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A recent experiment on K~ capture at rest on He failed to observe any perturbing effect upon the Cou-
lomb levels of the K-mesonic atom from the K~ nuclear interaction. This result was considered to be sur-
prising because the S-wave K-nucleon forces are known to be strong, at least in the isospin-zero channel.
An attempt is made to explain the apparent weakness of the K~He? forces by a Born-Oppenheimer estimate
of the effective potential. The result contains the range of the K-N force as an undetermined parameter; an
upper bound is obtained from the result of the K—-He* experiment. Predictions (upper bounds) are then

made for other very light nuclei.

I. INTRODUCTION

RECENTLY, Burleson et al.! have reported their
observations of x rays emitted during K~ capture
on He!. They find lines with energies of 6.70.2 and
34.740.3 keV in good agreement with the Coulomb
values (corrected for nuclear size and vacuum polari-
zation) of 6.5 and 34.9 keV, respectively, for the L, and
K, transitions in the K—-He* atom. It is also of interest
that the width of the 34.7-keV line is not greater than
the experimental resolution which is about? 5 keV.

In the approximation where the magnitude of the
complex scattering length 4 is small compared with the
atomic Bohr radius (~29 F) the complex energy shift
for an s state is®

Aen=AE,+il'/2=— (44/nB)E,. (¢))

Here # is the principal quantum number, B the Bohr
radius of K—He*, and E, the energy of the state. The
results of Burleson ef ¢l.! imply that the K—He* s-wave
scattering length satisfies (4=a+1b)

a<0.15F,
5<04 F.

(2a)
(2b)

These numbers may be compared with the nuclear
radius* of He!, which is about 1.7 F, and with the
“best” known values of the K-N scattering lengths
which we can take to be (in fermis)®

Ao~—1.64140.51, (3a)
Ay~ —0.2+i0.44, (3b)

* This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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in the isospin states O and 1, respectively. By either
measure it would appear that | 4| is very small. In fact
if one adopts the usual procedure of summing the
scattering lengths for K~ on the constituent nucleons
(a procedure that seems to work for the 7~ level shifts®)
then the predicted value of 4 would be —2.2+41.8 F.

As Bethe and de Hoffmann have stressed® (within the
framework of a special model), however, there is no
justification for assuming that it is the scattering lengths
that should be added rather than the potentials be-
tween the K~ and the constituent nucleons. The fact
that addition of the scattering lengths does seem to
work for 7~ atoms can probably be accounted for by
observing that low-energy =-N s-wave interactions are
quite weak. Because of this the first Born approximation
for the scattering from the effective potential should be
applicable so that the scattering lengths and potentials
are linearly related. One can conclude, then, that for
«— atoms the two ways of calculating are equivalent.

As a matter of fact it is not very difficult to argue that
it is the potentials that are additive rather than the
scattering lengths.” In order to see this consider the
Schridinger equation for a system of four nucleons (in
the case of He?) plus the K~ meson. If the nucleons are
tightly bound together, and if the meson is “spatially
distant” from them, then it should be a good approxi-
mation to factorize the wave function into a relative
part (involving only the K—-He* relative coordinate)
and the wave function of the nucleus itself. The result-
ant Hamiltonian for the relative wave function then has
for its interaction part just the sum of the four K—-
nucleon potentials. These will all have about the same
value of the relative coordinate as their argument but
will be “smeared” over the nuclear volume.®

By making use of this very simple minded argument
it should be possible to gain at least a rough under-
actually predicts the ¥¢*(1405) binding energy to be ~25+4417.5
MeV. This may be obtained from my Eq. (6) with »=0 which
provides a better estimate than the one given by Sakitt et al.

¢ See the discussion in H. A. Bethe and Frederic de Hoffmann,

M eifoog% and Fields (Harper and Row, New York, 1955), Vol. IT,
p- .

70Or the K matrices as used by Beyers, Ref. 2.

8 These arguments are only intended to provide an intuitive
justification for using the “lowest order” optical-model potential.
A more complete formal structure is provided, e.g., by H. Fesh-
bach, Ann. Phys. (N. Y.) 5, 357 (1958).
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147 LEVEL SHIFTS
standing of the relationship between the result of the
He!* level shift measurement and the known K-N
scattering lengths. In order to do this it is necessary to
construct the effective complex potentials responsible
for the K-N scattering. These may then be used to
obtain the effective K-He* nuclear interaction in terms
of a single undetermined parameter, namely, the ratio
of the range of the K-N interaction (the “well” size) to
the radius of the He* nucleus. A K—-He* level-shift
measurement then provides a determination of this
parameter and permits a prediction of the level shifts
(or, equivalently, scattering lengths) in other light
nuclei.

The discussion will be based upon the simplest
possible model where all the interactions are described
by complex square wells with the same radius for the
real and imaginary parts. Further, identical radii will
be assumed for the K-N interaction in both of the possi-
ble isospin states. Although this is a relatively harmless
assumption with regard to the elementary interactions,
since only the “shape independent” quantity 2M V2 is
important (see next section for notation), it will be an
embarrassment in the deduction of the K—-He! inter-
action. This is because the “smearing” of the potentials
over the nuclear volume will affect them very differently
if their radii are greatly different. Nevertheless, the
amount of information presently available hardly
justifies a more sophisticated approach.

