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Magnetic Moments of the Strange BarJJons and the Algebra of Currents*
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Using equal-time commutation relations of the axial-vector "charges" with the isoscalar and isovector
electromagnetic current densities, the magnetic moments of the strange members of the baryon octet and
the Z'-A transition moment have been calculated in terms of the pseudoscalar-meson photoproduction
amplitudes, which are evaluated using low-lying baryon resonant states. The results agree very well with the
experimental values available for the Z+ and the A magnetic moments. A comparison is also made with the
results of the SU(3) symmetry.

I5'TROD UCTION
' "T has been emphasized by Gell-Mann' that the
- ~ algebra generated by equal-time commutation of the
hadronic weak and electromagnetic currents may have
much useful dynamical information. A powerful method
of exploiting this information has recently been de-

veloped by Fubini, Furlan, and collaborators. ' In this
technique algebraic methods appear in conjunction
with those of dispersion theory. The early application
of these techniques, along with partially conserved
axial-vector current (PCAC), ' leading to the remark-
able evaluation of the renormalization of the axial-
vector P-decay coupling constant by Adler and Weis-

berger, 4 has brought this subject to the forefront. Since
then many interesting results have been obtained by
various authors, ~ thereby strengthening further one' s
conldence in this approach in particle physics.
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The present paper is devoted to an evaluation of the
magnetic moments of the strange baryons, Z+, Z—,Z',
A, ', and the Z —A transition magnetic moment.
The magnetic moments of the nucleons have been
calculated earlier by Fubini, Furlan, and Rossetti, ' and
the present work is thus a completion of the program of
calculating the magnetic moments of the baryon octet.
The results are in very good agreement with the experi-
mental results available in the case of the p, n, A, and
the Z+. Further measurements of the magnetic moments
will be of great interest.

Fubini, Furlan, and Rossetti' have obtained the
isoscalar and the isovector nucleon magnetic moments
in terms of the pion photoproduction amplitudes. In a
related approach several authors' have also given a
sum rule relating the nucleon isovector magnetic
moment and the nucleon charge radius with the total
photoproduction cross sections. An evaluation of the A
and the Z+ anomalous magnetic moments in terms of the
kaon photoproduction amplitudes has recently been
reported by us. ' An alternative method is to relate the
hyperon moments also to the pion photoproduction
processes of the type y+F~m+I'. In the present
paper both these approaches will be discussed in some
detail and applied to the strange members of the baryon
octet. The relevant photoproduction amplitudes will be
assumed to satisfy unsubtracted 6xed momentum-
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transfer dispersion relations, which we shall approxi-
mate by the low-lying baryonic resonances. We find,
in agreement with the conclusion of Fubini, Furlan, and
Rossetti, ' that the major contribution is given by the
so-called decuplet resonant states, whenever they can
occur. The contributions of the J=~3 baryon reso-
nances have been omitted here for this reason. We find,
however, that the contribution of the Ve*(140S) is
important and must be included.

In Sec. I we summarize our definitions for the current
densities and charges, and quote the required equal-time
commutation relations. Sections II—V are devoted,
respectively, to the calculations of the magnetic
moments of the Z, the A, the Z —A transition, and the

. In Sec. VI, we summarize our results and discuss
their implications.

I. THE ALGEBRA OF CUM4ENTS AND PCAC

We specify in this section the equal-time commutation
relations, based on the quark model, o which form the
basis of the present work.

Denoting the vector and the axial-vector current
densities by (V„(x))p and (P„(x))b', respectively,
(here a and b are SUB tensor indices), we define the
corresponding "charges" by

where we have dropped the surface term Bp(t= —~),
which has a nonzero matrix element only between
degenerate states. In case of a degeneracy we have to
be careful, and will follow the equivalent procedure of
calculating such a matrix element as a properly defined
limit of the corresponding matrix element between
nondegenerate states. "

Using PCAC for the axial-vector current densities

where the proportionality constant C~ depends, in
general, on the particular pseudoscalar field pp(x), we

may write

ll '(t)=c~fpre(x, —t)y '(x).

The values of the C@ may be obtained, if desired, by
Goldberger-Treiman relations"; however, we do not
need to do this as in the present work the results do not
depend on these values. This is very gratifying since
the use of the four-divergence of the axial-vector
currents as suitable definitions of the pseudoscalar
fields is perfectly acceptable, " the only approximation
in the PCAC Eq. (4) arising in the determination of the
proportionality constants C&.

