this is trivial,
for the image of in the natural homorphism

C[85 ~ C[85/(8')

is already nilpotent; in other situations this may not be
so easy.

All this leads to the result written out explicitly in the
text. We have carefully couched this argument in the
most general possible terms in order to emphasize that
it does not depend in detail on the choice of the base
6eld nor on the particular nonprime single-primed pri-
mary ideal causing the trouble. Roughly speaking, in
order to establish a result of this type in a general situa-
tion the following steps must be performed:

(1) Established a sufncient condition for semi-
simplicity formulated in terms of the equation.

(2) Show that the condition is also necessary by
demonstrating that if it is violated, nilpotent elements
arise.

We show above how, in many cases of interest, this
last can be split into 3 substages: establishment of a
divisor chain condition; use of primary ideals, etc. ;
proof that divisors of zero arise in the quotient ring.
The first of these is usually trivial, and the third will
often follow directly from the equation (unique fac-
torization), so one's ideal-theoretic arguments can be
directed exclusively to the second substage.

In Sec. 68 we also use polynomial domains in several
variables. We add the following remarks:

The prime ideals are not necessarily maximal, so that
the quotient rings are not fields. However, when each
irreducible factor is a first-degree polynomial in one
variable [e.g., (29), we immediately have a direct sum

C[8x] C[8g]
~+

(K) (1—Xg) sK')

and we can use the previous arguments. Again in (31)
the irreducible factors are not all first degree, but each of
them obviously does generate a prime ideal. Then each
element of (31) is uniquely determined by the remain-
ders when an arbitrary representative from R[8,8&„8&,]
is divided by each of the three factors in the denomina-
tor of (31), respectively. Since the converse is trivial,
this establishes the assertion of the text that (31) is a
direct sum of the three quotient domains.

We still have to show that (31) is the correct ring for
the problem which it describes. That we may use the
real 6eld R follows from the reality of the coupling con-
stants X»', ) ~'. That we must use it follows from the
meaninglessness of claiming that, over the complex
Geld, two indeterminates are independent 'except for
being complex conjugates. ' Finally, we consider the fac-
tor (1—Xms) in (31); since it appears twice in the field
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equations (30), why does it not appear twice in (31)—
in which case (31) would not be semi-simpleP The reason
is that we require the ideal representing all the solutions
of all Eqs. (30) simultaneously; this is just the de-
nominator of (31). To include the factor (1—4'm. )
twice would exclude certain such solutions. t Notice
that if one equation contained a repeated factor, we

would have to include it in the analog of (31), unless we

could find other arguments why it should be excluded. ]
The general philosophy behind this method of dealing

with these equations will be discussed more fully in a
forthcoming publication. 4'

'6 M. M. Broido, Courant Institute report (to be published).
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A set of coupled linear integral equations is proposed as a means of generating Lorentz-invariant multi-
particle scattering amplitudes which satisfy truncated unitarity relations. Steady-state nonrelativistic
scattering theory, in particular the version based on the generalized Faddeev equations, is used as a guide
in the formulation and physical interpretation of the equations. The input to the integral equations is a set
of scattering amplitudes for subsystems of particles. Creation and annihilation processes are described by
the interchange of terminal-state scattering amplitudes with vertex functions, in complete formal analogy
with the nonrelativistic treatment of break-up and capture events. A wave function is introduced, a con-
served current is defined, and a perturbation theory for discrete states is set up. Formulas for transition
rates, for reaction and decay processes, are derived which agree with the familiar results of time-dependent
Hamiltonian theory. The possibility that self-consistency criteria might provide a basis for the determination
of the input amplitudes is noted.

1. INTRODUCTION

FORMULATION of steady-state scattering
theory for nonrelativistic multiparticle systems

in terms of integral equations of the Faddeev type' has
been described recently, ' and some of the practical
advantages of such a formulation have been discussed.
In particular, it was pointed out that since the input
to the integral equations does not involve the potentials
directly, but rather scattering amplitudes for sub-
systems of particles, equations of this type may be
useful even when the potential picture breaks down.
Furthermore, there is the possibility of determining the
input amplitudes experimentally.

A relativistic extension of the cV-body integral
equations is proposed here. ' We have no dynamical
principle, equivalent to the Schrodinger equation, from
which such an equation can be derived. However, the
particular choice of the structure of the equations may
be strongly restricted by requiring the equations to
have certain reasonable properties. We erst note that
the structure of the nonrelativistic equations is such

*Supported in part by the National Science Foundation.'L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
/English transl. : Soviet Phys. —JETP 12, 1014 (1961)$.

~ L. Rosenberg, Phys. Rev. 140, B217 (1965).
~Different types of relativistic extensions of the three-body

Faddeev equations have been reported by V. A. Alessandrini and
R. L. Omnes, Phys. Rev. 139, 8167 (1965), and by C. Lovelace,
D. Z. Freedman, and J. M. Namyslowski (unpublished).

that the output of the integral equations will satisfy
3'-body unitarity provided that the input amplitudes
satisfy the appropriate subsystem unitarity relations.
The relativistic equations have been set up in a similar
form so that, as shown in Sec. 3, this unitarity property
has been preserved. Here the phrase "E-body unitarity"
implies a unitarity relation in which intermediate states
containing more than S particles are ignored. Of course
such a relation can not be correct in the relativistic
case since at sufFiciently high energies the number of
particles in intermediate states may be arbitrarily
large. (It is also recognized that crossing symmetry
will be violated. ) Nevertheless, it is possible to conceive
of a successive approximation procedure in which E is
increased from one stage to the next. The assumption
that such a procedure has reasonable convergence
properties is implicit in the present approach. (In the
following we shall be concerned only with S 6nite, and
the term "unitarity" is always to be interpreted in the
restricted sense discussed above. )

We take the Green's function for the noninteracting
system to be a product of Feynman propagators. The
I.orentz invariance of the integral equations is then
assured if the input amplitudes are chosen to be in-
variant. The choice of Green's function must be con-
sistent with unitarity but a degree of arbitrariness still
remains. Choices diEerent from the one made here have
been discussed previously' for '7=3.


