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Proof of the Impossibility of a Classical Action Principle for Magnetic
Monopoles and Charges without Subsidiary Conditions~
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A proof is given that no action principle exists for the classical electromagnetic Geld when its sources are
both charged particles and magnetic monopoles unless an extra condition, not derivable from the action prin-

ciple, is assumed. The extra condition is that charges never touch magnetic monopoles. The Lorentz force
law predicts that a charge and a magnetic monopole approaching each other along a straight line will collide.
Since the Lorentz force law can only be gotten from an action principle with the aid of this extra condition,
the necessary extra condition is in contradiction to the law derived with its help. Thus there is no satisfactory
action principle for the classical electromagnetic field if both charges and magnetic monopoles exist. The
foregoing provides an aesthetic argument against the existence of magnetic monopoles. An action principle
has then been constructed using the extra condition. It is analogous to the usual action principle for (charge-
only) electromagnetic theory, but J"A, is replaced by J'R, —E"T„where J"and E„are the 4-dimensional
current and magnetic monopole densities, respectively, and R„and T„are gaugeless effective potentials. "
Electromagnetic theory is formulated in a gaugeless way in terms of these effective potentials in the Ap-
pendix.

I. INTRODUCTION
' 'N recent years, a good deal of work has been done
~ ~ on the theory of magnetic monopoles. ' Much of the
interest in magnetic monopoles seems to be motivated
by aesthetic considerations, in particular the symmetry
induced in Maxwell's equations and the fact that if
magnetic monopoles exist they would provide a reason
for the quantization of electric charge. ' In view of the
lack of success of a number of experimenters in finding
magnetic monopoles, '~' it seems reasonable to see if
there might be aesthetically unappealing features
about magnetic monopoles. This paper is about one
such feature.

Ke define the action of a physical system dependent
on E independent variables as a scalar which, when
varied with respect to each of the variables inde-
pendently, gives the E equations of motion of these
variables, thus completely specifying the dynamics of
the system.

The purpose of this paper is to show that if special
relativity and Coulomb's law are valid at all distances,
then no classical action principle exists for the electro-
magnetic-field —particle system when the particles
present include both charges and magnetic monopoles.
The problem is much more dificult to formulate
meaningfully in the quantum-mechanical case as the
equations of motion are initially given in terms of a
Hamiltonian. No proper quantum-mechanical action
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principle has yet been found and the impossibility of a
classical action principle suggests that the quantum-
mechanical case may also be impossible, especially
since a classical action principle is so natural and easy
to formulate in the case of the electromagnetic-field—
particle system when the particles are only charges.

Dirac, in his 1948 paper, has given a classical action
principle, but in order to make it work he has had to
impose the extra condition that "a (nodal line) must
never pass through a charged particle. "This condition
is not derived from the action principle, but imposed on
it and is a serious constraint on the equations of motion.
It is shown later in this paper that this constraint is,
in the case where the particles are a spinless charge and
a spinless monopole, inconsistent with the Lorentz
force law which is derived from the action with its help.
In any case, the use of a constraint not derived from
the action principle puts Dirac's action outside of our
definition of action.

Cabibbo and Ferrari attempted to find a second-
quantized action principle using Mandelstam's' formu-
lation of quantum electrodynamics. Their lack of
success' inspired this proof.

rr. PROOV THAT NO CONVENTIONAL ACTION
PRINCIPLE EXISTS WITHOUT EXTRA

CONSTRAINTS

In this paper the Einstein summation convention
will be adhered to regarding Greek letters, i.e., if a Greek
letter appears as an index more than once in a term, a
summation of that index over all four values is to be
understood.

