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V. CONCLUSIONS
In summary, we have found the following:

(1) Using the two-body decay modes of the 2+ octet
and singlet one cannot determine whether they belong
in a 189 or 405 representation of SU(6).

(2) Ordering states by their #) eliminates the 189
because it gives the wrong order for the K** and 4,
and has a combination of octet and singlet which dis-
agrees with experiment.

(3) Using #, and invoking an interaction which
moves the 27 representation high, allows the 2+ mesons
to be accommodated in the 405. The ratio of octet to
singlet for the f* and f° is in good agreement with
experiment.

(4) The Schwinger formula should apply to any ¢g
system with a relative orbital angular momentum?*
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and also to the 189 representation model. It should not
apply to the 405 representation model, but Eq. (8)
should be used instead. The present experimental data
on the masses of the 2+ mesons seem to favor Eq. (8)
rather than the Schwinger formula.

(5) From the systematics of the meson and baryon
masses it seems that several interesting features of the
quark-quark and quark-antiquark interactions emerge.
Their nature may be further tested in the classification
of higher baryon and meson resonances.
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The exact solution of the single-Yukawa-meson-exchange N/D equations is obtained in the zero-meson-
mass (Coulomb) limit. The solution sums an infinite series of infrared-divergent ladder-graph fragments into
finite, unitary partial-wave amplitudes. As with the Schrédinger equation for the hydrogen atom, one finds
an infinite number of bound states (zeros of the D function) with an accumulation point at threshold. These
bound-state poles of the scattering amplitude arise from the long-range force in much the same way as
dynamical bound states arise generally in dispersion theory, thus allowing a discussion of the long-range
force rather naturally in the usual dispersion-theoretic terms. The bound-state poles are neither so deeply
bound nor so dense as those of the hydrogen atom, thus providing some understanding of the role of the
one-photon-exchange force relative to the (long-range) multiple-photon-exchange forces. The possibilities
for extending the technique to the relativistic one-photon case and the question of electromagnetic correc-
tions to the strong interactions are briefly discussed. Finally, some possible approaches to including higher

order photon exchanges are considered.

I. INTRODUCTION

CCORDING to Chew,! there are several funda-

mental reasons why one should not expect to be
able to formulate a self-consistent S-matrix theory
for electrodynamics in which, for example, it would be
possible to “bootstrap” the photon. On the other hand,
there is the lesser goal of calculating electrodynamics
and electrodynamic corrections to the strong inter-
actions by using dispersion techniques that do not

* Work supported in part by the U. S. Atomic Energy Com-
mission and in part by the Air Force Office of Scientific Research,
Grant No. AF-AFOSR-232-63.

1 G. F. Chew, University of California Radiation Laboratory
Report No. UCRL-10845, 1963 (unpublished).

employ self-consistency as a calculational device, e.g.,
the N/D equations. Since the simplest electrodynamic
problem is nonrelativistic Coulomb scattering, we shall
concentrate our attention on that.

Several dispersive investigations of Coulomb scat-
tering in the presence of the strong interactions have
been carried out.~* However, these studies have all
treated the Coulomb part, philosophically, as ‘“known”’.
To date, the pure Coulomb problem has been investi-

2R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, B1190
(1964).

3H. Cornille and A. Martin, Nuovo Cimento 26, 298 (1962).
1J. Rix, thesis, Harvard University, 1965 (unpublished).
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gated dispersively only in the context of its Regge
behavior.5:¢

One overriding difficulty in the study of Coulomb
scattering is the occurrence of long-range divergences.
Coulomb forces are sufficiently long range that one
never has free-wave initial or final states, in contradic-
tion to the basic assumptions of conventional scat-
tering theory. If one considers electrodynamics as the
zero-mass limit of a massive-vector-boson theory, one
finds that, as the boson mass goes to zero, the phase
shift and scattering amplitude go as’

Si(s)~— o 4ai(s), (a)
A(s,0)~e 24 (s,0), 670, (b)

where ¢i(s) and A.(s,0) are the Coulomb phase shift
and scattering amplitude, respectively, as calculated
from the Schrodinger equation. We say that there
appears an infinite phase common to every partial
wave which fails to contribute to the differential cross
section. This fact suggests two approaches to the
problem of calculating Coulomb scattering by analyti-
city and unitarity, both of which will be discussed in
this article.

