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An investigation is made of the relationship between long-wavelength, low-frequency normal modes and
broken symmetry in nonrelativistic many-body systems. In particular, the relationship between broken
symmetry as manifested through the so-called Goldstone pole and the normal-mode structure is examined.
Through the study of various models, we show that the structure of the normal modes is correlated to the
Goldstone pole either completely, partially, or not at all, according to the class of symmetry of the Hamil-
tonian of the system, For example, in the neutral superconductor, the Hamiltonian has such low symmetry
that although the Anderson modes restore the symmetry of the ground state, they have no relationship at
all to the Goldstone pole. It is observed that as the symmetry decreases, a dynamical sum rule takes the
place of such a correlation and in all systems a sum rule gives the normal-mode frequency w. These sum
rules also give the co distribution of states through the Huang —Klein dispersion relation.

I. INTRODUCTION

'HE question of whether the Goldstone theorem'
can be proved for nonrelativistic theories has

been the subject of recent investigation. The theorem
would say: A many-body system which displays order
in some "direction, "but which is nevertheless described
by a "rotationally" invariant Hamiltonian, has collec-
tive modes which arise as a consequence of broken
symmetry. The frequency of the collective mode tends
to zero as its wave number tends to zero. Xo general
proof of this theorem has yet been found, i.e., there is as
yet no general proof that such collective modes are a
consequence of broken symmetry. '

However, given the existence of long-wavelength,
low-frequency normal modes in the presence of broken
symmetry (in the absence of long-range forces), it is of
interest to investigate the relationship between such
modes and broken symmetry. It is this problem to
which we direct our attention in this paper.

One relationship which exists in all cases and was
originally pointed out by Anderson, is the following.
A nderson's theorem: If there exists a spectrum of
collective modes with the end point ~~0 as q~O,
then the mode in that limit is the operator which con-
nects the set of degenerate ground states, i.e. "rotates"
the ground state. This is called the symmetry-restoring
operator. It is obvious that the theorem is true for any
system with broken symmetry since the ground state
in such cases is degenerate.

On the other hand, the relationship between the
normal modes and the (3oldstone coordinates (defined
below) is not obvious. We demonstrate in this paper
how closely this relationship depends on the nature of
the symmetry of the Hamiltonian.

X,(oi), the response to an infinitesima field with

*This research vras supported in part by the U. S. Air Force
under Grant No. AF-EOAR 63—51 and monitored by the European
OKce, Ofhce of Aerospace Research.' S. Goldstone, A. Salam, and S. %'einberg, Phys. Rev. 127, 965
(1962); S. Bludman and A. Klein, ibid. 131, 2364 {1963).' A. Klein and B. W. Lee, Phys. Rev. Letters 12, 266 {1964);
W. Gilbert, ibid. 12, 713 {1964).' P. W'. Anderson, Phys. Rev. 112,'1900 (1958).

frequency cu and wave number q is, in general, a tensor.
We choose as principal axes, those determined by the
privileged direction given by the broken symmetry.
The matrix, &,=0(id=0), in the frame of the principal
axes, has at least one divergent element, on account of
the broken symmetry of the ground state. The Goldstone
response fgizctiozz is defined as the element of the matrix
x, (~), in the frame of the principal axes, which has a
singularity at ~, q=O. The singularity is known as the
Goldstone pole The G.oldslozze coordinate is defined as the
principal-axis coordinate corresponding to the Gold-
stone response function. At q=0, the Goldstone co-
ordinate is clearly the coordinate generated by the
"rotating" ground state in the restoration of symmetry.

If the Goldstone response function is continuous in
the limit zo,q~0, (static limit) then a spectrum at
small ~,q exists. This is obvious, because an infinite
response to a field with given ~ and q means that the
system has a natural excitation with that ~ and q. The
proof of the spectrum hinges on the continuity. Since
no general proof of this point has been established, we
simply assume, in this paper, the existence of normal
modes in the long-wavelength region.

We wish to investigate whether the Goldstone
coordinate is rejected in the normal-mode structure,
i.e. whether the Goldstone coordinate is a linear com-
bination of normal modes at small q.

It is the central point of this paper that such a
relationship depends closely on the symmetry of the
Hamiltonian. For example, the neutral superconductor
has such low symmetry, that the Anderson modes, '
which indeed restore symmetry in the limit co,q

—+0,
have no relationship at all with the Goldstone coordi-
nate. In direct contrast, the isotropic ferromagnet has
such high symmetry, that the Goldstone coordinate is
itself the normal mode. In intermediate cases, the
Goldstone coordinate is a linear combination of normal
modes.

At the same time, we show how, as the symmetry
decreases, a dynamical sum rule' takes the place of the

4 The application of these sum rules to superAuid helium is found
in Ref. 6.
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relationship between normal-mode and Goldstone
coordinate.