The equations of motion for a charge in an electro-
magnetic Geld are

nsd U„/dr =eF„„U",
8 P. A. M. Dirac, Phys. Rev. 74, 817 (1948).
9 S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 {1962).' N. Cabibbo (private communication).
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Ke assume that for some value of X, call it X0', all
of the Gelds vanish, i.e.,

where U„ is the four-velocity, v the proper time, and
F„„the electromagnetic Geld tensor. The left-hand term
in (1) is trivially obtained from the variation with
respect to XI', the particle coordinates, of the free-
particle term, Sp, in the action

F„„(XO,X")=0

Sp=——mc

for any value of X".
Such a value of X might be, for instance, ~~ . A

(2) particular solution to (9) is

If S is the total action, we wish to Gnd all Sr,

Sr—=5—Sp,

such that the variation of Sr with respect to X& gives
the right-hand side of (1) for any given F„„.Thus we
demand

dr F„.(X)U'bx&.

Since the J'„"dr appearing in the answer (4) cannot
arise as a result of the variation, Sr must be of the form

Mr= eU" F (x"x")dx-',

dT iVr.

as can be verified by direct calculation. The asymmetry
of F,„means that U does not appear in (12) and thus
that 5/Ax is just d/dX . In (12), as in similar integrals
to follow, the integral is meant to be taken along the
X axis only, the other three coordinates X~ being
Axed. We now consider the general solution to (10).
Consider the following action:

Sr= (5) The variation of S~ with respect to X is, by definition,

In general we wish to let Mr be any function of the
X& and any of the derivatives, d"Xl'/dr", of X& with
respect to the proper time v. Thus if we write

~xaSx = ~Sr
d7. 5X'.

AX'
(14)

Mr
d , bx~(r-),

AX~
(6)

which is to be taken as the definition of AMr/Ax", then

~Mr

nM
(—1)"

dr" 8 (d"X&/dr")

Equating (6) and (4), we get

-SMr —eF„„(X)U" =0.dr SX~(r)
b,X~

Since the Bx&(r) are arbitrary functions of r, Eq. (8)
implies

~r/EX~= eF„.U'

for each choice of p, separately.
The general solution to (9) is given, since 6/DX& is

a linear operator, by a particular solution plus the
general solution to the homogeneous equation

Since the bx (7) are arbitrary functions of r, the
statement that BNr/Dx'=0 is equivalent to the state-
ment that bx S~ 0. Therefor——e, if DNr/Ax'=0, S~ is
not a functional of X, but only of the X~; i.e., varying
the path in the X direction produces no variation in
the value of S~. The statement that S~ is not path-
dependent at all is equivalent to the statement that
Sz is a total r derivative. If Er is not a total derivative,
but S~ does not vary with X, Er is a function only of
the X" and not of X'. Thus, in general, if bx 5~=0,

iVr = N, [X"]+dH, /dr,

where the square brackets indicate that N, [X"]is a
function of the X~ and their time derivatives to
arbitrary order.

We see then that the general solution to (9) is

F~,(x",X")dx"+N [X"]

+ Ho(X), (16)—
dT

~N, /~X. =0.

Sr=

for each choice of u separately.

(10)
for each choice of a. Thus if any 5& is to give the right-

In what follows we adopt the convention that hand side of (1), it must be of the form
repeated small italic letters are not summed over.

OQ Xa
Repeated capital ituhc letters will be summed over
the three indices not equal to their smaller counter- Q 0 p

parts; i.e., a repeated A will be summed over the three
indices not equal to a,
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%e wish now to display in more accessible form the
condition that Sr must give the right-hand side of (1)
for each choice of a separately. To do this we take the
variation of Sr, 8~Sr, and set it equal to (4).

