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For a quantum-mechanical system of ~V identical fermions, the E-representability problem is the problem
of recognizing whether, for a given pth-order reduced density matrix F(»(12 p ~

1'2' . p'), there exists an
antisymmetric )V-particle wave function @(12 Ã) such that I'&»(12 ~ p[1'2' p')=('~v) fg(12 .

1&&)

)&4'*(1'2' ~ .p', p+1. ~ Ã)dr~+& ~ drN. It is shown that if the Hamiltonian of a system is time-reversal
invariant, and the number of particles, 3f, is even, the necessary and sufhcient condition that an approxi-
mate first-order density matrix corresponding to a nondegenerate energy eigenstate be N-representable is
that its natural spin-orbital occupation numbers be equal in pairs.

HE quantum-mechanical expectation value of any
p-particle operator depends only on the pth-order

(reduced) density matrix I'"'. For example, if the wave
function %(xixs x„)—=4(12 Ã) is known, I'&' is
de6ned by

In the case of atomic and molecular systems with 6xed
nuclei, the diagonal elements y(1|1) characterize the
electronic charge distribution, and the full matrix
y(1~1') enables one to calculate the expectation value
of any one-particle operator A =P;A;,

I &»(12. P~
1'2' P') = (",) 4'(l2 .P,P+1 . X)

Xe*(1'2' p', p+1 &V)dr~, dr&, (1).

(A) = A,y(1 i1')dr, , (2)

and the expectation value of, say, a Hamiltonian of
the form X, =nP;H~+P;~B, , is given in terms of
the second-order density matrix by'

(3.m )-=
2

Hi++is I "'(12
~

I'2')dridrs
X—1

Here x; represents the space and spin coordinates of
the particle i. For the case of fermions (bosons), a given
density matrix I'(» is said to be ¹epresentable if there
exists an antisymmetric (symmetric) wave function 4'
in terms of which the given I'"' can be represented
according to (1).The importance of the X-representa-
bility problem (the problem of recognizing when a I'&»

is X-representable) is that if I'"' could be varied over
the set of X-representable pth-order density matrices,
one could replace the energy-variation method for the
wave function by an energy-variation method for the
density matrix. Thus, the Ã-body problem could be
reduced to a two-body problem for a Hamiltonian of
the form of the above example.

In a previous paper' the E-representability problem
was solved for the second-order density matrix for
~V=3 fermions. Here, we shall be concerned with the
first-order fermion density matrix for E even. Then (1)
becomes, v ith I'('&=—y

where 2 I works only on the unprimed coordinate, and
the prime is then removed before the integration. For
the electronic Hamiltonian with fixed nuclei,

one needs the second-order density matrix in general
for energy expectation values, but one can calculate
the total electronic energy of an eigenstate from an
exact knowledge of y(1~1') alone, since the virial
theorem requires E= —T, and the kinetic energy T can
be calculated by (2). Although we have no way at
present of 6nding the exact y without a knowledge of
the exact 0', it is nevertheless of interest to study the
conditions that a physically realizable p must satisfy,
that is, the X-representability conditions for p.

The known conditions" for the X-representability
of a 6rst-order density matrix are

A. v must be Hermitian, y(1~1')=y*(1'~1),
H. y must be positive semide6nite,

y(1)y(1
~

1') p*(1')dr&dr& &~ 0

for any normalizable one-particle function p,
C. y must have 6nite trace. We shall assume here

that y is normalized to X:

y(l
~

1')=A 4(12 &V)%'e(1'2 N)drs ~ drN. (1') Try= y(1~1)dri
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If X is even and the Hamiltonian is time-reversal
invariant, these conditions enable us to give the
necessary and su6icient conditions that a trial first-order
density matrix for a nondegenerate energy eigenstate
be N-representable. %e stated and proved the following
theorem elsewhere' but with the normalization Try= i.
In the present normalization, Try=%, we restate

Theorem 1: A su6icient condition for the S-repre-
sentability of a first-order density matrix y is that it
satisfy conditions A to D and that all eigenvalues of y
be evenly degenerate (have multiplicities divisible by
two).

First-order density matrices with doubly degenerate
eigenvalues occur widely in physics and chemistry. For
example, if 4 is an eigenfunction to 5„then the natural
spin-orbitals can be chosen to have pure n or pure P
spin functions. (A simple proof of this assertion is given

by Lowdin. ') The first-order density matrix will then
be of the form

s„; is the y-component of the spin angular-
momentum operator, and Y,=e' '»t". Now E is an
antiunitary operator, ' that is, it is unitary (EEi=1)
and antilinear:

E(C141+C2%g) = Cl E@1+C2 E+2.

Further E'=+1 if E is even, and E = —1 if S is odd.
Any antilinear operator can be written as the product
of Eo and a linear operator, and it is only Ko in (4)
mhich is antilinear.