(1) Do a unitary calculation using massive vector
mesons (N/D etc.), then take the massless limit of
the solution, being careful to separate off the infinite
phase correctly. This will be the type of technique
employed in Sec. II where we will develop an exact
solution for the one-vector-meson-exchange N/D
equations in the nonrelativistic and zero-meson-mass
limit. The relativistic N/D solution will be discussed
at the end of Sec. IV.

(2) Study the analyticity and unitarity properties of
o1 and 4. and ask whether they can be calculated
directly from these principles, independently of any
photon-mass limiting process. This approach will be
discussed in Sec. VI. In that relations similar to (a)
and (b) hold for quantum electrodynamics® (including
bremstrahlung), these two approaches can be thought
of as probably germane to any future dispersion
theory of electrodynamics.

In detail then, in Sec. IT we will write down the N/D
equations for one-vector-meson exchange in the non-
relativistic limit, the long-range aspects of this approxi-
mation being the same as in the relativistic case. In the
(Coulomb) limit of zero meson mass, a finite solution
to these non-Fredholm integral equations can be found
explicitly even though every iteration of the equations is
long-range divergent. The solution sums an infinite
series of long-range-divergent contributions into finite,
unitary partial-wave amplitudes. Since there is no
perturbation expansion of the solution in powers of

®Yu. M. Malyuta, Zh. Eksperim. i Teor. Fiz. 45, 1167 (1963)
[English transl.: Soviet Phys.—JETP 18, 804 (1964)].

s V. Singh, Phys. Rev. 127, 632 (1962).

"R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).

8D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13,
379 (1961).
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the fine-structure constant «, it is not surprising that
the resulting amplitude (whose properties are discussed
in Sec. IV) is not regular at zero coupling in the com-
plex coupling plane. As with the Schrédinger equation
for the hydrogen atom, we find an infinite number of
bound states with an accumulation point at threshold.
This fact allows insight into the dispersive connection
between the long-range force and the hydrogen-like
energy levels. One sees that the poles arise as zeros of
the D function in an attempt to make a(s)D(s), the
product of D with the (singular) input discontinuity
on the left, integrable at threshold. Alternatively, we
can say that the poles arise as an attempt by the N/D
equations to subtract away some of the pathology of
the photon exchange input near threshold, i.e., just
the ordinary dispersive mechanism for the generation
of bound-state poles.® The bound states are not so
deeply bound as those of the Schridinger equation,
the one-photon exchange accounting for only 19, of
the total binding. The remaining binding comes from
the equally long-range multiple-photon exchanges. In
addition, the density of poles near threshold is lower
than in the hydrogen atom so that multiple-photon
exchange is responsible for the binding of further poles
as well. In particular, it is responsible for lifting the
degeneracy of levels associated with different orbital
angular momenta. In Sec. V and Sec. VI, several
possible approaches to including the higher order photon
exchanges are briefly discussed. In Sec. VI, rather
peculiar analyticity and unitarity relations for the
Coulomb case are obtained. It is noted that analyticity
and unitarity do not allow calculation of the Coulomb
scattering amplitude in any simple way.

II. THE NONRELATIVISTIC D-FUNCTION
EQUATION

The nonrelativistic partial-wave NV and D equations
are!®
0 ds" Bu(s")Du(s")
Nils)= [ ==, M
o T S’
= ds' (v/s)Ni(s')

s'—s

Dy(s)=1— (2)

0o ™

The function B; is the imaginary part of the Born

series expansion of the scattering amplitude, A4(s)

= Ny(s)/D(s), for s<0. In the approximation where 8;

is the imaginary part of the Born term for an attractive
Yukawa potential of range A%, one obtains

amm A?

31“)(5)=—‘-P1<1+—

2s 2s

S. C. Frautschi, Regge Poles and S-Matrix Theory (W. A.

Benjamin, Inc., New York, 1963).

10 We use natural units, #=c=1, and define s in terms of the
nonrelativistic energy; s=2mkE. Also a=1/137.

)o(—s—m. 3)
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By substituting (1) into (2) and doing an internal
integration, the following integral equation for D(s)
is obtained:

Dy(s")
Di(s)=1+1a SR A —
© m/_ ¢ V(=)=

XP(H—%) . @

—\2/4 dsl

When N — 0, the Yukawa goes over to a Coulomb
potential and Eq. (4) contains no explicit divergences:

0 ds’ Dy(s")
D(s)= 1+§am/ —_—— (5)
o " A (=8)+V (=)

This, then, is the one-photon-exchange D equation. It
is, of course, an assumption that the N — 0 limit in
the integral equation (as above) will yield the same
result as first solving (4) then taking the limit of the
solution.

