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the same manner as the Ordiua, rp- AVard identity for

the conserved electromagnetic current yields the Kroll-
Ruderman theorem. We can then obtain from 6eld

theory alone many interesting relations which have

recently been obtained from the algebra of currents.
Such an investigation will be reported elsewhere.
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We apply the SU(6) algebra of Gell-Mann to nonleptonic decays of hadrons. We assume that the weak-
interaction Hamiltonian for s-wave decays transforms like S7' (the seventh component of the space integral
of the pseudoscalar quark density). Using the Fubini-Furlan-Adler-Weisberger technique and the par-
tially conserved axial-vector current, we express the s-wave decay amplitudes in terms of the reduced matrix
elements, which are the same as the ones that appear in the expression for mass splittings if one assumes
that the symmetry-breaking part of the mass operator transforms like S& (the eighth component of the space
integral of the scalar quark density). Making use of the fact that the mass-splitting parameter is universal,
and assuming that the s-matte coupbng constant G, is also sclioersaL, we predict a ratio (E1'-+ 2'}/A (Z:}
which is in excellent agreement with experiment. Knowing any one of the hyperon s-way decay amplitudes we
can predict the others. Also we get A (X++)=0. The implications of these results are discussed.

I. INTRODUCTION
' 'T has been propounded by Gell-Mann' that one can
& ~ extract physical information concerning hadrons out
of a set of equal-time commutation relations of various
currents which form an algebra. In particular the
algebra of chiral SU(3)XSU(3),'2 which consists of
eight space integrals of the fourth components of vector
current densities and eight space integrals of the fourth
component of axial-vector current densities of quarks,
has been used with remarkable success to get the ratio
Gz/Gr, ' 4 to relate various leptonic decays of hadrons, ~

to get sum rules of nonleptonic decays of hadrons, '~ to
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study the decays of vector mesons into pseudoscalar
mesons, ' and to obtain sum rules for the magnetic
moment' and axial-vector form factors. ' Gell-Mann' has
observed that if one includes the space integrals of
pseudoscalar and scalar densities of quarks, the algebra
thus generated leads to SU(6). More explicitly the
fourth components of the vector and axial-quark cur-
rent densities are
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The corresponding quantities integrated over space are

F;= —i 5;4d'x, (2a)

FP =—i S,4'd'x, (2b)

S;= 3;d'x, (2c)

SP= s,~d3x. (2d)

The commutation relations are given by

LF'(t) F'(t) j= if"F (t),

t:F.(t),F, (t»='f';.F"«),
P". ( )t,F,'()t1=if.;.F.(t),

LS;(t),S;(t)j=if;;,F,(t),
IF*(t) S (t)j=if* &.(t),

LS"(t),S (t)j=if';.F.(t),
LF;(t),S,'(t)]= if...S,'(t),

LF", (t),S (t)1= —id, ;~S~(t),

LFP(t),S,(t)]=id;;&S&'(t),

$$;(t),S,'(t) j=id,;&F,'(t)

(3a)

(3b)

(3c)

(3e)

(3f)

(3g)

(3h)

(3i)

(3j)

The subalgebra given by the commutation relations
(3a,3b,3c) which form the chiral SU(3)XSU(3) has
been used with remarkable success as remarked earlier.
The subalgebra given by (3a,3d,3e) which form a non-
chiral SU(3)XSU(3) has recently been exploited with

encouraging results to give a uniform picture of mass
splitting within a multiplet. "The subalgebra (3a,3f,3g)
has not yet been used. The purpose of this paper is to
exploit commutators (3h,3i,3j) in the nonleptonic de-

cays of hadrons. In the case of semileptonic decays of
hadrons we assume that the Hamiltonian transforms
like F~+iF2 or F4+iFq It turns out. , using Cabibbo
picture'2 and the commutation relations (3a,3b,3c) of
the chiral SU(3)XSU(3), that all semileptonic decays
of hadrons can be expressed in terms of a single uni-
versal Fermi constant 6 and the Cabibbo angle 8. If one
looks for how the Hamiltonian should transform in the
case of nonleptonic decays, it turns out it should trans-
form like X6 or X7 and also CI' of the decay amplitude
must be +1. Because C=+1 for quark densities, the
Hamiltonian which gives rise to s-wave decays of