A p(t) = d'x(V4(x)) g, (1a)
II. THE MAGNETIC MOMENT OF THE X

We take the matrix element of the commutation
relations

Bp(i) = d'x(P4(x)) g', (1b) I:Br'(0)—B2'(o) ~ "']=0
between Z+ states. Using Eq. (5) we then obtain

(6)

and the isovector and the isoscalar electromagnetic
current densities by ~'x «xo)(~'(p2) IL+(x),~,"(0)]l&+(pi)&=0. (&)

J„"(x)=-,'L(V„(x)) '—(V„(x)) 'j,
~.'(x) =k(V.(*))s'

(»)
(2b)

Define the functions

)Bb (&),z„'(x)j~„
=i[h~'(Pl (x))2' 82 (Pl, (x))p'

—8 '(P„(x)) '+b '(P„(x)) 'j, (3a)

We shall use Eq. (1b) in the form'

(3b)

B;(t) fd xe (a,—t) a,=(p„{*')),', (3c)

9 M. Gell-Mann, Phys. Letters S, 214 (1964); G. Zweig, CERN
(unpublished). Note, however, that the commutation relations
used in the present work can also be obtained from other Geld-
theoretic models.

"S.Fubini, G. Furlan, and C. Rossetti (see Ref. 2).

The quark model Lin which (V„)& if,p„tP——» and

(P„)p=iP, y„y,fq'j then suggests the following equal-
time commutation relations:

Tzr '(q) = d4x e-"*8(xo)

X(Z+(p,) IL+(x), Z v, s(0)31& (pi)), (g)

where ~„ is a space-like unit vector. The functions
Tz~ ~ are essentially related to the isovector and the
isoscalar amplitudes for the photoproduction process

y(k, e)+Z+(pg) -+ x'(q) +Z+(p,), (9)

where e„and k =ps+q —p~ are the polarization and the

"S. Okubo, Nuovo Cimento 41, 586 (1966);V. A. Alessandrini,
M. A. B. Bbg, and L. S. Brown, Phys. Rev. 144, 1137 (1966);
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(1958); M. Gell-Mann and M. Levy, see Ref. 3. See also: M.
Ida, Phys. Rev. 132, 401 (1963); K. Nishijima, ibid. 133, B1092
{1964)."K.Nishijima, discussion at the International Conference on
Weak Interactions, Argonne, (1965) (unpublished).
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momentum vectors of the photon and q is the mo-
mentum of the pion. We, of course, choose e„entering
in the definition of Eq. (8) to satisfy the condition
o„k„=o.From Eqs. (7) and (8) we have

calculate the absorptive parts of the u~~ 8 we note that

(2n.)4
AbsTz ~ —— {Qb'(q+Po —i) &Z+(Po) I

or'(0) Ii&
2z

lim [Tzv s]=0 (10) x&il'z (o) Iz+(p)&—2 s'(q —p+ j)
Suppressing isospin indices for the moment, we may

write the amplitude T for the general process involving
the baryons Bj and J32 and the pseudoscalar meson M

v(k)+2~~(p~) ~ M(q)+bio(po) (11)

in terms of the standard gauge-invariant amplitudes'4
A; (i = 1, , 4) by

x&z+(p.) I'I"(o) I j&&jl+(0) lz+(p~) &}. (19)

We shall approximate the sum over the intermediate
states

I l) and
I j) by the single-particle states z+ and

Fq*+(1385). For this purpose we define the relevant
matrix elements as follows:

&z+(p,) I +(0) I
z+(1)&

4
2'= —us, Q A,o,us, .

pooplo

Here we have the following notations:

P= o (pi+ po);

Og iso—(—y o)(y k),

(12)

(13)

(14a)

Oo ——2iyo{(P o)(q k) —(q e)(P k)}, (14b)

(M z' '~o 1 iG(Z+ ~ Z+or')
uz (pz) youz (l),

&pmlo V (po—i)'+M '

&z+(i) I, .Iv.s(,) I „(p,))
(Mz'~'" 1~.(i){iF.v'([f p3')V—'
kpoolpl V

(20a)

O, =~,{(~') (q. k) —(~.k) (q. o)
—i(Ms, —Ms, )(y o)(y k)}, (14c)

O,=2~,{(~')(Pk) —(V k)(P. o)
—o'i(Ms, +Ms, ) (y o) (y. k) }; (14d)

M~ stands for the baryon mass and V is the volume of
normalization.