If a solution to (5) exists, what properties do we
expect it to have? In the first place, we note that (5)
predicts the same D function for all values of /. There-
fore the phase shift derived from (5) will be l-independ-
ent. That is, the one-photon exchange is not adequate
to lift the degeneracy associated with different orbital
quantum numbers. To split this degeneracy must be
the task of the multiple-photon exchanges. Since our
solutions will be the same in every partial wave, the
sum over partial waves cannot sum to the Coulomb
amplitude 4. derived from the Schrédinger equation.
Next, we note that the iterative solution of (5) in
powers of a diverges term by term. Evidently, the
solution cannot be a function of « regular at a=0.
Furthermore, the D function cannot behave like the
inhomogeneous term (one) near s=0, otherwise the
integral in (5) would fail to converge at the upper
limit of integration. We will discover, in fact, that the D
function oscillates very rapidly near s=0 so as to
average out the singular effect of the kernel. The result-
ing zeros of the oscillating D function correspond to an
infinite number of bound states (the positronium poles).

We note that a formal attempt to derive an equation
for the N function produces an integral equation with a
kernel that diverges in the A — 0 limit. It can be shown,
however, that the necessary interchange of the order of
integration is invalid because of a nonuniformity of
convergence caused by the rapid oscillations of the
solutions. On the other hand, N can be obtained from D
by using (1).

Our method of solution employs techniques developed
by Halpern!! for the study of “nonrenormalizible” field
theory problems where

Bi(s) S%w Tsm8(—s), m>0.

I M. B. Halpern, Phys. Rev. 140, B1570 (1965); also, J. Math.
Phys. 7, 1226 (1966).
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These techniques are also valid for m<0, Eq. (5) cor-
responding to m=—1. For greater detail in what
follows, the reader is referred to Ref. 11.

III. SOLUTION OF THE D EQUATION
We introduce into (5) the following substitutions.
(=) 2=ety (=5 ) V2=er; ¢(E)=Du(s). (6)
Then (5) becomes
B )
HO=1—an /_w dn%- ©

The factor e prevents (7) from becoming algebraic in
Fourier transform space; instead one obtains a finite-
difference equation:

¢ (w) = 8(w)+amri cschr(w—ie)dp(w+1), (8)
where € is an infinitesimal positive number and

0

3
—eiteg(s). ©)

— 2T

b(w)=

In order that the solution of (8), when transformed,
satisfy (7), it is necessary that ¢(w) be regular in the
“period strip” 0<Imw<1. The method of solution
will guarantee this condition.

First, let us consider the homogeneous counterpart
of (8):

ou(w)=ammri cschr(w—1i€)pu(wt1i). (10)
We can guess a solution of the form
$11()=exp{F(@)} , (an
where F(w) satisfies
F(w+1i)— F(w)=—In[armi cschr(w—ie)]. (12)

Equation (12) can be solved immediately by Fourier
transform.

% l])f eA-i.cw ©
Flw)= / — / dw' ez’
J_2nl1—e* ) _

XIn[ammi cschr(w’—i€)].

(13)

The factor (1—e*)~! guarantees that ¢ will be regular
in the period strip. The integrations of (13) can be done
exactly. For real w,

F(w)=—3%ime(w) (@?+3)+ (i/21) e(w)Lis[ exp(— 27| w])]

—iw In[1—exp(—27|w|) ]+ iw In2ram+nw, (14)
where
elw=+1 >0
=—1 w<0

zdx
Liy(z)=— / —In(1—x) (dilogarithm).
0

X
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Since Lis(1)=4%r2 then F(0)=0 and ¢5(0)=1. Now,
returning to the inhomogeneous equation, we assume a
solution of the form

¢(@)=Gw)on(w). (15)
The “Green’s function,” G(w), satisfies
G(w)—Gwt+1i)=0(w). (16)

The solutions to (16) can be obtained exactly and
typified by their behavior for large and small w.

G (w) =11 cschr(w+ie)et™;

Gp(w)=3%i cothr(w+ie). (17)

Since the D function must be real for s<0, its trans-
form ¢(w) must obey the following condition:

¢(w)=¢*(—w*). (18)

Therefore we must use G in (15) to guarantee condi-
tion (18). The final exact expression for D is then

Dl(s)=%i/ dwpp(w) cschr(w-+ie)

Xexp[—iwln(—s)2—7w]. (19)

Equation (19) is not the only solution to (5). Instead
of using ¢y as given in (11) and (14) we could have
multiplied it by any function, a(w), regular in the period
strip and on its boundaries with the properties

1) a(w)=alwt1),
2) alw)=a*(—u*),
(3) a(0)s=0.