"K.Kikkawa, Progr. Theoret. Phys. (Kyoto) 35, No. 2, 1966;
J. Arafune, Y. Iwasaki, K. KIkkawa, S. Matsuda, and K. Naka-
mura, Phys. Rev. 143, 1220 (1966); Arnowitt, Nuovo Cimento
40, 985 (1965)."N. Cabibbo, Phys. Rev. Letters 19, 531 (1963).

hadrons must transform like S~~ and that which gives
rise to P-wave decays must transform like Sz. Thus in
this picture KP ~ 27r is eoI forbidden in the limit of
exact symmetry. It should be noted that the trans-
formation property for the Hamiltonian for s'-wave

decays is di6erent from what one would get from cur-
rent-current picture if the currents are of Cabibbo type
(or belong to 6rst class). We do not think that there is

any compelling reason for using the current-current
picture for nonleptonic decays of hadrons. On the other
hand, the following attitude is more appealing to us.
The SU(6) algebra is a good and useful algebra in the
same sense as the chiral SU(3)XSU(3) algebra. Just as
semileptonic decays are described by vector and axial-
vector currents, nonleptonic decays are described by
scalar and pseudoscalar densities. In this way we give
scalar and pseudoscalar densities also a character of
observables, measurable in Gell-Mann —Okubo mass
splittings and nonleptonic decays. In our approach we

show that for the case of s-wave nonleptonic hyperon
decays, the triangular relation" and 2++=0" follow
from the commutation relation (3h) and the partially
conserved axial-vector current (PCAC)" hypothesis.
Also just as semileptonic hadron decays are described in

terms of a single Fermi coupling constant by using the
chiral SU(3)XSU(3) subalgebra of the SU(6) and mass
splitting within every multiplet in terms of a single
parameter &n by using the nonchiral SU(3)XSU(3)
subalgebra (3a,3d,3e) of the SU(6), we show that all
hadron (hyperon and EP) nonleptonic s-wave decays
are correlated and described by a single coupling con-
stant G,. It would also be interesting to see that just as
G, =G, within 20%%uz whether G~ (the coupling constant
for p-wave nonleptonic decays) is equal to G, within a
few percent. This also seems to be true.

Ke use the techniques adopted by Fubini and
Furlan, "Adler and %eisberger, ' or the improved form
thereof'7 and express all the s-wave baryon nonleptonic
decays in terms of two reduced matrix elements sg and
sf and the s-wave E&' —+ 2m decay in terms of s&'. If we
assume that the symmetry-breaking part of the mass
operator transforms like 58, the mass differences are
related to sf and sq and hence we extract the ratio
sq/st. It has been shown that the mass splitting parame-
ter is universaP' for all SU(3) multiplets. If we make
use of this fact we can extract sq'/sr from the known

"B.W. Lee, Phys. Rev. Letters 12, 83 (1964); H. Sugawara,
Progr. Theoret. Phys. (Kyoto) 31, 213 (1964); M. Gell-Mann,
Phys. Rev. Letters 12, 155 (1964);S. Okubo, Phys. Letters 8, 362
(1964)."B.W. Lee, see Ref. 13.

"M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);
Y. Nambu, Phys. Rev. Letters 4, 380 (1960); J. Bernstein, S.
Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 16, 757
(1960); J. Bernstein, M. Gell-Mann, and L. Michel, i'. 16, 560
(1960). See also S. Adler, Phys. Rev. 137, B1022 (1965); 139,
B1638 (1965).

'6 S. Fubini and G. Furlan, Physics 1, 229 (1965).
IVV. A. Alessandrini, M. A, B. Bdg, and L. M. Brown,

Phys. Rev. 144, 1137 (1966); S. Qkubo, Nuovo Cimento 41A,
586 (1966).
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Now consider p= Xp, n= o', and II;=m'; then Eq. (8)
gives

mass differences of mesons and baryons. With our
assumption that s-wave hadron nonleptonic decays are
described by a single coupling constant G„ this ratio
determines the ratio of E)o ~ 2)r to Z--+ e+o. (or
s-wave part of any hyperon decay); the latter ratio
turns out to be in remarkable agreement with experi-
ment, thus verifying our assumption.