The amplitudes A; will be considered as functions
of the invariant variables:

+iFzov s([l—pgp)o„, (/ —p~),o„}uz(pg), (20b)

&z+(p,) le(0) I
F, (i))

(Mv, eMz)'" 1 iG(Fg~~Z+7r')

poolo & i' (po—i)'+M.'

X (Pz l)„uz—(Pz)u„(l), (20c)

&F ~(t)
I
J"(o) lz'(pi)&

v = —(P.q)/Ms„

(p p)o

(15a)

(15b)

(Mg, ~My '' 1~f(P'~M ~Z+pv, s)
lo pro

Xu„(i)y.youz(Pi) [(l Pg)„o.—(f—P~—)„o„j.(20d)It is easily seen from the structure of the Dirac co-
variants (14) that the only invariant amplitude that &n the above equations the G and the f stand for the
contributes in the limit q

—+ 0 is the combination coupling constants explained by their parentheses.

»)+(M M )~ (») (16) The form factors in Eq. (20b) are normalized by

Thus Eq. (10) leads to the results that

lim az" s(v,») =0.

Fzg s(0)=1,

Fz,v, s(0) uzv, s/2M

(21a)

(21b)

We shall assume that the amplitudes a(v, ») satisfy
unsubtracted dispersion relations at 6xed momentum
transfer:

1 Absa(v', »)
a (v,») =— d v'. (18)

1I V V tt

In anticipation of the limit q ~ 0 in the sum rules of the
type (17), we shall take q'=0 and also»=0. To

"G. F. Chew, M. L. Goldberger, F. Low, Y. Nambu, Phys.
Rev. 106, 1345 {1957).Ne have used Hermitian y„matrices and
o»=-,'iP», p„). Ke work in the metric such that p q =p q—poqo.
%'e also take e=5=c=1.

where p~~ ~ denote the isovector and isoscalar anomal-
ous magnetic moments of the Z in Bohr nuclear magne-
tons (ek/2Mvc). We may substitute the Eqs. (20) in
the Eq. (19) and extract therefrom the absorptive part
of azv s(v) by standard use of the Dirac algebra.
However, we have to observe some care at this stage,
since we encounter for the Z+ intermediate state
precisely the degeneracy referred to after Eq. (3c). For
a proper treatment we take the mass of the 6nal Z+
di8erent from that of the initial Z+ and take the
degeneracy limit at the very end of the calculation of
the left-hand side of the sum rule given in Eq. (17).
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Indeed, we 6nd that it is the term containing A3 in

Kq. (16) that receives a nonvanishing contribution
from the Z+ pole. Finally the sum rule of Eq. (17)
becomes, in the stated approximation

Mr f(Yi*+~Z+yv)G(Yi*+-+ Z+ir )
F 2v(„0)=

3 G(Z+ —+ Z+s )

Ms ( Ms
X

~
1+, (22a)

Mv, eh Mv, a

Ms f(Y,*+~Z+ys)G(Y, e+~ Z+s )

G(Z+ ~ Z+s')
Pr2s(0) =

3

Ms ( Ms
X

i
1+ . (22b)

Mv, .k Mv, *

The coupling constants appearing in the sum rules

(22a) and (22b) are not all known experimentally. In
this situation we estimate them by using the SU(3)
symmetry. The magnitude of the coupling constant
G(Yi*+~Z+m ) canbedetermined from the Yi* width, "
and is also found to be well given by the SU(3) sym-

metry in terms of the coupling constant G(X3&~+~ Pir')
=—X/M fixed by the Sia* width (X=1.81). This also
fixes the relative sign of G(Yi*+—+Z+so). Similarly
the coupling constants for the radiative decays,
f(Yi*+~Z+y" ), are expressed in terms of the con-
stant C/M =f($~3 +—-+ pyv). The value C=0.345 has
been obtained from an analysis of the pion photo-
production by Gourdin and Salin. " The coupling
constant G(Z+ —+ Zero) is similarly given by

G(Z+ ~ Z+s') = 2fGiv~, (23)

where f is the usual parameter specifying that the I"

and the D couplings of octet appear with coeflicients f
and (1—f), respectively. We have G&zz ——13.5, and
shall choose" f=0 25 We f.ind . that within the present
approximations the isoscalar and the isovector mo-
ments in Eqs. (22a) and (22b) are equal. Hence, "

Using the values for li, C, f, and G», quoted above, we

then hnd in nuclear Bohr magnetons the value

py+= 2.7. (25)

Adding the Dirac moment, also in the same units, we

Gnd for the total magnetic moments"

(|tis+)total =3 5 )

(yz-)t. t.i= —0.79,

(v z~)ao~ai= 1.4 .