Then the resulting product a¢y would also satisfy (10)
(and be analytic in the period strip). Examples of a(w)
which satisfy the conditions are

@n(w)=cosh(2rmnw) (n=integer).

However, it can be shown that the solution (19), ob-
tained by exponentiation and direct Fourier transform,
is distinguished by being the A — 0 limit of the sum
of the Neumann-Liouville series solution of (4). There-
fore we conclude that it is the desired solution of (5)
and we will now study several of its properties.

IV. PROPERTIES OF THE SOLUTION

First we note that D is finite but, according to (14)
and (19), it is evidently a function of In[ma/s/(—s)].
Therefore (19) cannot have a convergent series solution
in powers of @ about the point @=0. One concludes then
that (4) has a branch point in the complex  plane whose
position depends on X and which moves to a=0 when
A— 0. The particular form of the branch point at
zero coupling will be exhibited below. [See Eq. (37)].
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Behavior Immediately below Threshold

For very small negative s (0>s>>—a’n?), the inte-
grand of (19) develops saddle points at

1 2mwa )
wiE:t— ln( >+l .
™ \W(=s)
The application of the saddlepoint method to (19) gives
\V(=2s) 1 2mmwa \ ST
Di(s) ~ — sin[— 1n"’< )———:l . (20)
80— mra \V(=s)/ 6

The zeros of (20) correspond to poles of the scattering
amplitude. They are infinite in number and, near
threshold, appear at

$u=xt— (2rma)? exp[—2my/(2n)] (n integer>1). (21)

This result is to be compared with the location of the
poles in the exact Coulomb amplitude.

sn=—(ma/n)? (n integer).

Although Eq. (5) predicts an infinite number of poles
in the scattering amplitude, the number of these poles
in a given interval of s is much lower than for the exact
Coulomb case. The ratio of these densities near thresh-
old is

No. of one photon exchange poles V(=s)

80— r2am

af -,

S

No. of Coulomb poles

Thus we learn that the higher order photon exchanges
must create more poles. A numerical calculation of the
D function (19) reveals the position of the ground-state
pole at about so=—10"?m%?. On comparison with the
exact Coulomb ground-state position (so=—m??), we
learn that the one-photon exchange provides only about
19 of the binding. The balance of course comes from
the higher order exchanges. Furthermore, the bound-
state spectrum predicted by (19) is completely degener-
ate with respect to the angular momentum /, so that
the observed ! dependence and binding energy of the
Coulomb bound-state spectrum must be accounted
for by the inclusion of higher order terms in 8; of Egs.
(1) and (3).

The N Function and the Residues at the Poles

Instead of calculating the N function directly by
using (1) and (19), one can work in Fourier transform
space with (2). Then (2) becomes

¢ (w)=8(w)~+7 cschinr(w—ie) x(w—1), (22)
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where

Nl(s)=f dw x(w)eielnVe, (23)

One can show that a translation of the contour of
integration in (23) to Imw=—1 is legitimate. Then,
the desired relation is

,i EC]
Ny(s)= —-—-f dw sinh(3rw)e(w)e—ionve,  (24)
Vs
Below threshold 4/s — +iy/—s and (24) becomes

3/(1— 9 /_ %

X Sinh(%')rw)¢(w)e—iwln«/ (=) Hro

Nz(S) =
(25)
When s — 0—, there is a dominant point of stationary

phase at
wr=(1/m) InQmma/r/(—s))>1.

The application of the method of stationary phase to
(25) gives

N ~
O

ol (23] oo

Notice that, near threshold, Egs. (20) and (26) demon-
strate explicitly that

ImNi(s) = (mme/25)Di(s)=Bi(s) Di(s)(s<0).  (27)
In fact, Eq. (27) can be demonstrated for all s<0 by
using (19) and (25).

The residue of the nth pole is obtained from (20)
and (26):

= —mma/2n/(2n) (n integer>1). (28)

The sign of R, is correct for physical bound states.

Repulsive Input

For a repulsive Coulomb input, Eq. (5) is changed by
having & — —a.!? Nevertheless, the procedure outlined
above is applicable and one finds the counterpart of (14)
to be

Fr(w)=—%ime(w) (w?+3)+ (i/2m) e(w)Lis(e~2711)
—iw In(1—e271)+iw In(2r || m). (29)

Now one must use G, of (17) to obtain the solution for
D corresponding to condition (18). A steepest descent
calculation of D near threshold yields an infinite set of

12 Recall that (19) for D has a branch point at a =0, in which

case one cannot obtain the repulsive D function 51mp1y by re-
placing « — —a in (19).
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zeros as in the attractive case. However, the residues of
the corresponding poles of the repulsive scattering
amplitude are now positive and, therefore, correspond
to ghost states:

R, (reP)

=mura/r/(2n).