By considering the equation of motion of a monopole
in an electromagnetic 6eld, we arrive by the same
analysis at the analogous necessary condition (where
Vl'= d—YI'/dr ', Y& are the pole coordinates)

dr e—(bX")
~T

+eU"bX~

F.gx"

Ag,
8 P gX '+ — -8X~

ax&

V~J"—V"J~=o, (24)

at each point, for all y and v.
We will show later that (23) and (24) are suflicient

as well as necessary conditions for an action principle.
Either (23) or (24) implies

dr 6X"U s dX '(B.F 8F,.—) J~K"—J"%~=0 (25)

dr F,„(X)U"8X",

hiVo[X ]
SX~

gXA

(ls)

at each point, for all p, and v.
Thus we see explicitly that we cannot make an

arbitrary choice of J& and El' in Maxwell's equations
and have an action principle for monopoles and charges
together. There are only two ways in which (25) can
be satisfied: Either

where we have written 8/BX~ as 8„. Equating the
second and third lines, we get

0a

dX"(a.P..—B.P,) F,U")—
aÃ.

+ bX" -=0. (19)
ax~

6Ã,
-=eU~ Fg-~x' dX '(BgF, 8F,g)—. (20)

The left-hand side of (20) is not a function of X .
The term on the right-hand side of (20) that has
(e=o) is identically zero. Taking 8, of (20) we get as a
necessary condition on Ii „,for the existence of an action
principle

U (8 F~ +B~F o+8 F ~) =0, (21)

but since Maxwell's equations are

aF = —J„; a (Ft)„„=It„; (F')"=2~"-sF'—
where J„and E„are the electric and magnetic current
densities, respectively,

~a~A. a+ ~A~aa+ ~n~aA &aA. a/+

Equation (21) can be written, using (22), as

Since bX"(r) is an arbitrary function of r and since
the (i =u) term in (19) vanishes identically, (19)
implies

(a) J~ or K~ is zero, at each space-time point, i.e.,
charges and monopoles never overlap. (This is guaran-
teed by the previously given condition in Dirac's paper
that "a nodal line must never pass through a charged
particle. ") Or,

(b) J"(X)=f(X)E&(X), where f(X) is any scalar
function. Regardless of the choice of f(X), for a system
of point particles, this is true only if each particle has
a particular 6xed ratio of charge strength to pole
strength. This can be seen by writing out Jl'= fF."
as J =fE and J=fK, which gives IPJ=JOK, and
substituting the appropriate forms for the charge
densities and currents.

The Lorentz force law is implied by Coulomb's law
and special relativity. It says that if a charge is moved
toward a, pole along a radial line no force is exerted and
they mill at some time be at the same point, violating
(a) and (b). Thus if special relativity and Coulomb's
law are valid at all distances, there can be no action
principle for monopoles and charges.

In Dirac's" treatment of monopoles, the assumption
is made that monopoles lie on a line where the electron
wave function is zero. Thus (23) and (24) are satisfied
by assumption.

III. FORMAL CONSTRUCTION OF AN ACTION
PRINCIPLE VGTH EXTRA CONSTRAINTS

In spite of the above remarks, we will now formally
construct an action principle assuming that the charges
and poles are, for whatever reason, distributed ac-
cording to (23) s.nd (24). No other constraints than
(23) and (24) will be necessary. First consider

U~E;"—U"X~=0,

at each point, for all y and v.
Sr =—-'e dv U' dXI"Ii„,. (26)
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n be written.h form in whichThere is another
Since

It variation»

oo

dr (b—X")5XSre= &

dr 0

~/pdX" ~~v

d g (x)=e

d4„K (x)=g

dr U" (&) &

ds V"(s)

(32)

—-e1
4L

=-e1

gXvvag
Xp

F„+X"

p gX"+0 "$X ~a
Xo

d, &X U"
X&

dx"(»"+'" "

X&

X 'U"(~ F "+~"gXa
Xp"

S„=met" d~+mac

d4X J"
0

dX" ~~v

d4g E"
—QO

Y"

33(Ft)ye '

0
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P2AX'+
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4 xo"
K

&

(47)

F,ax"+
1 Xp2Xp

p„dx" (37)p„dX"+

X

y"(x)=-- dx"'J"
v

0

p„dx"+
X020

0

dX" ~"
4 xo
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