The clearest way to demonstrate the role of sym-
metry in the various cases is to work with spin models:
the isotropic ferromagnet, the Anderson spin modeP of
the neutral superconductor, and an anisotropic ferro-
magnetic model' which is a prototype of the inter-
mediate cases.

In all the systems, a sum rule4 gives the frequency;
the choice of sum rule depends on convenience and
differs from a gas to a system of localized particles. By
means of these sum rules, contact is made with the
Huang and Klein' dispersion relation to give the co

distribution of states in the neutral superconductor.
We list here the many-body systems in question, the

nature of their broken symmetry, and the collective
modes which restore it. (See Ref. 7 for an account of
these systems. )

(1) The isotropic Heisenberg ferromagnet. Orienta-
tion of spin alignment violates the rotational symmetry.
Spin waves. (Bloch ferromagnet similar. )

(2) The crystal lattice. Position in space violates the
translational and rotational symmetry of the free
crystal. Phonons.

(3) Superfluid helium. Violation of gauge invariance.
Phonons. (Bogoliubov particles. )

(4) The neutral superconductor. Violation of gauge
invariance. Phonons. (Anderson modes. )

II. FERROMAGNETIC MODELS

1. The Goldstone Coordinate and the Isotropic
Heisenberg Ferromagnet

The isotropic ferromagnet is the only many-body
system for which the Goldstone coordinate is itself the
normal mod. e. This relationship is seen as follows.

In the ground state, all the spins are aligned but their
orientation is not determined in the absence of external
field. We artificially choose a direction, say z. The
response X~ to a uniform static field in a direction normal
to the broken symmetry is infinite in that direction.
This is obvious, because whereas the initial broken
symmetry is artificial, the applied field truly breaks the
symmetry and so the total spin R turns completely
in that direction. (e.g. a 6eld in direction y gives
&p= ~R~ =cVS, Xpp=hma„p(&VS/h„)= pp. ) Hence X,
is the Goldstone response function.

The Goldstone coordinate is therefore S, +i'. But
at zero ~,q, the Goldstone coordinate, So +ESP is
known to be the normal mode by the Anderson theorem.
Hence S,*+i' is in fact the normal mode, in agree-
ment with the solution of the equations of motion. In
other words, the Goldstone coordinate is the normal
mode, because the operators which restore the sym-

' This model was suggested to the author by Professor R. Brout.' K. Huang and A. K.lein, Ann. Phys. 30, 203 (1964).' R. Brout, Phase Trurlsitiorls {%'.A. Benjamin, Inc. , 1965).

metry (i.e., rotate the ground state) are also the opera-
tors generated by the rotating ground state. In this
respect, the isotropic ferromagnet is unique among
many-body systems.

For completeness, we indicate how the normal mode
appears in the expression for X,+ (co) and how the
Goldstone pole arises. The expression for X,+ (co) given
in time-dependent perturbation theory' is

pi+pi~p+&p

where
~
n) are the eigenstates and ip„p their energy with

respect to the ground state. Since a spectrum exists,
this becomes

Xp+ (co) = (pp —N p+ z p)

In the static limit and with q=0, the pole arises trivi-
ally, So+ connects the degenerate states, ~„0=0.Since
lim, „pX,+ (co) is continuous, however, the pole has
dynamical significance.

Although not part of our main interest, we indicate
here' ' how the spectrum totally vanishes in the limit of
long-range forces. In the absence of long-range forces,
a spectrum can exist at wavelengths X far greater than
the range of forces r because then no energy is expended
well within the local regions of motion. cu therefore
increases with decreasing X. When X(&r energy is
expended in the motion of each individual spin and so
there can be no collective motion. In the limit r ~ ~,
therefore, there is no collective motion at all apart from
the total rotation. The static response X&p(0) is therefore
(pp) ' (ppS is the molecular 6eld) for all finite q, no
matter how small, and limp p Xip(0) is discontinuous.

2. The Goldstone Coordinate and an
Anisotropic Model

A striking way of demonstrating the role of symmetry
in the difference between the isotropic ferromagnet
(I.F.), the Anderson spin model of the superconductor
and the other many-body systems, is to invent an
anisotropic ferromagnetic model (A.F.) with the sym-
metry properties of the latter systems. We take a model
with Hamiltonian

a= —Pp;, (S, S, +SOS@).
The analogy to the many-body systems will be ex-
plained later.