The mechanism by which the bound states and ghosts
are produced in this dispersive model is the usual one.
That is, they arise so as to subtract off the most singular
part of the attraction or repulsion.® (The §-function
contributions of the bound states to the absorptive part
on the left are of the opposite sign relative to the input.
The fact that they accumulate toward threshold is
demanded by the need to subtract off more and more
singularity from the input itself as s — 0—.)

It should also be emphasized that, for the attractive
case, the higher order contributions to 8; are all attrac-
tive and /-dependent, in which case we expect that a
better approximation will bind the states more deeply
as well as remove the total degeneracy in . For the
repulsive situation the higher order contributions are
alternately attractive and repulsive. Therefore, there
is reason to hope that the ghost-state spectrum will
vanish as one goes to increasingly better approximations.

High-Energy Behavior

Extracting the behavior of (19) when |s|>m%? is
quite difficult since there is no saddle point. One must
proceed in a less direct manner. By changing variables,
Eq. (S) can be rewritten

Dy(x")
x+x ’

where x= (—s)~!/2. We are free to define a new function
H(x):

Dy(x)= 1-—ozm:c/eo dx’ (30)

D(x)= 1—}—1)1(1) x<(am)1

=D x> (am)™1, (31)
where
H(x)=—amxIn(1+1/amx)—amx4(x);  (32)
(am)-1 ! dx’
A= f —H(x')+ D). ()
(am) ™1 x-i—a,

Our problem, now, is to find 4 (x) near x=0(s — — ).
In fact, A(0) is just a finite constant:

(am)— 1
4(0)= f —H(a’>+ & ).

(amy™1 &

(34)

By using (31) and the explicit solution (19), we can
write

o

Substituting (35) into (34) and interchanging the order

%1/ dw cschr(w=1e)

Xexp{iw Iny'4F(w)—mw}. (35)
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of integration gives

dF
A0)=41—
dw

—ir ~Inam=1—In2r.

w=0

(36)

Therefore, the leading behavior of D as s— — o is
given by
V(=9)

Dils) ~ 1——2 )
g —\/(—s)|n< am

In that the D functionisa function only of (ma/+/(—s)),
it is clear that large s corresponds also to small . This
then is the promised form of the branch point at zero
fine-structure constant.

The D function for large positive s can be obtained
from a similar calculation. It turns out to be just the
analytic continuation

>+1—]n21r} NEY))

Di(s) ~ l—cinf{ln<—i\/s)+l—ln21r}. (38)

s>t /s am

The leading terms of the phase shift can be obtained
from (38):

5i(s) ~ ﬂ{m(\ﬁ)ﬂ—lnzw} .

s>to /s am

(39)

This should be compared with the leading term of the
(attractive) Coulomb phase shift, calculated from the
Schridinger equation

6:0(s) ~ —(am/r/s)W(I+1). (40)

Where ¥(z) is the logarithmic derivative of the T
function. Our phase does not go to zero as fast as the
Coulomb phase (40), having developed a logarithmic
creep related to the fact that we have not had to factor

off any divergent or unobservable part of the phase
shift.

Comparison with the Dashen-Frautschi Technique

A few comments are in order here comparing our
technique with that of Dashen and Frautschi,’® which
also purports to use the one-photon-exchange force as
input into the N/D equations. Instead of our procedure
as outlined above, they give the photon a small mass \
and use essentially only the first iteration of the N/D
equations. As A — 0, they find that a logarithmically
divergent phase

ol o) com

factors out (we have learned that this divergence would
not have appeared if Dashen and Frautschi had summed

(41)

¥ R. Dashen and S. Frautschi, Phys. Rev. 135, B1190 (1964).
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all the iterations of the N/D). They take the position
that this factor should simply be set to one; that is,
they take the peculiar energy-dependent photon mass

A=4/g(s)=24/s. (42)

With this prescription they show that (at least in the
nonrelativistic case) electromagnetic mass shifts come
our correctly (i.e., they agree with the Schrodinger
approach). Evidently, although they start with only
the one-photon exchange (which we solve exactly),
using the photon mass in this way includes most of the
bound-state shift information from all photon ex-
changes. On the other hand, from our form of the phase
shifts (39), it is evident that our equations have, roughly
speaking, set