(26a)

(26b)

(26c)

Our value for (ps+)&,&,& is quite consistent with the
experimental value 4.3~ j..5, and is a little larger than
the SU(3) value ' 2.79. The SU(3) values" for ps- and

p, zo are 0.12 and 0.96, respectively, and may be com-

pared with our values given by Kqs. (24a) and (24b).
Alternatively we may relate the Z magnetic moments

to the amplitudes for the kaon photoproduction
process'

(27)~v, s+p ~ Ifo+Z+

For this purpose we start by taking the matrix element
between Z and p states of the commutation relations

[B,s(0) j v.s(0)] &2i(P~(0)),~ (28)

Proceeding exactly as before we obtain for the Z+

anomalous magnetic moment the expression

XC (Mx+M~)M N1'
p, ~+= —p, ~1

6 M' GXN

My, * .M y, * MN. M~*

It should be noted that, since F', 823, and (P„)23 are
related by PCAC according to Eqs. (4) and (5), the
proportionality constant Cz disappears from both sides
of the Eq. (28) on taking the matrix element. The
intermediate states taken in Eq. (29) are the single-
particle states Z+, p, I'~*+, %33 +. The coupling con-
stant Gxs s is given by the SU(3) symmetry as

p ~o pg+=1

XcMsM„1 Mi ( Ms
11+

6 M ' fG~iv, Mv, ek Mv, .

(24a)

(24b)
Gxivs= (1—2f)GNNr ~ (30)

(ps') total =3.6 ~ (31)

Using the numerical values of coupling parameters
already quoted, we And

"A recent measurement I see A. H. Rosenfeld, A. Barbaro-
Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz, and M. Roos,
Rev. Mod. Phys. 37, 633 (1965)j of the I'1* decay branching ratio
into Z~ and A~ is in good agreement with the SU(3) prediction,
thus removing earlier discrepancies.

"M. Gourdin and P. Salin, Nuovo Cimento 27, 193 (1963).
The value of C being used in the present work has been obtained
on the basis of this paper by Fubini et al. (cf. Ref. 6)."A. W. Martin and K. C. %'ali, Phys. Rev. 130, 2455 (1963);
R. Cutkosky, Ann. Phys. (N. Y.) 23, 415 (1963); J. J. de Swart
and C. K. Iddings, Phys. Rev. 130, 319 (1963)."R. E. Marshak, S. Okubo, and E. C. G. Sudarshan, Phys.
Rev. 106, 599 (1957).

This is in remarkable agreement with the earlier value
given in Eq. (26a). In view of the diiferent commu-

'9 The results quoted in Ref. 8 are actually in units of eh/2&I-c
and not in nuclear Bohr Magnetons eA/I'2M„c.

'0 A. D. McInturff and C. E. Roos, Phys. Rev. Letters 13, 246
(1964).

~'S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1961). We have used the values p~=1.79 and p,„=—1.91, for
computing the SU(3) values of the magnetic moments of the
other baryons. See also, K. Kawarabayashi and %'. %'. %'ada,
Phys. Rev. 141, 1323 (1966).
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tations relations employed, and the appearance of
different coupling parameters entering the two evalua-
tions, we 6nd the agreement as indicative of the inner
consistency of the approach and the approximation
scheme used.

AVe shall now set up a second sum rule involving the
same Yp* parameters that enter Eq. (35). For this
purpose we take the matrix element, between a Z+ and
a A state, of the equal-time commutator

L»'(0) J.'(0)j=0 (37)
III. THE MAGNETIC MOMENT OF THE A.

The analysis of the A magnetic moment requires a
somewhat different treatment from that in the Z case
discussed in Sec. II. This is because the A has isospin
zero, so that the decuplet states do not contribute to
the relevant sum over intermediate states. Hence, it is
clear that the J=-', resonant state Fp" (1405) will play
an important role in the calculation. Since the coupling
parameters entering with Fo*, especially the one corre-
sponding to its radiative decay, are neither known
experimentally nor relatable to known radiative decays
of other baryon resonances by the SU(3) symmetry,
we shall set up two independent sum rules both in-
volving the same Yo* parameters, from which these
unknown quantities may be eliminated.