II. K-NUCLEON POTENTIALS

Let V be the potential defined with the convention
that positive V corresponds to attraction. If « is the
wave number inside the well, 7 the radius, and M the
reduced mass of the K—p system, then

kr=g+16=[2MV ], 4)
The complex scattering length A then satisfies
A/r=(a+1b)/r= (kr)~ tan(xr)—1. 5)

Unitarity requires that the imaginary part of V must
be positive, and it is easy to see that ¢>8>0 if the real
part is attractive whereas §>¢ >0 if it is repulsive.

Let us first consider the isoscalar interaction. We
shall assume that there is an s-wave bound state (the
Y¢* with mass 1405 MeV, and full width® about 35
MeV) with about 27-MeV binding energy. We know
that the binding energy must be small compared with
the well depth!® so that ¢ in Eq. (5) must be close to
w/2. Further, we can get an estimate of the well size
from the relation

=—Ao— M) 2(B+il'/2)12~03F, (6)

9 As tabulated by A. H. Rosenfeld, A. Barbaro-Galtieri, W. H.
Barkas, P. L. Bastien, J. Kirz, and M. Ross, Rev. Mod. Phys. 37,
633 (1965).

10Tt is shown in Ref. 5 that the zero-range approximation gives
a good fit to the scattering data up to about 30-MeV barycentric
kinetic energy. It follows directly from this that 30 MeV must be
small compared with the well depth.
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F16. 1. (a) Relationship between real and imaginary part of the
wave number in a complex square-well potential at zero energy
when the real part of the scattering length vanishes. See text for
notation. (b) Ratio of the imaginary part of the scattering length
to radius of the square well for the situation as in (a).

where B and I are, respectively, the binding energy and
width of the bound state. If the model is applicable, the
imaginary parts of the two contributions to Eq. (6)
should cancel identically. We shall ignore the fact that
they do not quite do so.!*

It is now possible to obtain an approximate solution
to Eq. (5) by writing

o=m/2+¢,

assuming ¢ and e small, and making use of the measured
scattering length. The solutions are (inserting isospin
indices)

eo~— (2/7) (r/ao)[ 14 (r/a0) JT'=0.15,
So= (1/2) (bo/f)€o2"'~“‘~0.06 ,

and those are small, as assumed.

Consider next the isotriplet interaction. The signifi-
cant fact here is that the scattering length has a small,
negative real part and a substantial imaginary part,
thereby signifying that the real part of the potential is
both attractive and strong provided that 7 is less than
about 1 F (as one would expect). The last remark is
best understood by inspection of Fig. 1(a) which shows
the relationship between o and § when the real part of
the scattering length vaniskes. In this case either o and
6 are about equal (purely imaginary potential) as they

(7a)
(7b)

are on the left-hand part of the curve, or ¢>>8 (attractive

11 By about 0.04 F.
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potential as on the right. But Fig. 1(b) shows that b/r
can only be appreciable in the latter situation.

In the present case the fact that the real part of the
scattering length is negative suggests that the potential
is nearly strong enough for a bound state to occur (the
condition is that ¢/r4+1<0) so that is again makes
sense to write

g1= %1l'+ €1

and assume that ; is small. From Eq. (5), the scattering
length of Eq. (36), and the assumption that r=0.3 F
we find after a little numerical work that

e1=8(1—4/7%) (r/b1)+ (a:/b1) =0, (8a)
61z(z)r/b1z0.45. (8b)

III. THE NUCLEAR POTENTIAL

We now write the K-mucleus potential in two-
component form

U=HZ[(U+Uo)+ (Ur—Uo)r1 J+N(1—13) U1},

where the Pauli matrices are in the representation

01 1 0
o) oely )
10 0 -1

)

Ko
and the two-component wave function is ( K—)' The

nuclear proton and neutron numbers are denoted by
Z and N. The U, represent the smeared potentials
which we now take to be (neglecting €; and o as small
corrections)

Uom (M) (r/ R ) (/2024 2iboag1], (10a)
Ui~ M) (r/ Ry ) (/2024 2ib 1], (10b)

The effect of the smearing over the nuclear volume is
represented by the factor (r/Rx)? which is, of course,
just the ratio of “volumes” of the nucleon and nucleus
(of radius Ry). Equation (10) is something of a hoax as
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it stands because the K-N potentials are so deep that
the interacting particles move with relativistic velocities
in the inner region. We shall later make a simple-minded
correction for this effect by using relativistic kinematics
“inside” the potential.

