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A proof is given that no action principle exists for the classical electromagnetic field when its sources are
both charged particles and magnetic monopoles unless an extra condition, not derivable from the action prin-
ciple, is assumed. The extra condition is that charges never touch magnetic monopoles. The Lorentz force
law predicts that a charge and a magnetic monopole approaching each other along a straight line will collide.
Since the Lorentz force law can only be gotten from an action principle with the aid of this extra condition,
the necessary extra condition is in contradiction to the law derived with its help. Thus there is no satisfactory
action principle for the classical electromagnetic field if both charges and magnetic monopoles exist. The
foregoing provides an aesthetic argument against the existence of magnetic monopoles. An action principle
has then been constructed using the extra condition. It is analogous to the usual action principle for (charge-
only) electromagnetic theory, but J*4, is replaced by J’R,—K’T,, where J” and K, are the 4-dimensional
current and magnetic monopole densities, respectively, and R, and T, are gaugeless “effective potentials.”
Electromagnetic theory is formulated in a gaugeless way in terms of these effective potentials in the Ap-
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I. INTRODUCTION

N recent years, a good deal of work has been done
on the theory of magnetic monopoles.! Much of the
interest in magnetic monopoles seems to be motivated
by aesthetic considerations, in particular the symmetry
induced in Maxwell’s equations and the fact that if
magnetic monopoles exist they would provide a reason
for the quantization of electric charge.? In view of the
lack of success of a number of experimenters in finding
magnetic monopoles,’¥~7 it seems reasonable to see if
there might be aesthetically unappealing features
about magnetic monopoles. This paper is about one
such feature.

We define the action of a physical system dependent
on N independent variables as a scalar which, when
varied with respect to each of the variables inde-
pendently, gives the NV equations of motion of these
variables, thus completely specifying the dynamics of
the system.

The purpose of this paper is to show that if special
relativity and Coulomb’s law are valid at all distances,
then no classical action principle exists for the electro-
magnetic-field-particle system when the particles
present include both charges and magnetic monopoles.
The problem is much more difficult to formulate
meaningfully in the quantum-mechanical case as the
equations of motion are initially given in terms of a
Hamiltonian. No proper quantum-mechanical action
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7 E. M. Purcell et al., Phys. Rev. 129, 2326 (1963).

147

principle has yet been found and the impossibility of a
classical action principle suggests that the quantum-
mechanical case may also be impossible, especially
since a classical action principle is so natural and easy
to formulate in the case of the electromagnetic-field—
particle system when the particles are only charges.

Dirac,? in his 1948 paper, has given a classical action
principle, but in order to make it work he has had to
impose the extra condition that ‘“a (nodal line) must
never pass through a charged particle.” This condition
is not derived from the action principle, but imposed on
it and is a serious constraint on the equations of motion.
It is shown later in this paper that this constraint is,
in the case where the particles are a spinless charge and
a spinless monopole, inconsistent with the Lorentz
force law which is derived from the action with its help.
In any case, the use of a constraint not derived from
the action principle puts Dirac’s action outside of our
definition of action.

Cabibbo and Ferrari attempted to find a second-
quantized action principle using Mandelstam’s® formu-
lation of quantum electrodynamics. Their lack of
success'® inspired this proof.

II. PROOF THAT NO CONVENTIONAL ACTION
PRINCIPLE EXISTS WITHOUT EXTRA
CONSTRAINTS

In this paper the Einstein summation convention
will be adhered to regarding Greek letters, i.e., if a Greek
letter appears as an index more than once in a term, a
summation of that index over all four values is to be
understood.

The equations of motion for a charge in an electro-
magnetic field are

mdU“/dT=errU,, (1)

8 P. A. M. Dirac, Phys. Rev. 74, 817 (1948).
9 S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962).
10 N. Cabibbo (private communication).
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where U, is the four-velocity, = the proper time, and
F,, the electromagnetic field tensor. The left-hand term
in (1) is trivially obtained from the variation with
respect to X# the particle coordinates, of the free-
particle term, S, in the action

Sp-:—“:—mc/ dr. (2)
If S is the total action, we wish to find all Sy,
SIES"°SF ] (3)

such that the variation of St with respect to X# gives
the right-hand side of (1) for any given F,,. Thus we
demand

6XSI=C/ dT F;w(X)U'aX“. (4)

Since the JZg dr appearing in the answer (4) cannot
arise as a result of the variation, Sy must be of the form

SI=/ dr M;.