In the next section we write down the various decay
matrix elements of s-wave hadron decays in terms of the
corresponding reduced matrix elements and get the
usual sum rules for the decay amplitudes. In Sec. III we
derive the relation between the mass differences and the
reduced matrix elements and derive the Anal result. In
the course of doing so we have made some improve-
ments over the previous work on mass splitting which
are indicated in the Appendix. In the last section we
discuss the consequences of a similar treatment in the
case of p-wave decays. Also we discuss the further scope
of the SU 6 al ebra.

A (E)o~ 2)ro) =xiaG, so'= (1/V2)A (E~o—) )r+)r-), (9a)

where sq' is the reduced matrix element of 5~ that is
associated with d-type coupling. Similarly in the case of
baryons we get

A (Zo+) = i (-',a)G—, (sg sr), —
A (Z:)= i(a/242)G, (so—sg),
A (A o) = i(—a/4~G, (sz+3sr),
A (:)= i(a—/4&3)G, (s& 3s—g),

(9b)

where sq and sf are the reduced matrix elements of Sg
associated with d- and f-type couplings. Also it follows
that

A (z,+)=o, (9c)

(10)

() g
so that Z++ decay must be pure p wave and therefore we

II. S-WAVE DECAY AMPLITUDES OF HADRONS take Z: decay to be pure s wave. Equation (9b) gives
the Lee—Sugawara —Gell-Mann —Okubo' triangle

As mentioned in the Introduction, for s-wave decays
the weak-interaction Hamiltonian H transforms like S~ A(A o)+2A(:)=V3A(Zo+).

H„=G,575.

Now consider the decay process

P —+ n+II;,

From (9a) and (9b) we obtain

A(K,o~ or+~—
)

A(Z ~en.-)
so /sr

(sg/ss) —1

Also note that the ratio of any two amphtudes in (9b)
where II; is the ith member of the pseudoscalar-meson

depends only on ~st'sf).octet. Consider the amplitude

d~.-"*S(~,)(plI r„„'(x),S,o(O)7lo). (4)

Then we have the following identity:

iq„~„.;,=i d*. "*e(*-,)(pII a„o„,o(x),s,', (o)7Ia)

III. REDUCED MATRIX ELEMENTS AND
MASSES OF HADRONS

If we assume that the sgmnetry breaking part of the
mass operator transforms like Sa, the same reduced
matrix elements as those occurred in Sec. II appear in
the expression of masses of particles. Thus we take the
mass operator to be

M =Mo+ bmSo.
+i ~&.-"*a(*,)(PII v, „(*),S, (o)7l ). (3)

For pseudoscalar mesons, we have (indicating masses by
letters)

(P I ~)'I VIII'&= ~~'&PI L~)o»*'7 la& (6)

Making use of PCAC and the t oldberger-Treiman rela-
tion and letting q

—+ 0, we get
E'= mo'o (bm'/2v3) so' )—
~'= mo"~ (8m'/V3)sg',

)1'=mo' —(bm'/VS) sg',
(12)

If II; is a pion, c=g,/G~mp', where g, is the pion-
nucleon coupling constant, m is the mass of the nucleon,
and p the mass of the pion. We rewrite (6) for s-wave
decay as

(pl»'I ~')= (pII:»'»"7I &

where a= (g„/G„m). The use of the commutator (3h)
gives

(pl»'I ~&=-~- (pl~ I-&.

where so' has dimension of mass (see below and Ap-
pendix), and this fact compels us to use the quadratic
mass formula. Similarly, for baryons

Z =mo+ (bm/VS)so,

X=mo —(a /VS)s. ,
N =mo —(Sn/2VS) (so 3sf), —
- =mo —(bns/24$) (sg+3sf) .
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P',S;j=ofvoFo (Bd)

Taking the matrix elements of this between the
meson states 0, and P at rest and keeping only a nonet of
single-meson intermediate states, we obtain (see
Appendix)

/
sg'/ =2nop',

[sp'/so/ =1, (16)

where so' is the reduced transition matrix element be-
tween a unitary singlet and unitary octet and ego' is the
mean mass of the meson multiplet. This situation is
independent of the spin of the meson multiplet. This
solution for each nonet gives a Schwinger formula"; for
the 1 nonet we have