The model has only axial symmetry, which means
only one constant of motion, So'. In the true ground
state, the spins are aligned and confined to the x-y plane
for minimum energy, but since So' is a good quantum
number, they precess about the z axis. The symmetry
is broken by taking a wave packet with the total spin

See, for example, R. Brout and P. Carruthers, Lectures oe the
Mary-Electron Problem (%iley-Interscience, New York, 1963).' R. V. Lange, Phys. Rev. Letters 14, 3 (1965).
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in a fixed direction, say x. This wave packet is a good
approximation to the true eigenstate as will be seen in a
later subsection. That the broken symmetry is a wave
packet is a consequence of the lower symmetry, but the
most direct consequence of the lower symmetry for the
relationship between Goldstone coordinate and normal
mode is that there is only one symmetry-restoring
operator 50' (the single constant of the motion), and so
the operator generated by the rotating ground state,
i.e., the Goldstone coordinate at q= 0, must be diferent.

Thus, while the Anderson theorem gives So' as the
mode at q, co —+ 0, the Goldstone coordinate is Sp. (The
Goldstone response function is XP&(co).) The mode has
the general form"

q, = (A,) '5,*—&id,Sp, where lim, 0 A, =O (II.1)

If we wish to know A„we must And the sum rule
given by the susceptibility in the z direction, X".
Broken symmetry now plays no part. The molecular
Geld, v05, acts only in the x-y plane and so X,**(0) is

(vo)
' for all g. This gives us the sum rule

x.**(0)=2K,.(1(~IS.*lo) I'/~-o) = (») '.
Substituting the mode (II.1) gives (A,)'/co, = (vo) ' and
so we have the mode

q, = (vo/two cu )'"S '~i(co, /two wo)'"5,". (II.2)

It is interesting to write down the expressions
for the X,(co), given by this mode, to see how the limit
lim, , „~OX,**(co)= (eo) ' and the Goldstone pole lim, ,

XP"(~)~ ~ arise. The mode (II.2) is substituted into
the expressions for X,(co) given by time-dependent
theory (cf. isotropic ferromagnet). We obtain

X,*'( ) = (,/vo) (( +,+z )
—'—( —,+z ) '),

.""( )=( o/ .)(( + .+ ) '—( —.+ ) ')

The wave-packet nature of the broken symmetry
means that the q,~=0 mode does restore the symmetry
unlike the I.F. at T=O; (see below). Since the ground
state is a wave packet its shape is modified by the zero-
point motion of the modes, i.e. "dressed. " The state
"dressed" by mode q is given by g, l 0)=0. It is precisely
such states lo) which appear in the general expression
for X,(co) when g, is substituted. The restoration of
symmetry is seen by substituting g, in &ol (5,*)'lo)
and (Ol(Sp)'lo). Then lim, 0 (Ol(5,*)'lo)=0 and
»m, , &Ol (SP)2lO) = ~.

In the I.F., the broken symmetry is a true ground
state in the first place and contains the zero-point
motion of all the modes in the form of the incoherent
precession. At 6nite T, however, the symmetry is
restored in thermal equilibrium. (See end of Appendix. )

A proof of the Goldstone theorem would be the proof
' In excited states the motion is no longer uniform and the

spins are not confined to the x-y plane. A coherent precession
about the x axis occurs, with a phase difference between lattice
sites like standard spin waves, but the precession is now elliptical,
with the eccentricity in the s axis vanishing as q, co ~ 0.

of continuity of lim, „oXP"(~)." An alternative
dynamical derivation of the spectrum would be to prove
the continuitv of lim, , 0 X,'*(~) and the vanishing of

(ol (S *)'lo) with q"
In a later subsection, contact is made with the many-

body systems in question, by interpreting the motion as
a coupled harmonic oscillation of massive particles. The
above sum rule then tells us the "mass" of the particles.
The existence of such "mass" is a feature of the lower
symmetry.

3. The Frequency, u,
~d, can be found using one more sum rule involving

dynamics. The rule most convenient for systems with
localized particles is &OlH —Eolo)=-.';+co„ the zero-
point energy, where Eo is the energy in the absence of
zero-point motion.

In the I.F., putting S =S—S;+S; for S= » one gets

Q, (vo—v,) (0 l 5,+S,—
l 0)= -', g „

and hence co,= (ro—v, ) ~ q'. In the limit of long-range
forces, &u, =o for q=o and co~= vo for q+0, as expected
from previous considerations.

In the A.F., we put 5 =-.', S—(5,"'—S ') for S=-',
and get

no&0 l 5,*5,'
l 0)+ (so—v,) &0

l
5, S,

l
0)=

Employing the mode (II.2), to evaluate the averages,
we get

~,= L~o(~o—v,)j't'~ q. (II.3)

The lower dependence on q is due to the "mixed" nature
of the motion.

4. The Equations of Motion of the A.F.
The interpretation of the motion as a coupled har-

monic oscillation of massive particles, mentioned
previously, is easily made from the equations of motion.