A=2a (m=1). (43)

The way in which this happened is quite clear. Actually
(38) can be written as

—a? gg’ 1
Jw 5 (=) (=5

which emphasizes that, roughly speaking again, the
oscillations of the D function are so violent for —a2<s’
<0 that (for large s) the input is simply oscillated to
death in that region. This is of course equivalent to
having the asymptotics dominated by the first and
second iterations of a massive vector meson (\=2a).
There is nothing extraordinary about the photon having
an “effective mass” in this range; in fact, because we
know Dashen and Frautschi’s procedure is roughly
correct in the nonrelativistic case, ours is certainly less
accurate. Actually, if one formally attempts to calculate
strong mass shifts with our technique they will, not
unexpectedly, come out proportional to & Ine instead of
the desired a. We shall have more to say about the sub-
ject of corrections to strong interactions in Sec. V.

D[(S)’\'l'f‘%a

The Relativistic One-Photon Exchange

In principle, we can extend our treatment of the non-
relativistic case to the relativistic one-photon exchange.
Instead of (1) and (2), we start with the relativistic N/D
equations for pseudoscalar-pseudoscalar scattering®

v [ dv B )Du(v')
N)== [ ———,
™ J left V vV—v
@' p(V)N@')

v
Dz(v)=1——f _
T Jrignt ¥V —v

where we have set the S-wave subtraction to zero for
simplicity. (The discussion goes through unchanged if
we include it.) Just as above, we use a massive vector-
meson-exchange input and then take the zero-mass
limit in the resulting integral equations. The limiting

, (#4)
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(one-photon) discontinuity on the left is
Bi(v) = Etar((2v+p?)/v),

where p is the external mass and the upper sign is the
attractive, the lower the repulsive case. The methods
developed by Halpern allow an exact solution only in
the case of a power-law input, but a method of itera-
tion about the most singular part was outlined there
for inputs like these. In this problem, one would solve
first by approximating Bi(v) and p(v) near threshold.
The form of the resulting equations are exactly those
studied above (8; =v~! near threshold). In particular,
the positronium poles appear in this first approximation.
One then takes the resulting D function, substitutes it
into the Hilbert transform (44) giving N (now with the
full 8:) to get a better approximation for N and so on.

45)

V. EXTENSIONS OF THE ONE-PHOTON
EXCHANGE

In this section, we will consider two generalizations
of the one-photon-exchange calculation discussed above.
The first will be a conjecture about the role played by
the higher order photon exchanges in this N/D frame-
work. The second extension will be a discussion of the
possibility of using our technique to calculate electro-
magnetic corrections to strong mass shifts.

Strictly speaking, the discontinuities of the multiple-
photon exchange graphs (for s<0) all diverge as A — 0.
However the divergence occurs in a manner which
permits us to carry it along in our investigation. In
particular, when B; is the imaginary part of the first
and second terms of the Born series, the following terms
survive in the limit A — 0.

Bi=B V46,2,

B (s)= om
sV/(=s)

where Iny=0.577- - - is the Euler-Mascheroni constant
and ¥(z) is the logarithmic derivative of the gamma
function. Note that the divergent term (as A — 0)
of (46) is independent of /. The new D equation is

45 BB

—o T A/ (=5)+V (=)

Equation (47) allows latitude for an interesting con-
jecture. Since (46) represents an input which is singular
at s=0, we anticipate that the solution to (47) must
oscillate very rapidly as s — 0— as was the case with
(5). Therefore we expect the same type of damping
mechanism for 0<s< —a?m? to be operative as in the
case of (5). If we assume then that we can simply cut
this region out of the range of integration in (47), as
was essentially the case in the asymptotic analysis of
the D function (19), then we can carry out an analysis

[ (' [> w<z+1)]e<—s> (46)
A%y

Dy(s)=1+ Di(s").  (47)
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similar to that following (30) to calculate the large |s|
behavior of the solution to (47). In that case, one dis-
covers that the second-order terms of (46) actually
contribute order a effects in D. It seems then that higher
order contributions to the input discontinuity can
cause order a contributions in D. If this is true, then it
is easy to see how the discrepancy between (39) and
(40) can be resolved, dispersively, by the inclusion of
higher order input information.