(oo2 p2) (ops p2) x4 (Qoo po) (~2+~2 2+op) (17)

independent of the value of &n' for each multiplet and
we have the following relation if the same bm' is used for
each nonet:

g2 + +02 2 goio~2 g 2

= (-,'vS)bno', (18)
2(noo') o' 2(mo )i 2(noo') o'

where E*'(1430) and Ao(1310) belong to a 2+ nonet
together with f(1250) and f'(1525). The Schwinger
formula is a consequence of the relation (16) because so'

flexes the mixing ratio between the I=0= F member of
the unitary octet and the unitary singlet. From (18) one
obtains bm' to be nearly the same and equal to about
145 MeV for both 1 and 2+ mesons; the Schwinger
formula is also very well satis6ed for these nonets.
However, for 0 mesons, the relation (18)gives 8m'=290
MeV; and also we know that the Schwinger formula is
not satisled by a 0 nonet. We therefore take the atti-
tude that bm' in this case should be the same as for

'8 After the completion of this work, we came across an un-
published report by M. K. Gaillard (Orsay) who has calculated the
hyperon decay amplitudes using A(A. 0) as input; the results
agree with experiment very well. See also, R. Gatto, L. Maiani,
and G. Preparata, Nuovo Cimento 41, 622 (1966)."J.Schwinger, Phys. Rev. Letters 12, 237 (1964).

From (13) and using experimental values of masses we

get
so/s f o (Z A)/( X)= —0.31&.02. (14)

We note at this point that because the ratio of any two
hyperon decay amplitudes depends only on the ratio
(sd/sf), as indicated at the end of Sec. II, knowing any
one of them we can predict the others using the value
given in (14)."

If we take 8m=8m' we see that (so'/s~) is also de-
termined from (12) and (13) and is given by

sq'/sr = 2 (IC' —or' )/(" —X) . (15)

ln order to justify that &e =bm', we have to disentangle
Sno from sf and sq in (12) and 5m' from sq' in (13).For
this purpose we make use of the following commutation
relation:

A(EP~ or+or )

A (Z
——+ no.—)

=6.5p, (2o)

which is to be compared with the experimental value"
of 6.4 p (a being the pion mass).

IV. DISCUSSION AND CONCLUSION

We have demonstrated above that if we assume that
the weak interaction Hamiltonian for s-wave non-
leptonic decays transforms like S&o )the only possibility
in SU(6) algebra) and the symmetry-breaking part of
the mass operator transforms like Ss, and make use of
the already developed techniques of computation, there
exists a universal s-wave coupling constant for hadrons.
A similar procedure can be adopted to study the p-wave
decays of baryons. Then we have to use the formula
similar to (7) with So instead of S~, the matrix element
on the right-hand side of (8) will be (8~Sop~a), where
both P and n are —',+ baryons, and hence it should vanish
as in the work of Suzuki. ' But taking properly the sur-
face terms and the singular terms that appear by intro-
ducing degenerate single-particle intermediate states,
we can remedy the situation in the same fashion as
Brown and Sommerheld a.nd Nambu. ' The former
authors 6nd that if one takes the current-current picture
with the same coupling constant for both s and p waves,
the calculated asyznrnetry parameters in various decays
agree with experimental values within 20%. This means

~ For A (Z:) we have taken the value given by N. P. Samios,
Proceedings of the International Conference on %'eak Interactions,
Argonne National Laboratory, 1965 (to be published); for
A (EI ~ ~+~ ) we have taken the value from A. H. Rosenfeld,
A. Barbaro-Galtieri, %'. H. Barkas, P. L. Bastien, J. Kirz, and
M. Roos, Rev. Mod. Phys. 37, 633 (1965).

other nonets and the approximation which leads to (16)
is bad for this particular case whereas the same ap-
proximation is good for 1 and 2+ nonets. We believe
that if one takes scattering states in addition to single-

particle states for solving the commutation relation

(3d), one will get a different structure for Eq. (16) in
the case of 0 which will give bm'= 145 MeV. This point
will be discussed in detail elsewhere.