The model is simple enough for an exact solution of
the equations of motion about the approximate ground
state originally chosen (i.e., the "bare" state). Of
course, the modes are a good approximation only in so
far as the "bare" state is. This is a common feature of
all the systems where the broken symmetry is an
approximation, and is quite independent of either the
solubility of the equations of motion or the Goldstone
theorem. The justification can only be found in the
wave packet itself, that it be a very good approxima-
tion. This, we shall verify shortly.

"This might be treated by "dressing" the "bare" state in a
diagrammatic analysis. Continuity proofs of this kind are given
in Ref. (18) for the normal fermion system and might be applicable
to the neutral superconductor, in Nambu's (Ref. 17) formalism,
and similarly to the condensed Bose gas.

The continuity of lim, , ~p y~" (co) alone is not a sufhcient con-
dition, e.g., in the limit of long-range forces, yp&(0) = (vp) and
is discontinuous at q

—+ 0, whereas g,"(0) is unchanged. In fact"y""= (pp) ' for nonwavelike fields also.
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and wish to calculate

S, l 0)= [H,S,]I 0),

where IO) is the "bare" state. Both classically and
quantum-mechanically we get (always in the ground
state)

SP= voSq',

S '= (vp —v, )Spp. (II.4)

These equations are exact. This is because the operator
Sq~ can always be placed on the extreme right due to the
commutability of the operators, (i+ j), and then we
have Sp

I
0) =

I 0)hp p.

The equations give the harmonic-oscillator equations

5, +vp(vp —v,)Sp=0, n=y, z, (II.S)

and so ipp= [vp(vp —vp)]'i', confirming (II.3).
The normal mode pq obeys 7/tq=iMqpq, with normali-

zation [g,t,qp]=1. Our previous expression (II.2) is
thus con6rmed.

Contact is later made with the many-body systems
by taking S as nothing but the canonical conjugate of
Sp. The Sp execute a coupled harmonic motion, (II.5),
and since S,*=(vp) '8p, (II.4), the "mass" of the
particles in motion is (vp) '. The normal mode is

(vpip, )
—'i'(8, aicp, S, ) . (II 6)

We now verify that
I
0) is a good approximation. We

find the time taken for the state to spread. Although we
could choose for IO) an unknown wave packet with a
specified smudge for the total spina (cf. Anderson's"
discussion of the antiferromagnet), it is more convenient
to take the product of spinors pointing in the x direction.
This corresponds to the BCS ground state. Apart
from the spread, there is no motion in equilibrium,
(OISp*l0) =0. The lifetime of the state, r, however, is
given by (Ol (8 *) IO)= (r') '(Ol (Sp*)'IO). Therefore,
taking v;;= constant, v, for s neighbors and zero other-
wise, we obtain r= (E/z)'"(5/v). (This result is also
obtained from the energy uncertainty

the factor (iV) ' being necessary because the zero-point
motion of the spins in IO) are independent. ) The
unknown wave packet would be a better approximation,
[r (Ã/z)(A/v)], because, with the zero-point motion
of the spins not independent, it is closer to the true
ground state. However, the differences are of no
importance; the approximation is well justi6ed in either
case.

"P. W. Anderson, Phys. Rev. 86, 694 (1952).

S. The Analogy of the A.F. to the Many-Body
Systems

The characteristic feature of all the many-body
systems, apart from the I.F., in the symmetry of their
Hamiltonians, is that whereas the generalized coordi-
nates of the I.F. are all coupled with equal coupling, so
that the Hamiltonian has full symmetry in the space
dined by the generalized coordinates, the other
systems do not have all generalized coordinates coupled,
and are invariant only in a subspace. This feature is
made particularly transparent in the A.F. model.

In this subsection we point out the analogy of the
A.F. to systems with identical symmetry, leaving to the
next section the more complex superconductor.

Superguid Helium

The constant of motion, the analog of So', is limq Opq

=g& a&ta& i.e. the total number of particles iV. The
broken symmetry is a wave packet IO), such that
aptl0)=aplO)= (3'p)'"IO), where cVp is the number of
particles with k=0 in the true ground state, i.e. the
phase symmetry of ape'4' is broken, (broken-gauge
invariance). Then p, l0) = (.Vp)'"(a, t+a, ) IO). The
operator lim, p p p= (~Vp)'"(apt+ap) rotates

I
0), and

the rotating IO) generates the operator at right angles,
viz. (iVp)'"(apt —ap), the analog of Spp. X**, which is
dE/dp, equals (iVpvp) '. The "mass" of the "particles"
is therefore (iVpvp) ', which is confirmed by the ap-
proximate equation of motion at small q,

(2.'Vpvp)
—'—(a,—a, ) = (ap+a, ') =p, ( i'p)