The near equality of the dominant real parts of the
U provides a great simplification in the form of the
potential Eq. (9), which is nearly diagonal in the
(K°,K-) representation (except in the ‘“‘degenerate”
case N=0). Consequently, we may finally write the
K—-nuclear interaction in the form of the dimensionless
square-well parameter

(KnRy)*= (M n/M)(r/Ra){ C(37)°
+ 2L (N+32) (/b)) + (2) (bo/a0) (r/a0) ]}, (11)

where a factor ¢ has been inserted to allow for the
“internal” relativistic corrections, M, is the K—-
nucleus reduced mass, @ is the nucleon number, and
Kx the wave number inside the nuclear potential. The
correction factor ¢ is obtained from the relationship

(e ()
+[Mx2+(§)2r”2]m—(Mp+Mx)} . (12)

Equation (12) is the consequence of the stated assump-
tion that the potential can be defined by using rela-
tivistic kinematics in the “inner’”’ region for the K
nucleon system.

Up to this point we have guided the discussion by
assuming the value of 7 deduced from the experimental
isoscalar scattering length in Eq. (6). We shall now turn
the game around and attempt to obtain an upper bound
on r from the He* level shift experiment. Since the
experimental scattering length is known to be small it
is reasonable and proper to simplify matters by using
the first-Born-approximation result

A~IK P RP~[44+i14(¢/R)]er.  (13)

A plot of £ 7 versus 7 is shown in Fig. 2. Using the upper
bound on the scattering length from the level shift
experiment we see that (taking the two-standard
deviation limit)

r<0.45F. (14)

IV. CONCLUSIONS

It may not have escaped the reader that the dis-
cussion leading to the derivation of the nuclear poten-
tials has followed along the general lines of the Born-
Oppenheimer approximation.!? The conditions for
validity are essentially that the K~ motion be ‘“slow”
enough for the nucleons to make many collisions among

12 M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).
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themselves during the collision process and that the
perturbing effect of the K~ upon the nucleus be negli-
gible (in the present application). That the first condi-
tion be satisfied may be verified a posteriori from Eq.
(1) and (13) from which one may estimate the capture
time to be ~10718 sec, slow compared with any nuclear
time. The second condition is presumably satisfied as a
consequence of the strong binding of the a particle and
the absence of low-lying excited states. Under these
conditions the effective potential seen by the K~ is just

Vi)=X. / oY@V (r—x]),  (15)

where V; is the potential between the K~ and the sth
nucleon and ¥(x) the wave function of the nucleus.
From Eq. (15) may be seen one major deficiency in the
smearing procedure used to obtain Eq. (10) which
essentially treated ¥(x) as a product of one-body wave
functions. Thus, the first improvement one might seek
in the estimation of V (r) is the inclusion of correlation
effects among the nucleons. These may be expected to
reduce the effective interaction because of the inhibiting
effect of the Pauli principle.

Under the circumstances it would not appear that one
should view with alarm the discrepancy between the
value of 7 deduced from Eq. (6) and the upper bound,
Eq. (14), indicated by the level shift experiment. The
as yet somewhat unsettled state of K—-p scattering
analyses, the admittedly approximate nature of the
present discussion, and the fact that Eq. (14) represents
some sort of average over the isosinglet and isotriplet
radii probably can account for the difference in the two
estimates.

Nevertheless, both estimates of the radius are un-
comfortably small if one wants to interpret it as a
measure of the exchanged mass giving rise to the K-N
interaction. One can do this by relating the square-well
to the Yukawa potential that has the same volume
integral when both potentials have a zero-energy bound
state.’® The result is

M=3r1=4.2 GeV (16)
for r=~0.15 F, a mass that is far too large to correspond

13 Richard D. Levee and Robert L. Pexton, University of
California, Lawrence Radiation Laboratory Report UCRL-7155
Rev. I, (1963) (unpublished).
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TasLE I. Predicted sca.tterin% lengths for K~
f

on very light nuclei (fermis).
Nucleus A=a+1b
Het 0.294-70.06
He? 0.214+:0.04
e 0.214:0.05

to vector-meson exchange.!* Despite this it seems
reasonable to take seriously the two experimental
indications that the effective interaction radius is small
and thereby give somewhat less credence to the theo-
retical interpretation in terms of vector meson exchange.
In doing so one can bear in mind the oft-repeated
observation that s-wave interactions are sensitive to
very short-range forces which are “screened” by the
centrifugal barrier in higher partial waves.

Having taken the foregoing viewpoint it then makes
sense to predict upper bounds on the K~ scattering
lengths for the light nuclides of nucleon numbers three
and four. These are readily obtainable from Eq. (11)
and the Born approximation [first equality in Eq. (13)].
The results are given in Table I. No prediction is made
for the deuteron because its large size and weak binding
would probably make the present approach inapplicable.

It is interesting to observe that the K~ scattering
lengths discussed here may only be measurable in
level-shift experiments. The reason may be seen by
reviewing the criteria for validity of the Born-Oppen-
heimer potentials which imply that the K~ momenta
must be small compared with ~50 MeV/c (taking
nucleon velocities in a nucleus to be about 8=0.1), and
scattering experiments at such low energies are probably
impractical.
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