Let us solve Kq. (Bd) for baryons, again taking the
octet of single-baryon intermediate states. Then we get

sf——1 and sg=0, (19)

which is approximately the case, since empirically from

(14) we have (sq/sy) = ——', . This makes the A. and Z

masses degenerate and one obtains in this case 5m= 160
MeV, a value close to that obtained from meson
multiplets. The scattering states in this case also may
change (19) to a more realistic one which will give
sg/sf= o and at the same time make bm come closer
to bm'.

Thus it is reasonable to assert that Sm'=bee=150
MeV is universal for all SU(3) multiplets. This gives
rise to Kq. (15).Using Eq. (15), Eq. (11) yields
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that in our case Gv (the P-wave coupling constant) is
equal to G, within 20%%uo. Thus the analogy between the
semileptonic decays and the nonleptonic decays of
hadrons is complete. Now one wonders whether there is
a basic reason for the universal s-wave coupling as in the
case of vector coupling of semileptonic decays (namely
the vector current is conserved). There does not seem to
be any obvious physical reason. But one can think in
terms of SU(6) algebra as being a good algebra in the
sense that every interaction in nature transforms like
one of its generators and the strength of the coupling
for each type is universal. This may of thinking is
already corroborated by the existence of universal
values of Gr,o'n (the coupling strength of electromagnetic
interactions which transform like Fo+ (Fo/v3), 8m, G„
and G„.It would be interesting to investigate this point
further.

Lastly we would like to remark that the commutation
relations (3) could be used in the domain of strong
interactions to get information concerning them.

&Vote added ir4 proof (A) If .one assumes that the
p-wave nonleptonic v eak Hamiltonian transforms like
56 and the mass breaking Hamiltonian transforms like
So of the same algebra, in general p-wave nonleptonic
decay Hamiltonian can be eliminated by a unitary
transformation thus leading to no p-wave decays [see
S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671
(1964)]. But this is not true if one of the following
happens: (i) The p-wave nonleptonic Hamiltonian does
~zot transform like the member of the same octet to
which the mass breaking Hamiltonian belongs. But in
this case we cannot relate the ratios of p-wave ampli-
tudes to those of s wave. For this reason this possibility
is not attractive. (ii) As suggested by J. Schwinger
[Phys. Rev. Letters 13, 355 (1964); 13, 500 (1964)], in
pole approximation, the p-wave decays can occur if the
values of the strong interaction coupling constants g~~
and g&z& are slightly diferent from those given by
SU(3). (iii) As suggested by B. W. Lee [Phys. Rev.
140, B152 (1965)], again in the pole approximation,
p-wave decays can occur if the meson poles are com-
pletely neglected. This choice is very attractive to us
because this is precisely what happens in the current
algebra approach (see Sec. IV and Ref. 7).

(B) Since this paper was written the following have
been done using the SU(6) algebra: (i) Making use of
the commutator (3h) we have been able to calculate the
four-pion coupling constant [K. T. Mahanthappa and
Riazuddin, University Pennsylvania Report (unpub-
lished)]. (ii) Making use of the nonchiral SU(3) XSU(3)
subalgebra formed by the commutators (3a, 3f, 3g)
given in Sec. I and using the fact that S;5 is proportional
to the source density J; of pseudoscalar meson octet
[K.T. Mahanthappa and Riazuddin and J. W. Moffat,
University of Toronto Report (unpublished)] have

"In this approach, Gg/Gy is calculable.

gotten the sum rules between the integrals over cross
sections of Xn-, XE, ~m and m-E scatterings.

APPENDIX

In this Appendix we derive relations (16) from the
commutation relation (3d) by putting only a nonet of
mesons as intermediate states. We also show how
relations (16) lead to Schwinger's formula for a nonet of
mesons. We illustrate the procedure for spin-zero
mesons. The treatment for spin-1 and spin-2 mesons is
similar. It is convenient to rewrite the commutation
relation in spherical base having the phase convention
of de Smart~.