We 6rst use the commutation relation

L&o'(0),J.'(0)]=o (32)

and take its matrix element between A states. Using
PCAC to introduce the ol-meson Geld by Eqs. (4) and

(5), we then obtain

d'x e(x )(A(p, ) I I q(x),J„'(0)J IA(p, ))=0. (33)

Using once again Eqs. (4) and (5) to introduce the
m+-meson 6eld by PCAC, we obtain

d'x e(xo)(A(Po) I I n+(x),J„s(0)JIZ+(P())=0. (38)

The expression in Eq. (38) is now related to the process

ys+Z+ ~ n++h.

The intermediate states' contribution to the absorptive
part of the amplitude for this process is now approxi-
mated by the states Z+, I'&*+, A, and also I 0*. Finally,
the sum rule obtained is

2Mn(M p+Mn)
pa+pe = of(Yi*+~ Z+V')

G (Z+ —+ An.+)

Mx Mg )
XG(Y *+ An+) 1+ I+f(Yo* h.y)

Mr, . Mr, el

XG(Yp*~ Z+n ) . (40)
My, *—Mg

The left-hand side of Eq. (33) is now related to the
photoproduction process

y+A —+ g+A, (34)

in the limit of zero four-momentum of the g. Now
proceeding exactly according to the steps outlined in
Sec. II, and taking the contributions of the A and the
Fo*(1405) to obtain the absorptive part of the photo-
production amplitude, we obtain the sum rule

4MgMn G(Fp* —+ Ag) f(YoP -+ Ay)
(35)

My, *—Mg G(A ~A~)

(A(P ) I ~(o) I
Y,*(l)&

'" 1 iG(Yo* —oh')
u (po) r;(l), (36 )

Pooio V (Po—l)'+M, '

(Fo*(l) I ' J'(o) IA(pi))

/MpMr e '~ 1—if(Fop -+ Ay)
loplo V

Xur, a(l)goo„.(l Pg),o„uo(P—g) . (36b)

The Yoo parameters appearing in Eq. (35) are defined
by the following matrix elements:

XC (Mo+Mn)M„
8= —p, v

8 M' (1 f)G~N, —

Mz Mg
X

I
1+

I (41)
Mr; k Mr, e)

From Eqs. (24), uxs=-,'biz+=1.4, so that we obtain in
nuclear Bohr magnetons

pg = —0.74. (42)

This is in excellent agreement with the recent experi-
mental value —0.77~0.27, and is smaller than the
SU(3) value" of —0.96.

It is interesting to note that we may also estimate
the Yp* radiative decay coupling constant f(Fo*—& Ap)
from Eqs. (35) and (40) using the experimentally

'2 D. A. Hill, K. K. Li, E. W. Jenkins, T. F. Kycia, and H.
Ruderman, Phys. Rev. Letters 15„85 (1965).

Taking Fp* as an SU(3) singlet, we can relate the
Fpo coupling parameters entering Eqs. (35) and (40).
Now eliminating these unknown parameters from the
two equations we obtain 6nallx.

Np+Mg Mp-, *—Mg-
pw ~+

Mg My, *—M



970 V. S. MATHUR AND L. K. PANDIT 147

(43)ye+p +E-++it .

For this purpose we use the parametrization given by
Hatsukade, Pandit, and Zimerman. " We start here
with the matrix element between a A and a p state of
the commutator:

measured width of F0*. This parameter is useful in
many problems, and will be discussed elsewhere.

An alternative evaluation' of the A magnetic moment
can be made following the above method in terms of
the experimentally studied kaon photoproduction
process

Conservation of the isovector current also enforces'4
on us a degeneracy of the Z0, entering as an intermediate
state, and the A; hence some extra care is required this
time in the limiting procedure. Our sum rule 6nally
reduces to

v3XC M~g 1 Mo.
1+ (51)

4 M ' (1 f)G—~N Mv, * Mv, ~

Using as before X = 1.81, C= 0.345, f=0.25, and
G~~ =13.5, we obtain

L&~'(0) ~.'(0)]=—o(~.(o))~'

and obtain, as shown in Ref. (8), the result

pg = 0.75 ~ (45)

p, z ——2.0.
Again, an alternative way of evaluating p, ~ is at

hand, whereby we take the matrix element between A

and p states of the commutator:

in nuclear Bohr magnetons. Once again the remarkable
agreement of the two independently obtained results
of Eqs. (45) and (42) emphasizes the internal con-
sistency of the techniques involved.