In general we wish to let M be any function of the
X# and any of the derivatives, d"X#/dr"», of X* with
respect to the proper time 7. Thus if we write

)

®  AM;
5XSIE/ dr—8X*(7), 6)
_w  AXH

which is to be taken as the definition of AM ;/AX*, then
AM;
AX#

ar oMy
drm 9(dnX+/dr)

=% (-1

n=(

(7
Equating (6) and (4), we get

® AM
/ dr 6X* (T)|:
o AX

j—eF,..(X)U']=O. ®)

Since the 6X*(r) are arbitrary functions of 7, Eq. (8)
implies
AMI/AX”=8F‘IVU, (9)

for each choice of u separately.

The general solution to (9) is given, since A/AX* is
a linear operator, by a particular solution plus the
general solution to the homogeneous equation

AN/AXe=0. (10)

In what follows we adopt the convention that
repeated small italic letlers are not summed over.
Repeated capital dtalic letters will be summed over
the three indices not equal to their smaller counter-
parts; i.e., a repeated A will be summed over the three
indices not equal to a.
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We assume that for some value of X¢, call it X ¢ all
of the fields vanish, i.e.,

Fuy(Xo%X4)=0 (11)

for any value of X4.
Such a value of X¢ might be, for instance, 2=. A
particular solution to (9) is

Xa
M1=eU"/ Fop(X¥,X*)dX, (12)
X0

as can be verified by direct calculation. The asymmetry
of F,, means that U* does not appear in (12) and thus
that A/AX¢1is just d/dX e In (12), as in similar integrals
to follow, the integral is meant to be taken along the
Xe axis only, the other three coordinates X4 being
fixed. We now consider the general solution to (10).
Consider the following action:

SN=/ dr Np.

The variation of Sy with respect to X is, by definition,

@ ANy
3x°SN=f dr —08X°.
—» AXe

(13)

(14)

Since the 6X¢(r) are arbitrary functions of =, the
statement that AN;/AX*=0 is equivalent to the state-
ment that §x2Sxy=0. Therefore, if AN;/AX*=0, Sy is
not a functional of X¢, but only of the X4; i.e., varying
the path in the X direction produces no variation in
the value of Sy. The statement that Sy is not path-
dependent at all is equivalent to the statement that
Npis a total 7 derivative. If Ny is not a total derivative,
but Sy does not vary with X¢ N;is a function only of
the X4 and not of X¢ Thus, in general, if §x2Sy=0,

Ni=NJ[XA]+dH,/dr, (15)

where the square brackets indicate that N,[X4] is a
function of the X4 and their time derivatives to
arbitrary order.

We see then that the general solution to (9) is

Xa
Mi=eU’ / Fo(X¥ X)dX¥+N,[X4]
Xo®

d
+d_Ha(X) , (16)

Jor each choice of a. Thus if any Sy is to give the right-
hand side of (1), it must be of the form

) Xea
Sp= / dr‘eU” / FodX“+N[X4]|, (7)
—® Xo®

for each choice of @ separately.
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We wish now to display in more accessible form the
condition that S7 must give the right-hand side of (1)
for each choice of @ separately. To do this we take the
variation of Sz, §xSr, and set it equal to (4).

Xo
FodX+

Xo*

© d
6x51=/ dr{e—(b‘X")
o dr

Xa

AN,
+eU"6X"‘/ aaF,,.dX“'—}———BXA}
AX4

Xo®
) Xa

=/ dr{éX"U“e/ dX“l(apFaq—aaFuv)
—0 Xo®

AN [ X4
(AL
AX4

=e / dr F,,(X)UsX", (18)

where we have written 9/dX* as d,. Equating the
second and third lines, we get

0 Xa

/d'rléX'e(U“/ dX“'(a,Faa—aaFa,.)——F,,‘U“>

—o0 X*
AN,
+——-5XA}=O. (19)
AX4

Since 6X”(7) is an arbitrary function of 7 and since
the (v=a) term in (19) vanishes identically, (19)
implies

AN,

AXA4

Xa
=eU“{FA,,— / an'(aAFa,,-a.,FaA)}. (20)

Xo*

The left-hand side of (20) is not a function of Xe.
The term on the right-hand side of (20) that has
(a=a) is identically zero. Taking 9, of (20) we get as a
necessary condition on F, for the existence of an action
principle

Ua(auFAa+aAFaa+aaFaA)=0; (21)

but since Maxwell’s equations are
OF = —J,;

a”(FT),,,,=K,,; (FT)FPE%euvaﬁFaB7

where J, and K, are the electric and magnetic current
densities, respectively,

aaFAa+aAFaa+aaFaA= —faAaﬂKﬂ- (22)
Equation (21) can be written, using (22), as
UsK*—U"K»=0, (23)

at each point, for all 4 and ».
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By considering the equation of motion of a monopole
in an electromagnetic field, we arrive by the same
analysis at the analogous necessary condition (where
Ve=dYV*#/dr; Y* are the pole coordinates)
Ve —VrJr=0, (24)

at each point, for all x and ».