The "turnover rule" for a linear operator F,

(FÃi)Wgr,

becomes, for an antilinear operator K,

%i*E%'nfl= (E'4'i)% 2*dr.

&=e' B~t"E:0——~i~2 - ~+&0, (4)
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where r j represents the spatial coordinates of particle 1,
and P» its spin coordinate. If the eigenvalue of 5, is zero,
then, since p+=p, each eigenvalue will be doubly
degenerate. '

Micha~ showed that even when spin-orbit coupling is
taken into account in atomic wave functions, and + is
no longer an eigenfunction of 5„this double degeneracy
will still arise if 4 is an eigenfunction of J, and of the
time-reversal operator.

%'e can show that this double degeneracy is actually
much more general.

Theorem Z: If the Hamiltonian of a system is in-
variant under time reversal, then the natural spin-
orbitals associated with any nondegenerate energy
eigenstate have their occupation numbers equal in pairs.

Before proving Theorem 2, we shall prove three
lemmas.

The time-reversal operator K appropriate for this
problem is, in the standard representation for spin
functions 8

By hypothesis, 3C commutes with K. This commuta-
tion is assumed to hold for all quantum-mechanical
systems as long as no external magnetic fields are
present. Therefore, we have

Lemma I: If 0' is an energy eigenfunction (X%=Pk)
and KE= E;GC then K%' is also an energy eigenfunction
with the same eigenvalue

BC (E%')=E(X%)=E (E@).

If 4' is nondegenerate, E% can dier from 4 only by a
Phase factor:

K% =e'M.

The antilinear property of K enables us to choose the
phase of + such that%'= e~C belongs to the eigenvalue
+1 of E. For if P=a/2,

Lemma Z: If under the hypothesis of Lemma i, 0' is
nondegenerate, the number of electrons E must be
even. (This is a consequence of Kramers' theorem. )

Proof: If X is odd, E'= —1, E= Et, and E+ is-
orthogonal to 4:

O'*E%'dr = (E%)%'dr = — (E+)4'*dr =0, (8)

where we have used (6). Since@' and E% are orthogonal
eigenfunctions belonging to the same energy eigenvalue
E, this eigenvalue cannot be nondegenerate, contrary
to hypothesis. Therefore, X must be even if 0 is non-
degenerate.
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[Eg,y]= 0,

Lemma 3:If under the hypothesis of Lemma 1, 0' is
nondegenerate,

()
Proof: We wish to show that

Eg~(1)=egg (1) (10)

where Ki—=Ko e xp(i~ s»/h) =—KOYi is the one-particle
time-reversal operator and y is the integral operator
whose kernel is y. (For electrons, we have Fr=f0»,
where 0» is a Pauli spin operator. )

for every function g(1) in the domain of y. Since by
hypothesis, 0 is a nondegenerate energy eigenfunction,
its phase can be chosen such that K%=4, with
K= V~F2. V~KO. Then we have

K,yg(1) =Kg y(1~ 1')g(1')dr(,

=E&$ 4(12 X)4'*(1 2 ~ -V)g(1 )drpdr2 ~ . drN

Ft@'*(12 1V)%'(1'2 ~ E)g*(1')dry dr2 dry

[Fu ' ' &N &z ' &yE04'(12' ' '1V)]4(1'2 V)g+(1')dry dr2 drN

+(12 '$)[&2' ' Yy%'*(1'2 1V)] g (1')dr~ dr2 ~ ~ ~ drN

+(12' ' '~V)[yl' Fl'F2' ' 'FNKO@(1'2' ' 'A)] g (1')dr& dr2 ~ dr&.

%(12 ~V)+*(1'2 ~ E)P'q g+(1')dry dry dry

y(1i 1')Egg(1')dr, .=yEgg(1),

where we have used the fact that I'j is linear, and the
Eo implicit in E& acts on everything to its right in (10).
We have also used the fact that ROY; = Y;Ko since V,. is
real, and that [F;,F;]=0 since these operators operate
on separate variables if i / j.

We may now prove Theorem 2: Since E&y=yKj, ,
E~f;(1) is a natural spin-orbital (an eigenfunction of y)
if f, (1) is. But Eqf, (1) according to (18) is orthogonal
to f, (1) and must therefore be another natural spin
orbital having the same eigenvalue (occupation number)
as f, (1).

Thus the E-representability problem for the first-
order density matrix p for nondegenerate (exact or
trial) energy eigenfunctions is solved for systems having
Hamiltonians invariant under time reversal. Such
energy eigenfunctions must have an even number of
electrons, otherwise they would have a Kramers

degeneracy. We need only impose the double degeneracy
on the eigenvalues of y, since this condition is both
necessary and sui5cient to ensure X-representability by
a nondegenerate (exact or approximate) energy
eigenfunction.
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