One might think that the finite solution of (5) would
be useful for the calculation of finite, lowest order
Coulomb corrections to the binding energy of strong
interaction bound states, thereby circumventing the
divergence difficulties associated with the Dashen-
Frautschi technique. This is not so, as the following
formal manipulations will indicate.

Consider the formal partial-wave Green’s-function
equation for two interfering central potentials, V and P.

Gz=Gz(°)+G1(°)(V+P)Gz, (48)

where Gi=G(r,F; s) and G,© is the outgoing free-wave
Green’s function. According to Fredholm theory, the
solution of (48) can be written most generally as

Gi(r; s)=Nu(r; s)/Du(s) (49)

wherelt
Di(s)=det[1—GXV+P)]. (50)

On the other hand, it can be shown that Dy(s) is just
the D function for the partial-wave scattering ampli-
tude generated by the action of V and P jointly.
The “matrix” of (50) can be factored

1-G2(V+P)=(1—-G P)[1—(1—G P)"'G,LV]. (51)

Since the determinant of a product is the product of
determinants we can write (50) as

Di(s)=D"(s) det[1— (1—G°P)~'G*V],  (52)

where D;?(s)=det(1—G,°P) is the D function for the
potential P alone. Thus, the D function factorizes and
it is clear that the zeros of D corresponding to the bound
states of V shifted by the action of P can only come from
det[1— (1—G:°P)~G,*V]. The function D;? contains no
information about the perturbed bound states. In our
case, P corresponds to the Coulomb limit of the Yukawa
and D,P to the solution of (5) or (47), etc.

One can determine from a study of the structure of
det[1-(1—G,OP)"1G,®V] that, in effect, the in-
formation about the Coulomb shift of a strong-inter-
action bound state comes in only through those terms
of B; (the input discontinuity for the N/D equations)
which contain powers of a and at least one power of g

14 The “matrix” notation of (50) refers to the continuous
variables » and 7 which are approximated by a discrete set of
points 7;. The manipulations are carried out with respect to the
discrete labels after which one passes back to the continuous
variables.
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(the strength of the strong potential).*!* Thus an input
of one-photon exchange plus a strong force cannot be
adequate for mass-shift calculations.

VI. THE COULOMB PROBLEM DISPERSIVELY

Until now, our emphasis has been on combining dis-
persive techniques (primarily the N/D method) with a
A — 0 limiting process (aithough we have managed to
get away without a great deal of the latter). As men-
tioned in the Introduction, one might also hope to find
a dispersive scheme for the direct calculation of the
Coulomb amplitudes themselves (4i(s), 4.(s,t)), in-
dependent of any mass-limiting process. It is to the
analytic properties of these functions we now turn our
attention.

Coulomb Partial-Wave S Matrix

The (attractive) Coulomb partial wave amplitudes

are
Sie(s)—1 I'(+1—1in)
Ays)=——, Si¥(s)=——0i,
in/s T'(I41+in)

where n=am/+/s. The amplitude is real analytic,
satisfies the usual unitarity condition on the right, and
has only the positronium poles on the left, with the ac-
cumulation at threshold. (All the cut structure of the
many-vector-meson exchange is factored out with the
infinite phase in the A — 0 limit.) It is possible to write
an N/D decomposition!®

Ni(s)
Di(s)
(1/2i/{[T(I+1+in) = [T(I+1—in) T}
B [O(+1—in ]

“11(8)=

(54)

in which both NV and D are real analytic and ImD,(s)
=—(v/s)Ni(s). The decomposition is useless in any
ordinary way on at least two counts. (a) There are no
dynamical discontinuities to provide input information
for the N/D dispersion relations. (b) In addition to the
omnipresent nonisclated essential singularity at thresh-
old due to the poles, both N and D have an isolated
(exponentially increasing) essential singularity at
threshold, which makes it impossible to write down dis-
persion relations for either. Hopefully one could factor
the harmful part (the exponential increase) of the es-
sential singularity out of N and D simultaneously as
their ratio A4, is free of this difficulty. We have not yet
been able to effect these two factorings simultaneously.
Even if it can be done, there will still remain the prob-
lem of input forces, that is, there are none (beyond the
poles which presumably one would have as zeros of

15y, S. Kim, Phys. Rev. 142, 1150 (1966).
18 [.. S. Brown, Phys. Rev. 135, B314 (1964).
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D)—as there are no left cuts in A;. There is the hope
that one could feed an infinite number of poles into NV
as input, with undetermined masses and residues, then
determine the parameters in a self-consistent way, by,
e.g., requiring no new poles or something like that. The
trouble with this is that there do not seem to be enough
constraints on the problem to come anywhere near
uniqueness. In conclusion, we feel that the analyticity
of the Coulomb partial waves, although resembling
that of the Yukawa potential in some respects, is suf-
ficiently different to kill any simple attempt at an S-
matrix-theoretic dynamic calculation.