We will show later that (23) and (24) are sufficient
as well as necessary conditions for an action principle.
Either (23) or (24) implies

JeK —JKe=0, (25)
at each point, for all x and ».

Thus we see explicitly that we cannot make an
arbitrary choice of J# and K* in Maxwell’s equations
and have an action principle for monopoles and charges
together. There are only two ways in which (25) can
be satisfied: Either

(a) J* or K* is zero, at each space-time point, i.e.,
charges and monopoles never overlap. (This is guaran-
teed by the previously given condition in Dirac’s paper
that “a nodal line must never pass through a charged
particle.”) Or,

(b) J#(X)=f(X)K#(X), where f(X) is any scalar
function. Regardless of the choice of f(X), for a system
of point particles, this is true only if each particle has
a particular fixed ratio of charge strength to pole
strength. This can be seen by writing out J#= fK#
as Jo=fK° and J=fK, which gives K°J=J°K, and
substituting the appropriate forms for the charge
densities and currents.

The Lorentz force law is implied by Coulomb’s law
and special relativity. It says that if a charge is moved
toward a pole along a radial line no force is exerted and
they will at some time be at the same point, violating
(a) and (b). Thus if special relativity and Coulomb’s
law are valid at all distances, there can be no action
principle for monopoles and charges.

In Dirac’s®8 treatment of monopoles, the assumption
is made that monopoles lie on a line where the electron
wave function is zero. Thus (23) and (24) are satisfied
by assumption.

III. FORMAL CONSTRUCTION OF AN ACTION
PRINCIPLE WITH EXTRA CONSTRAINTS

In spite of the above remarks, we will now formally
construct an action principle assuming that the charges
and poles are, for whatever reason, distributed ac-
cording to (23) and (24). No other constraints than
(23) and (24) will be necessary. First consider

0 Xk
Sr= %e/ dr U'/ AX¥Fyy. (26)
—0 X!
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Its variation is

Xe

g d
6x51.=ie/ d‘r[—(BX”) Fudxv

dr X

X»
+U%%X*d,

Xo*

A Xn
=1¢ / dr { —8X*U=d, / FodX*
-0 Xo*

X»

o

+U”6X"‘8a/ F,...dX*"}

X"

o0 Xu
=%e/ dr 5X"‘U”/ AXH (3oF yyt 9,F ap)
J X

00 Xn

%e/ dr 5Xa/ dX“lUy(aaF“y+ 67Fau) . (27)
—0 X"

Inserting (21) into (27), we get

=3 Xn
8xSr.=1%e / dr 8X=U" / dX#3,F.,
—0 Xo*

=e/ dr8X*U’F,,. (28)

Thus the action (26) gives the correct answer (28)
under the condition (21).

The equations of motion for a pole in an electro-
magnetic field are

mgdV,/ds=—g(F1),, V", (29)
where s is the monopole proper time.

A similar analysis to that given above shows that
(24) is a necessary and sufficient condition for an action
to exist which gives (29). If (24) is true, then an action
which gives the right-hand side of (29) is

0 YK
sm=—%g/ ds V’f v (FY),,.  (30)
—0 Yo“

Thus, if (23) and (24) are true, the total particle
action can be written as

Sp=mec/ dr—}—m,,c/ ds

) X»
—1e f dr U f dX¥F,,
— X

-] Y+
+%gf ds V,/ AV (). (31)
—0 Yo
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There is another form in which S, can be written.
Since

/ d‘*x]’(x)=e/ dr U (r),
[ d4xK’(x)=g/ ds Ve (s),
S,,=m,c/ dr—}-m,c/ ds
1 0 Xu
——f d‘x]'/ dX¥F,,
4 —0 Xo*

1o r
+—_[ d*x K"f dYH (F1)y.
4 — Yo*

We now define two “effective potentials”

(32)

(33)

Xu

R,(X)EZ/ dXHFyuy;
- (34)
1 r¥
T,(Y)E—f AV (F1)y.
4 Yo*
Then (33) becomes

S,,=m,c/ d'r-l-mgcf ds

—-/ d“x]"R,+/ dx K'T,. (35)

In the case of charges alone, F,,=9,4,—3,4,;
K,=0;m,=0; and

®

Sp=m,c/ d-r—/ dxJ*4,.