—'".
dt

The correctly normalized Bogoliubov particle is given
at small q by

(4'pvp/2ip )'"p, (Yp) i+(pi, /2&'pvp)'"(a, a,~)—
or by

1 '" d—(a,—a,')+ip, (a,—a,")
2Xov~q dt

This has precisely the form of the mode in the A.F.,
(II.2) and (II.6). (The velocity of ordinary sound, c,
is given by dÃ/dli= (mc') ' where m is the mass of the
true particles. )

The Crystal LatA'ce

The total momentum P is the good quantum number.
The analogy of P to 5p* and Q (position of the center of
mass), to Sp', (total spin in x-y plane), is obvious. IO)
is now a wave packet fixing Q within a distance of order
a (the lattice spacing) If Qp an.d Pp are defined by
u;= (1/gE)p, (},e'pf' and mii, = (1/gX)p, P,e'&",
where u; is the deviation from the lattice site i during
the motion, then (}, is the analog of Spv, and P, of
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S,'. The phonon mode is given by

(1/2mco )'~2P, ai(~~ma) )'~2Q„

like the A.F. (II.2). The particles executing the coupled
harmonic motion are now the true particles with mass
m. P,=mQ, .

It is a common feature of these systems, including the
neutral superconductor now to be discussed, that,
unlike the I.F. the collective mode has the form
(m/2&a, )'"(i,+m, x,), where lim, 0 ma, restores the
symmetry. So far, it has also been the case that lim, 0 x,
is the operator generated by the ground state as it
recovers its symmetry, i.e. that x, is the Goldstone
coordinate. However, this is only a consequence of the
symmetry of the A.F. type systems. In the super-
conductor, where the symmetrv is lower, it fails to
apply, and the Goldstone coordinate has nothing to do
with collective motion.

III. THE NEUTRAL SUPERCONDUCTOR

In this discussion of the superconductor, we stick to
the spin model of Anderson' even at finite q. This makes
it easier to study the modes, especially in relation to the
anisotropic ferromagnet.

The Hamiltonian is given by

VbI, "bI ',
krak', —(L'+q3

in which n~=a~taI, and bl, q=aI,+,a I„where ul, is the
destruction operator for momentum k and spin up, and
a ~ for momentum —k and spin down. The second
summation is over a shell about the Fermi surface and
we take constant V for simplicity. The full Hamiltonian
also has interaction terms bilinear in operators p~ q=
aI,+q, ~@I, , where 0- denotes spin. These terms, however,
are relatively unimportan t for the neutral super-
conductor and are therefore not included here. The
restriction k+k', —(k'+q) in H is often unimportant
and we shall drop it when it is so.

We begin with the description of the ground state and
the q=O mode. ' Therefore we need consider for the
moment only the q=O part of H, i.e., the BCS reduced
Hamiltonian, H „d.

The spin model interprets an empty level k as having
spin up in a fictitious space, and a full level as spin down.
Thus, in terms of spin, the BCS operators are given as

Sg*= ', (1 el, -np—), —
Sg, +iSIp = bpt, SI, —iSp= bI, .

H„s becomes in this notation, ' (apart from a constant
term),

Hrgd —2+a (ek p)Sg* Qk~„' V(S„*S,'+—SEES),.&),

where the second summation is over a shell about the
Fermi surface. This model is clearly very similar to the
A.F. but its difference proves to be of great significance.

The diBerence is that, whereas the A.F. has no field
(or a constant field) in the s direction, the super-
conductor has a varying field (e&—p).

In the true ground state, the spins precess in phase
at varying orientation OI, with the z axis. The molecular
field I in the x-y plane is I= Vg S sin8&, (S=-',); there-
fore the total field acting on spin k is of magnitude
Hz= L(e&—p)'+Pj'", at angle 8I, given by

sin8q ——I/Hq. (III.1)

The symmetry is broken by taking all the spins to lie in
the s-x plane.

Before considering the connection between broken
symmetry and normal mode, we find the modes given
by the equations of motion in the random-phase
approximation (R.P.A.).' "'

8m~ ~ = —HaSs"+ V 2 Sv",
krak'

(III.2)

where SI,~~ is in the s-x plane in the direction perpen-
dicular to the equilibrium position. This motion gives
Sp and SA, ~~ even in eI,—p, , which is the motion of the
co=0 mode; thus the term Vcos8~+S~', which appears
in general in Sp, vanishes.

The collective modes p„are found by substituting

in (III.2), with the requirement i)„=ice&„,and equating
the coefficients of SI,& and S&~~ respectively. We obtain

Ap =(HI, V/(Hp oP))QAI, —
BI, (icoV/(HP —~——'))QA p .