L&~'(0) ~p'(0)] = —o(~p(o)) ~'

and relate p~ to the process

yv+p ~E++A.

(53)

(54)

IV. THE X'-A. TRANSITION MOMENT

Taking the matrix element between A. states of the
equal time commutator in Eq. (6) for the isovector
electromagnetic current density, and using Eqs. (4)
and (5) we get

d'x 0(xo)(A(po)
~
lor (x),J„(0)]~A(p,))=0. (46)

The left-hand side of the Eq. (46) is obtained in the
limit q ~ 0 from the function

Tg= d'xe—"
8(xo)(A(po)~Lm (x),e J (0)]~A(p,)),

(47)

which is related to the pion photoproduction process

y+A. ~ m +A. . (48)

The absorptive part of the amplitude T~ is now calcu-
lated in our approximation, whereby the intermediate
states occurring are the Z' and the V~*'. The Z' —A
transition moment enters through the matrix element:

(&'(l)
I

e ~'(0)
I
~ (p~)) = —(MzMo/fopro)'" (1/1')~z(l)

X /iPo' (D pi7')a „,(/ —pr) „o„]us (p—&), (49)
where

Foxy(0) =pr/2M„, (50)

p~ being the Z' —A. transition moment in nuclear Bohr
magnetons. The problem of degeneracy of states
referred to after Eq. (3c) is again met with here and
must be treated in the manner already discussed in the
case of the Z+ magnetic moment calculation in Sec. II.

~ S. Hatsukade, L. K. Pandit, and A. H. Zimerman, Nuovo
pimento 34, 819 (1964).

The result obtained on using the intermediate states p,
Z and Yj* is

p, p ——1.5. (55)

The difference between the two results given in Eqs.
(52) and (55) may be due to the probable importance of
an isospin ~ m.E-resonance state contribution to the
latter result. This may be felt in the absence of %33*
contribution to Eq. (55). The agreement is, however,
still quite fair. No experimental value for p~ is avail-
able; for purpose of comparison we may quote the
SU(3) value" of 1.65.

V, 8+~0 0+~0 (56)

in the limit of zero four-momentum of the ~0. The
analysis is completely similar to that given in detail for
the Z case discussed in Sec. II. The intermediate
octet and decuplet states and *(1530) are used for
the evaluation of the absorptive parts of the amplitudes
for the processes (56). We obtain the sum rules

2M~M& f( *o~ oyv, s)G( *o~ os )
V, S—

G(' —+ 's')

'4 According to the conserved-vector-current hypothesis, in order
that the charge Q(t) =iJ'J4~(x, t)d'x be time-independent, it is
necessary that 3f~& and 3f~ be taken equal.

V. THE MAGNETIC MOMENTS OF THE I
If we take the matrix elements of the commutation

relations in Eq. (6) between "' states, we shall obtain
sum rules for the isovector and isoscalar anomalous
magnetic moments of the ",p„-.~, and p„-. , in terms of the
amplitudes for the processes:
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Using, as before, the SU(3) symmetry to estimate the
coupling constants entering Eqs. (57), we obtain

TAsLE I. The total magnetic moments of the strange baryons in
nuclear Bohr magnetons (eA/2M„c).

V —~~S—
6 M ' (2f—1)G~~

Particle
symbol

Results of
the present
calculation'

The SU(3)
value sb

Experimental
values

so that we have

Mg Mg
X 1+ i; (58)

Mg* ME*)

pR =0)
pg4= 3.1 ) (59b)

for the anomalous magnetic moments of the in
nuclear Bohr magnetons. The results of Eqs. (59a) and
(24a) are also consistent with the SU(3) prediction"
pz-=p-. —. The total . magnetic moment (including
the Dirac moment) in nuclear Bohr magnetons is then

(I g-),.„(=—0.71. (60)

Since no experimental information is available yet, we
may compare our results (59a) and (59b) with the
SU(3) predictions~' pg-=0. 12 and pgo= —1.91.

VI. DISCUSSION

We summarize in Table I our results for the total
magnetic moments of the strange members of the
baryon octet together with the available experimental
values and the values obtained from the SU(3)
symmetry.