Equation (26) also becomes the usual Sr..
In the Appendix we will derive Maxwell’s equation
in terms of the effective potentials.

ACKNOWLEDGMENTS

I would like to thank Professor K. W. Ford and
Professor D. J. Kleitman for their advice and help in
the preparation of this paper.

APPENDIX

In 1962, Mandelstam® showed a way in which quan-
tum electrodynamics could be formulated without
potentials appearing in the equations of motion.
Cabibbo and Ferrari'! extended Mandelstam’s scheme

1t N. Cabibbo and E. Ferrari, Nuovo Cimento 23, 1147 (1962).
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to include magnetic monopoles through the use of two
four-potentials. In both these theories, while the final
equations of motion are gauge-invariant, potentials are
used in their development.

The formulation of electrodynamics in terms of the
effective potentials is developed here without ever
using potentials and thus there is no such thing as
gauge or gauge transformations.

In (34) we have defined the effective potential in
terms of F,,, while normally F,, is given in terms of
the potential. We will now “invert” (34) to do this.
Consider

x1 X2 X3
4Ry~ / FudX'+ [ FadX?+ [ FadXv; (36)
X X2 X
X0 x? x3
-1-R1=/ F01dX°'+f FydX¥+ FydX¥. (37)
Xo° X2 Xt
Thus
X2 X3
461R0= F10+ dX2’31F20+ dX3’61F30. (38)
X2 X0
From (22) we have
01F 20= — K34 0:F 10+ 9oF21; (39)
01F 30=K?+33F 10+ 00F 1. (40)
Thus (38) becomes
X3 X2
-}(61R0) =3F10+ l/ dX3,K2— dleKa}
X,? X2
X2 X3
+80{/ dX?'Fzri'/ dX:"Fal] , (41)
X2 X®
but
X2 X3 X0
/ dX21F21+ dX3'F3154R1—/ dXO/F()l . (42)
X¢? Xo* X"
Thus
4(3.Ro— 9oR1)=4F,
X3 X2
+ l/ dX¥K2— deKa} 43)
X Xo?
and
Xa
F1o= (81Ro0— 30R1)—%e10ap'/‘ dX*“K?" (44)
X0

and, since there is nothing special about the choice (1,0),

Xa
Frr= (3,Rs— 3,R,)— eprap / AX<EKS. (435)

x,”
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A similar analysis gives

Ya
(FOI‘V: (ailTD_ aIT#) —'.lifpraﬂ/ dYa’Jﬁ . (46)

Yo

Equations (45) and (46) clearly show the reduction to
the usual F,, when only charges are present, since if
9*(F1),,=0, F,, can be written in the form (9,4,
—a,4,), which gives in Eq. (34) R,=4,+9,A, and
thus R, and 4, differ only by a gauge transformation.
Also if there are no monopoles the ¥* coordinates are
not defined. These results can be put in somewhat
nicer form by making the definitions

Ru=0,R,—9d,R,;

1r rx* x*
K'“(X)E—[f dX“'K'—/ dX"'K“];
4L xo Xo” (47)

1 X xr
]“”(X)E—l: / ax¥Jjr— / dX"’J"].
4LJ xo# X0

Note that all the above tensors are antisymmetric in
their indices. With these definitions (45) and (46)
become

Tp=0,T,—09,T,;

Fu=R,,— (Kf),‘,;
(FT)W’:TA"’_ (]T)”,,

Taking the dual of (48) and putting it equal to (49),
we find the identity

(48)
(49)

Tuv_' (JT)I"= (RT)MV+KHP'

Maxwell’s equation in terms of the potentials are,
therefore,

(50)

6V.R”y= av(KT)“v_J}t, (51)
6"TW= GV(JT)‘”-l-K“’ (52)
or,
9"9,Ry=J,—9"(K1),,+9,0'R,, (53)
0°0,Ty=—K,—3"(J1)uy+0,0"T,. (54)
From (34) we get
1 px 1 v
6"R,= —_/ an’]a; a”Tp=_ / dYQ/Ka. (55)
4 J x4 Yo
Thus
Xa
DR;&:J;‘_%(’“/ dX“’Ju—aV(KT),‘” (56)
X"
Yﬂ
OT,=—K,+1d, / AYKoa—8"(JDpu.  (57)
Yo*