8 8 8
[S",S~]= —v3 pv

X p v

(A.1)

%e define the following matrix elements

( (k') IF"IP(k)&

t8 8 8
= (4koko') '"(ko+ko')I v3, (A 3)

kP v

8 8 8,
(v.(p) IS Itt(k)) = (4p.k.)- ~ II. , (A.4)

t3 V V

8 8
(~.(P) IS IP(k)&=(4P,k,)- ~ II.. (A.5)

P t4 0

The factor (ko+ko') appears in (A.3) since F"=
iJ F4"(z,t)d'x and —F4' is the fourth component of a

vector. Since we deal with states at rest and since we are
interested to solve Eq. (A.2) in the Uo limit, we have
ko=mo'=ko'=p„where rlo' is the mean mass of the
multiplet. The subscripts 8 and 0 on y in (A.4) and
(A.5) denote that the corresponding states belong to a
unitary octet or a unitary singlet. Only D-type or
symmetric coupling is possible in (A.4) or (A.5) because
of charge-conjugation invariance. H, and Hp are related
to sz' and sp' used in the text by the following relations:

II,= —(5'"/&3)sg',

IIo= (4/&3)so',

where s~' and sp' are delned by

(n(P) IS'ltt(k)&= (4Poko) "'d'-see',

(0(P) IS*IN(k)) = (4Poko) "do*ceo'.

"J.J. de So&art, Rev. Mod. Phys. 35, 916 I', 1963).

(A.6)

(A.7)

Taking matrix elements between states n and P of spin
zero, we obtain

8 8 8,
(nI [5",So]Ip&= vS-(niF" Ip). (A.2)

p v
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Putting in a nonet of spin-zero mesons as intermediate
states, Eq. (A.2) becomes

where the mixing angle 8 is given by tan8= p/q. Also in
the presence of the Hamiltonian (A.12)

Z, [&~IS I»&&»IS"IP&+&~IS l~o&Rois IP&
—{~ /)j

= —3 . A8

o—(dF;/dt) = [M,F;]
=b m'[So, F,3

'f;s&Si (A.14)

Using now the method of Lee,~ we obtain from Eq.
(A.g) in a stra, ightforward way, the following two
independent equations:

8H,2+2Bp' ——96mp",
—4H.o+ (5/4)Po' ——0.

These give the following solution:

(A.9)

ss"=4mo'-', so"/ss"= 1; (A.11)

giving the relations (16) of the text. The fact that ss'
and sp' have dimensions of a mass necessitates the use of
quadratic mass relation for the mesons as used in the
text.

We now show that the relations (A.11) lead to
Schwinger's mass formula for a meson nonet. This can
be seen as follows: The Hamiltonian consists of an
invariant part H p plus S8.

M =Mp+&n'Ss. (A.12)

Now if the I= Y=O members of the unitary octet by p8
and the unitary singlet by p&, then the physical particles
q and X are given by

n =pris+ qrli,

X=qgo —pgr,
(A.13)

~ B.%.Lee, Phys. Rev. Letters 14, 676 (1965};Lectures given
at Brandeis Summer Institute of Physics, 1965 (to be published}.

H, '= (20/3)mo" Ho' (16/5)H,——', (A.10)

or in terms of sg' and sp'

Taking the matrix elements of (A.14) between the states
j and k at rest, we obtain

i (mo™;)&/o(F;
~ j)=5m''f~((/o

( S()f& (.A. 15)

Since we are calculating the mass difference to order bm,

(k~S~~ j& is to be evaluated in the Uo limit in which
matrix elements are given by (A.'/) and (A.11).On the
other hand, mI, and m; on the left-hand side of Eq.
(A.15) are the physical masses of the states' and j.The
matrix element (k

~
F,

~ j) for states at rest is given by

(k
~
F,

~ j)= (4Po&o) ' /f;, o (m;+ m, ) . (A.16)

Using (A. /), (A.16), and (A.13), we obtain from (A.15)
by using appropriate values of k and j the following
equations:

IC' —~' = —(yS/2) bm'so',

X' zoo = (~—/v3)~—m'(P/q)»'
g' —go' ——('/2/'t/3) bm'(q/p) so'

(A.17)

Therefore
(X'—no')(n' —

n ') = —-'(& ')' o'",

(A2 %2)2—o (pm~)2ss~2

Using now the second of rela, tions (A.11), we obtain
Schwinger's formula:

(X2 rlo2) (~2 ~o2) (g/9) (lt2 ~'l)o

or

(X —~') (go —s.o) = x4 (its —s.o) (Xo+7p 2Ao) (A lg)

%e emphasize that this formula is independent of the
mass-splitting parameter bm' and is solely a consequence
of relation (A.11).