At this point a few remarks are in order. The SU(3)
results are reasonably close to our results, excepting
perhaps the cases of the Z and the . This is further
evidence in support of SU(3) as an approximate
symmetry. We may also compare, from this point of
view, the results implied by the model of Maki and
Hara, "where, in contrast with the case of the quark
model' the tensor, of which the electromagnetic current
density is a component, is no longer traceless. The
anomalous moments in the Maki-Hara model are now
given in terms of the three independent parameters
which may be taken to be p~, p„, and p,&. Then using
the experimental values p, „=1.79, p„=—1.91, p~
= —0.77, we find p, q- ——p~-=1.23 in contrast with the
SU8 values (or the quark-model values) px-=pg-=0. 12,
and the values obtained in the present work, p, ~-
=p-. -=0. This comparison is interesting in view of the
recent work of Okubo" devoted to testing various
models for elementary particles.

The rather good agreement of our results with the
experimental values quoted for the A and the Z+
magnetic moments, and the internal consistency of
our calculations, indicate that the approximations of
replacing the sum over the intermediate states by the
decuplet resonances, besides the octet baryon states, is

"Z. Maki, Progr. Theoret. Phys. (Kyoto} 31, 331 (1964);
Y. Hara, Phys. Rev. 134, B701 (1964)."S. Okubo, Phys. Letters 20, 195 (1966); and Ref. 5(e}.

A
g+
+0
Z

Zo —h.)z

—0.75
3.6
1.4—0.79
2.0(1.5)
3 ~ 1—0.71

—0.96
2.79
0.96—0.88
1.65—1.91—0.88

—0.77m 0.27
4.3 ~1.5d

& Here we have quoted the mean of the values obtained by us up to the
second significant 6gure. The exception is the value of p2, for which see
the discussion following Eq. (55).

~ Reference 21. e Reference 22. d Reference 20.

quite reasonable. This is in agreement with the con-
clusions of Fubini, Furlan, and Rossetti, who obtained
excellent values for the nucleon ma, gnetic moments in
the same approximation. However, in the case of the
A, we find that the contribution of the Vo*(1405) is
quite large and must be taken into account. We should
also like to emphasize that the use of the SU(3) sym-
metry in our work was made only for estimating the
presently unknown coupling parameters, and is, in

principle, not necessary. In any case, the correct values
of the coupling constants are not expected to be much
different from the SU(3) symmetric values, in terms
of which the decay widths of resonant states are rather
well described. '7

Finally, we wish to point out that our calculations
of all the magnetic moments depend directly on state-
ments like Eq. (10) about the behavior of pseudoscalar-
meson photoproduction amplitudes in the limit of
vanishing four-momentum of the meson. These re-
lations, which are obtained here from the algebra of
currents, "are, in fact, generalizations of the well-known
Kroll-Ruderman theorem" obtained originally as an
exact result in the renormalized field theory. It is
interesting to remark that such low-energy theorerns,
which have been known for so long, were not exploited
before for calculations of the present kind. However,
Nambu and I uric~ and Nambu and Schrauner" have,
some time ago, obtained interesting relations for "soft"
pion processes with a view to testing PCAC. It appears
that the generalized Takahashi-Ward identity" for
partially conserved axial-vector currents" can be
exploited to derive relations between general processes
di8ering only by a "soft" pseudoscalar meson, in much

"See also K. C. Wali, and R. L. Warnock, Phys. Rev. 135,
BuSS (1964).

"The Kroll-Ruderman theorem for the pion photoproduction
was obtained from the algebra of currents first by S. Okubo,
see Ref. 5(e)."N. M. Kroll and M. A. Ruderman; Phys. Rev. 93, 233 (1954);
A. Klein, Phys. Rev. 99, 998 (1955}.

~ Y. Nambu and D. Lurid, Phys. Rev. 125, 1429 (1962)."Y. Nambu and E. Schrauner, Phys. Rev. 128, 862 (1962)."J. C. Ward, Phys. Rev. 78, 182 (1950); Y. Takahashi,
Nuovo Cimento 6, 371 (1957).