(1113)

The condition PA q"$0 in (III.3) gives the dispersion
equation for co,

1= VQ(Hg/(Hg' —oP)),

with solutions co HI, and co=0. The collective mode
p„ is given by

HI ——'" HEI ~ ~+~SI ~

H2 ~2
2(op

(H„2 ~2)2
(III.4)

This has the same form as (II.2).
The ~=0 mode is Q(Sq~~/H~). Let us check that this

is identical to the symmetry restoring mode, PS&*,
which rotates the spins about the 2: axis. Semiclassically,
the operator SI, is interpreted as the small deviation
from equilibrium, and its component in the x-s plane is

' G. Ricka, yzen, Phys. Rev. 115, 795 (1959).

1. The Equations of Motion in R.P.A.

The equations of motion about the approximate
ground state are (both classically and quantum-
mechanically)

Sp=HISI ii
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S},((. Hence PSq*=+Si,(( sin8q, which from (III.1) is
precisely Ig(S&((/H},), as required. We now give the
quantum-mechanical argument. The co=0 mode is
QS},* only when the ground state is expressed in the
x,y, z system of coordinates, i.e. the BCS ground state.
This is not the system of coordinates in (III.2), how-
ever, and Sk' is given by Sk' ——Sk~~ sin8k+Sk 'cos8k,
where the x' axis is parallel to the spin in the ground
state. A rotation of the spin through p about the z axis
is, therefore g},(exp)i&(Sq(( sin8},+S},' cos8},)])~0).
Since the operator exp(+S(}"cos8&) merely introduces
a phase factor, the symmetry-restoring mode is
PS},(( sin8},.

In the absence of the collective term in (III.2), g„ is
Sk~ ~+Q'p and co =H k, i.e. the excitations are individual
spin Qips equivalent to the Bogoliubov-excitations,
o.k~0. ko. Extending theSe COnSideratiOnS tO finite q, We

define Sk~ iq and Sk„q by Ski ~q+iSk„'=0'k10'k+qo,
Sk~tq —iSk„q=uk+q, oto. k~t. In the absence of collective
terms, Skt ~

q+iSk„q is an individual excitation of energy
Hk+, +Hk, which we shall denote by Hkq.

The equations of motion in R.P.A.' " for the neutral
gas are

~kyq= HkqSk(
(
',

S},(( &= H},'S},}1' cos-', (8} 8}+—,)V—
X P cos2'(8},. 8},+,)S},.„&—. (III.5)

(III.7) has two types of solutions'; the large co, which

are the independent-particle excitations, and the
low-lying a&, viz. co = (i}i/%3)(I at small g, where v} is the
Fermi velocity.

It has not been proved whether the R.P.A. is a good
approximation. Of course, at g=0 the mode is exact.
The equations of motion are exact because k/k' in

H„~, which does not however hold in general. More-
over, no possibility exists of handling the problem by
comparison with the exactly soluble A.F. This is
because contact between the models can only be made

by taking'4 ek —p, as zero in the shell or as constant.
However, this passage is discontinuous since the ground
state is given a translational symmetry.

In this paper, we continue to assume the existence of
a spectrum at small q, but caution the reader on the
incomplete character of the subsequent development.

2. The Goldstone Coordinate and Sum Rules

We now attempt to repeat the discussion of the
broken symmetry and the normal mode along the lines
given for the A.F., but we shall see that the Goldstone
coordinate has no connection with the normal mode.

By the Anderson theorem, the mode at q, co —+0 is

P },S~,. Since the Goldstone coordinate is Q i Si,„&, one
would expect P},S},„|}to be a linear combination of
g,. Thus, since P k S}„Ig},(S,((/H&—)—, (paragraph
following III.4), the correctly normalized mode ex-
pected, in analogy to the I.F., would be

These are the generalization to finite q of the equations
(III.2). We are considering only the motion which gives
even solutions at q

—+ 0, and for small q we have there-
fore neglected a term in 8~„'.

We seek a solution of the form

~.'= P~ (A aiS,((i+I'„iS,„i)

where j„'=icurl„i Substituti. ng into (III.5) and equating
coeKcients of Sk~~ q and S»q, respectively, we get

Vcos-', (8},—8+,)H '
P}, cos ', (8}, 81, +i)A},'-—

(Hq')' —~0i

B,i= (i /H, i)A&i. (III.6)

The collective modes are given by

H 'ms'L-', (8 —!4+,}jy'"
's~ =

((H~')' —&)'

The dispersion equation for s& is the condition P cos-,
X (8~ 8};+,)A }, 'QO in —(III.6), i.e.,

1=Q„LH,i cos'-,'(8,—8,+,)/((H„i)' —~')]. (Iil."i)

g, = IT„(S,((i/H, )~iA,&.S.„]/ ~ (A,gH „-')- I

where
limq OAq 0. (III.9)

But, since the H~ are independent, A, is k dependent,
i.e. lim, 0 A, /caq HQ ' and so Pq Si„' does not con-

(The normalization is correct because PSi,„',S}((']=iS)
However, trouble arises when we go to X" to find Aq.