Coulomb Scattering Amplitude

The attractive Coulomb scattering amplitude, cal-
culated from the Schrédinger equation, can be written
down in terms of the usual scattering variables, s=p?
and t=—|p'—p|%

2am T'(1—17) —t
()= explintn(—)! . (55
Ads) == T exP{“’ n(2s>] (53)

In the case of the Yukawa potential, the knowledge of
the Born term, the (elastic) unitarity statement, and
the Mandelstam representation is adequate to generate
the scattering amplitude (the so-called Mandelstam
iteration procedure). Here we address ourselves to the
problem of dynamically calculating (55) from such of
these relations as we can derive. Let us first obtain the
very peculiar unitarity relation of the Coulomb
amplitude.

One would expect that the usual partial-wave pro-
jections of (55) would be the 4,(s), as given in Eq. (54).
Surprisingly, this is not the case. What can be shown in
fact is that

1+t S:%(s)
5—[ Pi(2)A (s,)dz=

-1 21\/s

(56)

That is, (55) is more like an S matrix than a scattering
amplitude. At first glance, it seems that (56) must be
incorrect because the left side of (56) seems to go to
zero as o — 0, whereas the right side evidently goes to a
constant (2¢4/s)~L In fact, however, it is not true
that the left side vanishes as @ — 0. For example, con-
sider the S wave projection in which the integration is

simply
+1 dz i@ fl—z /s
v e R
1 1—2 /s 2 a

We see that, without the Regge-like exponential factor,
the integral would fail to converge, and, related to this,
one cannot get the perturbation expansion of the partial-
wave projection by perturbatively expanding 4. be-
fore the projection. The partial-wave projection in the
Coulomb case is not a uniformly convergent integration.

(57)
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Because of (56), the Coulomb amplitude cannot be
expected to have the ordinary unitarity statement.
However, using (56) it is easy to construct an amplitude
unitary in the usual sense

Au(s,t)=A(s,0)+(E//5)6(1—32). (58)

Substituting (58) into the usual unitarity statement, we
obtain the unitarity relation for the Coulomb amplitude
(s>0)

4ms(t) = /dQ’A (5,8 Ac(s,ts) (59)

It is clear that this unitarity statement is going to
severely hinder attempts at iterative schemes of
calculation.

Now let us examine the analyticity of (55). Singh®
has noted that the Coulomb amplitude has a cut struct-
ure similar to the Yukawa case. In particular, one can
calculate directly from (55) discontinuities across the
positive s and ¢ axes to obtain spectral functions
As (s,0), A4(s,t), p(s,t). The latter two are given explicitly
by Singh. The remaining question is whether or not
Hilbert transforming the spectral functions regains the
amplitude. One can easily prove by direct integration
over the indicated spectral functions that

3

1 1 p(s,t)dt
A‘(s,l)=—/ - .
0

™

1 e Ais,t)dt
Ads)=— / =
m™Jo l’—t

(60)

That is, one does have the dispersion relations for con-
stant s, but because of exponential increase near
s=0+ (t>0) in the Coulomb amplitude and all its
spectral functions, one cannot do integrals over s,
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and the dispersion relations for constant ¢ are lost. In
particular, there is no full Mandelstam representation.
Notice how peculiar even these provable dispersion re-
lations are. A glance at A* in Singh shows that it is
of order a? as a — 0, thus one might expect the Born
term to appear in addition to the integral over A*
in the first relation of (60). We emphasize that this is
not the case. Again because of the Regge-like exponen-
tial factor, the integral over At comes out of order a.

The relations (59) and (60) (plus, of course, the Born
term) are all we can obtain then of the ordinary
analyticity and unitarity scaffolding that usually goes
into a dynamical calculation. We remind the reader that
the first step in a Mandelstam iteration procedure is to
substitute the Born term in on the right side of the
unitarity statement, thus obtaining 4* to fourth order.
In the case of (59), this iterative approach is not pos-
sible. In that the dispersion relations (60) are also
“homogeneous” (contrary to the Yukawa case—in
which the Born term appears in addition to the integrals
over the weight functions), they are also useless in any
simple iterative scheme. As far as we can see, the
problem remains essentially a nonlinear one. (It is not
even clear that these relations uniquely specify 4..)
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