33 J.Bernstein, M. Gell-Mann, and L. Michel, see Ref. 3.
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the same manner as the Ordiua, rp- AVard identity for

the conserved electromagnetic current yields the Kroll-
Ruderman theorem. We can then obtain from 6eld

theory alone many interesting relations which have

recently been obtained from the algebra of currents.
Such an investigation will be reported elsewhere.
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S U(6) Algebra of Gell-Ma~~: Mass Splittings and Nonleptonic
Decays of Hadrons*
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We apply the SU(6) algebra of Gell-Mann to nonleptonic decays of hadrons. We assume that the weak-
interaction Hamiltonian for s-wave decays transforms like S7' (the seventh component of the space integral
of the pseudoscalar quark density). Using the Fubini-Furlan-Adler-Weisberger technique and the par-
tially conserved axial-vector current, we express the s-wave decay amplitudes in terms of the reduced matrix
elements, which are the same as the ones that appear in the expression for mass splittings if one assumes
that the symmetry-breaking part of the mass operator transforms like S& (the eighth component of the space
integral of the scalar quark density). Making use of the fact that the mass-splitting parameter is universal,
and assuming that the s-matte coupbng constant G, is also sclioersaL, we predict a ratio (E1'-+ 2'}/A (Z:}
which is in excellent agreement with experiment. Knowing any one of the hyperon s-way decay amplitudes we
can predict the others. Also we get A (X++)=0. The implications of these results are discussed.

I. INTRODUCTION
' 'T has been propounded by Gell-Mann' that one can
& ~ extract physical information concerning hadrons out
of a set of equal-time commutation relations of various
currents which form an algebra. In particular the
algebra of chiral SU(3)XSU(3),'2 which consists of
eight space integrals of the fourth components of vector
current densities and eight space integrals of the fourth
component of axial-vector current densities of quarks,
has been used with remarkable success to get the ratio
Gz/Gr, ' 4 to relate various leptonic decays of hadrons, ~

to get sum rules of nonleptonic decays of hadrons, '~ to

*Work supported by the U. S. Atomic Energy Commission.
'M. Gell-Mann, Physics 1, 63 (1964); Phys. Rev. QS, 1067

(1962).
~ R. E. Marshak and S. Okubo, Nuovo Cimento 19, 1226 (1961).' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.

140, 3736 (1965); W. I. Weisberger, Phys. Rev. Letters 14, 1047
(1965); Phys. Rev. 143, 1302 {1966).

'L. K. Pandit and J. Schechter, Phys. Letters 19, 56 {1965);
C. A. Levinson and I. J. Muzinich, Phys. Rev. Letters 15, 715
{1965);D. Amati, C. Bouchiat, and J. Nuyts, Phys, Letters 19, 59
{1965);A. Sato and S. Sasaki, Osaka report 1965 {unpublished}.' C. G. Callan and Treiman, Phys. Rev. Letters 16, 153 {1965);
M. Suzuki, ibid. 16, 212 (1965); V. S. Mathur, L. K. Pandit, and
S. Okubo, Phys. Rev. Letters, 16, 371, (1966);16, 601{E)(1966).' M. Suzuki, Phys. Rev. 144, 1154 (1966);S. K. Bose and S. N.
Siswas, Phys. Rev. Letters 16, 330 {1966);M. Suzuki, jbkf. 15,
986 (1965); H. Sugawara, ibid. 15, 870 (1965); 1S,997(E) (1965).

' L. M. Brown and C. Sommerfield (private communication);
Y. Nambu, Proceeding of the Coral Gables Conference on Sym-

S,,=i&(X,/2)y q, (i=1, , 8);

~'4'=e(~'/2)v4v~q, (i=0, 1, ",g);

and the scalar and pseudoscalar quark densities are

s,=q(X;/2)q, (i=0, 1, .",S);

S;s=iq(X,/2)yaq, (i=0, 1, , 8).

(1b)

(1c)

(1d)

metrics in High Energy Physics, 1966 (to be published). The way
of relating E1O-+2~ to hyperon decays was also suggested by
Nambu, but the underlying philosophy is diBerent. We like to
point out that in the current-current picture there is no reason for
the spurion which leads to nonleptonic decays to belong to the same
octet as the mass splitting spurion.

M. Suzuki and K. Kawarabayashi, Phys. Rev. Letters 16, 255
(1966);Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966).' V. S. Mathur and L. K. Pandit, Phys. Letters 20, 308 (1966);
S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 43A, 161
(1966).

' Riazuddin and B. W. Lee, Phys. Rev. (to be published}; S.
Fubini, Nuovo Cimento 43A, 475 (1966).

study the decays of vector mesons into pseudoscalar
mesons, ' and to obtain sum rules for the magnetic
moment' and axial-vector form factors. ' Gell-Mann' has
observed that if one includes the space integrals of
pseudoscalar and scalar densities of quarks, the algebra
thus generated leads to SU(6). More explicitly the
fourth components of the vector and axial-quark cur-
rent densities are