The response is to a held hk acting on each spin in the
positive z direction; its magnitude may vary with k but
must be even in ek —p, . Such a field gives rise to no
collective effect, and each spin responds independently.
Each spin therefore points parallel to the resultant of
the 6elds hA,. and H}„i.e. at angle 88i,= (kq sin8q/Hq) to
the direction of Hk, the original direction of the spin.
The increment of the spin in the z direction is Mk sin8k,
and so

x**=P, (sin'8„/H },)=PP p (H(i)-'.

The formal expression for lim, 0X,**(0)k, then gives a
sum rule. On substituting the mode (III.9), we get

A,
»m, 0 Za!(Hi) '=Ps'(Ha') '.

cosL2 (8~—8»+ )]
XQ}} (H} 'S}(('+@AS},}l') .

(H q)i ~2
(III.S)

'4The identification Zbk'I=S~-, etc. is then made and Bkq is
constant. qq and the dispersion equation for co~ become those of
A.F., with 5,» instead of S,' if the field is finite.
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tribute to rto. One obtains, therefore, instead of (III.9)

go=L+o Hou 'Soo&ico,po Ho 'So—„o]
X(co +Ho ') '" (III.10)

which agrees with the R.P.A. (111.8), to lowest order
in q.

The Goldstone coordinate Po So„', therefore, has
nothing to do with the collective motion. This is
because the system does not have lim, o p o So„oas its
symmetry restoring operator. The reason for the failure
lies in the lower symmetry of this system, but cannot
be ascertained independently of the dynamics.

There will be a singularity in the Goldstone response
function, Xooo(cd), at q,co=0, as a consequence of the
broken symmetry. In the present model, it is impossible
that this pole is also the terminus of a continuous
spectrum. The conditions for a spectrum would have to
be sought by the alternative way given for the A.F. viz.
in the continuity of lim, , oX,**(co)=(oo) ' and the
condition that lim, o (Ol (+Ho 'Solano)'IO&~0, (cf.
A.F. and Ref. 11).The necessity for the latter relation
is seen as follows, on recalling that

»mo

ohio

(Sotl'/Ho)=go So,= —»m, op,

At q=O, the restored symmetry of the "dressed" state
requires (Ol (po)'I 0)=N . However, when we go to the
limit q~0, we are finding (Ol (po)'IO) —((Ol pol0))',
which is zero.

In a charged superconductor, limo, o Xo**(co) is not
continuous on account of the discontinuity in the
Coulomb interaction due to the background, and the
usual plasma effect occurs. ' '

The Frequency ~,
The sum rule most convenient for a gas is the well-

known relation'

(0 I Q „p,]I 0)=q'/2m.

Substituting q„(I 11.1 )0, at small q, (2(Sotto/Ho) ~
—p, as q

—+0), we get cdo'= (q'/2m)/p(lo/Hoo) at
small q.

P(lo/Hoo) =X** is alternatively written as (mc') ',
where c is the velocity of ordinary sound, since
X*'=dN/dtc and—dN/dtc= (mes) '. Hence

and the collective modes are truly phonons. As a first
approximation, (independent of V), the free-gas value
for dN/dp can be taken, viz. g(or)," giving c=oF/V3,
(the R.P.A. value).

In a normal fermion gas, there is no broken sym-

"This result is also obtained directly from Z'(P/III, 3), by noting
that its integral f(I /IIh') g (e)de is over a shell of order of thicknessI about the Fermi surface, and that Hf I; hence Z(1/II/}
=g(gy).

metry, and lim, 0 p, is no mode. The neutral gas has
modes of zero sound. '

The co Distribution of States

Since at q
—& 0, P (So~ ~o/Ho) —o—p, and

P(lo/Hoo)=X**= dN—/dtc= (mc') ',

the sum rules and continuity conditions are exactly the
same as for superfiuid helium (cf. Sec. 11.5). Huang and
plein' have found the shape of the co distribution of
states by means of a dispersion relation, employing only
these sum rules with the assumption of continuity. The
procedure is identical for the superconductor. We quote
the result.

The distribution curve, defined by

go(~)=Z»
I
&nlrb(ISoiio/Ho)IO&l'b(~ —~.o) ~

&- I &nl p. l o& I'b(~ —~.o),

is found, in the small q limit and near the peak co cq,
to be

8.( ) = &0 I I p, I'I o&( )-'P,/(( —q)'+P, '),
where I', approaches 0 faster than q. At q

—& 0, it reduces
to the 8 function required.
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APPENDIX

We describe a proof due to Professor R. Brout of the
existence of the Goldstone pole at finite temperature.
It is a generalization of similar proofs at T= 0 given in
Ref. (1). The proof gives the pole at q=O, co=0 only.
The extension to finite q,co is complicated by the fact
that the modes are hydrodynamic at small q, co, (see the
work of Hohenberg and Martin" on superfluid helium).

We work in the isotropic Heisenberg ferromagnet.
Consider it to have magnetization R in a field 8, and
consider the free energy as a function of R and H,
F(R,H). (The partition function is Z(R,H) =Tra
Xexpl —P(H+H QS~)j with the trace restricted to
give R.) The dependence of R on H is fixed by minimi-
zation, BF/BR= 0.

However, let us first consider BF/BR for independent

"P.C. Hohenberg and P. C. Martin, Phys. Rev. t.etters 12' 69
(1964).
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R, and study the variation of the quantity OF/OR due
to small independent changes in R and H.

BF B2F B2F
sR+— sn

BE. BE.,BR BE,BH

B'F dH, = (x„)—'.
BE 2 dE

(A. 1)

Taking now OR along the curve OF/OR= 0, the left-hand
side is zero. Along the curve we have (OF/OH„) aa R——„,—
therefore, 0= (O'F/OE, OR) OR+OH, . If we consider
bR as independent, and bH along the equilibrium curve,
then, taking for example SR=bE„we have

The following symmetry argument will now give~ ~. Imagine the symmetry artilcially broken in
the s direction in the absence of field. Since all directions
are equivalent, the system may be rotated with no
change in F. Thus a small rotation about the y axis,
which produces a small increment bE, gives

OF =0= (OF/OR )OR +,'(O'-F/OR, ') (OE,)'.
Since OE, is arbitrary, O' F/ OR, a=0, and from (A.1),
X„~ ~. (OF/OR, =O in any case by the variation
principle. ) Since x„=p((Se*)'), this gives ((Ss*)')~ ~,
where ((Se*)')=LTre ~~(Ss*)sj/Tre s~. At
(0

~

(Se*)'
~
0) is finite, but P ~ co.

Y. Nambu, Phys. Rev. 117, 648 (1960}.' P. Nozihres and J. M. Luttinger, Phys. Rev. 127, 1423 (1962) .
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Potential of Average Force in a Plasma*
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The potential of average force Wf Q«' experienced by a charge q' at a distance
~
ra —rs~ from a charge q

is calculated from the Bogoliubov-Born-Green-Kirkwood-Yvon equations of classical statistical mechanics
without linearization or equivalent approximations. Diverging integrals are eliminated by the condition that
bound-particle states with negative internal energy, e.g. , atoms, be excluded from the partition function. The
3-particle distribution functions required for calculating W1, 2«' are obtained as solutions of a nonlinearized
Poisson-Boltzmann equation for the average potential in the neighborhood of two charges 6xed at r1 and rg.
For this latter calculation the difference between average potential and potential of average force is neg-
lected. With the help of W'&, &«' the average thermal energy of the plasma is computed and compared with
the result of the linearized Debye-Huckel theory. Numerical corrections to the latter theory are presented
and it is shown that linearization is a far more signi6cant source of errors than identiacation of average
potential with potential of average force.

I. INTRODUCTION
~ NE of the standard methods for calculating the

thermodynamic functions of a plasma is the solu-
tion of the Poisson-Boltzmann equations. For a plasma
consisting of electrons and one species of monovalent
ions they have the form"

V 4a, s 4arepaaa, 2 aaa, s +O(ras) j
,

+aaasn+expf Wa, s++/k T), —
aaas+ = ra ex,pL —Wa, s+ /kT j.

*Work supported by the U. S. Air Force Once of Scientific
Research.

)On leave of absence from New Mexico State University,
Research Center, University Park, New Mexico.

A. Munster, Statistische Thermodynamik (Springer Verlag,
Berlin, 1956), Chaps. VIII and XXI.

L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-

Throughout this paper the notation is such that sub-
scriptsi = i, 2, 3, indicate specified particle positions
r;, and superscripts q=+, —the charge qe of specified
particles. Thus, @&,2+, n&, 2++, n&, 2+ are, respectively,
the ensemble averages of the potential, the ion density,
and the electron density at r2 if an ion is fixed at r&,
8'~, 2++and LV~, 2+—are the potentials of the average force
experienced by the particles at r2, and n, T, k are, re-
spectively, the average electron density, the tempera-
ture, and the Boltzmann constant. In a macroscopically
homogeneous, isotropic plasma the quantities with sub-
script i j depend only on the distance

(4)

Wesley Publishing Company, Reading, Massachusetts, 1958),
Chap. VII.


