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Ke discuss the properties of the 15-dimensional SU(4) supermultiplet of negative-parity excited states
of the A =4 system. This multiplet consists of the electric-dipole resonance and its spin-isospin analogs.
The position of the "center of gravity" of this supermultiplet is determined by the Wigner and Majorana
components of the nucleon-nucleon force, while the splittings within the supermultiplet are due to the
spin-dependent parts of the force. We calculate the energies and state vectors of these levels within the
framework of the shell model after isolating the center-of-mass motion and assuring ourselves that we are
dealing with proper intrinsic excitations of the system. We compute the position of the "center of gravity" of
the supermultiplet and the splittings within it,u sing both a Kurath force and a force taken from low-energy
nucleon-nucleon scattering. The results are compared with some recent experimental 6ndings concerning
these levels.

MONG the very light nuclei, He4 is the one with
the highest symmetry. This reflects itself not only

in the quantum numbers characterizing the ground
state of He4 but also in its exceptional stability: The
lowest ionization energy for He4 is the threshold energy
19.813 MeV for the reaction He4~H'+p, and no
bound states below this energy are known.

In the past few years, several unbound excited states
in the A =4 nuclei have been identi6ed. These include
a 0+ T=0 state at 20.1 MeV' ' and a group of negative-
parity states in H4, He', and Li4 at energies between
20 and 30 MeV' —' above the ground state of He'. The
latter turn out to have a particularly simple structure
and their analysis is the subject of the present paper.

The double magic ground state of He' is assigned the
quantum numbers T=O, S=O, J =0+. To the extent
that the nuclear forces are dominated by central
(Wigner) and space-exchange (Majorana) forces, this
state belongs to the identity (i.e., L1)) representation
of SU(4) in Wigner's supermultiplet theory. ' The nega-
tive parity excited states belong then' to the LI5]
dimensional representation of SU(4), and they include
among them also the giant dipole resonance. The
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L(2T+1)g(25+1)] content of this representation is

L381]Q+ $183]0+t383] and therefore the L15] repre-
sentation contains the states in Table I. To the extent
that one can neglect the spin-dependent forces, these
states should appear as a degenerate supermultiplet at
the energy of the giant electric-dipole resonance. Just
as the giant electric-dipole resonance may be thought
of as the oscillation of the protons against the neutrons,
the other states may be regarded roughly as oscillations
of protons with spin up and neutrons with spin down
against protons with spin down and neutrons with
spin up, etc.7

The spin-dependent forces which will break the de-
generacy of this supermultiplet are the spin-orbit force,
the difference in the triplet and singlet central forces,
and the tensor force. The pa~2 —

pq~m spin-orbit splitting
is known from n nand p-nscatte-ring to be of the order
of 3 to 4 MeV. The difference in the triplet and singlet
potentials gives rise to only a 2-MeV difference in the
binding energy of the two-nucleon system. The spin-
dependent splittings are therefore expected to produce a
"fine structure" of a few MeV in the supermultiplet.
The beauty of the n particle is that the system is so
simple that it depends on only a few parameters of the
nucleon-nucleon force, yet the spectrum is rich enough
that the contribution of all the different spin com-
ponents of that force can be separated by looking at the
right combination of level splittings.

One of the problems with doing spectroscopy in the

TABLE I. States in the t 151 SU(4) supermultiplet fL= 1j.

1
0, 1,2
0, 1,2
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few-nucleon system is that of treating the center of mass
correctly. Failure to take proper account of the center-
of-mass motion may mix spurious center-of-mass exci-
tations into internal excitations thus preventing direct
meaningful comparison with experiment.

If a nucleus is described by a shell model and its
ground state has T=0 and S=O, then all states which
do not aGect the intrinsic structure and involve only
center-of-mass excitations must have the same values
of T=O and S=O. They all belong, therefore, to the
[1j representation of SU(4). To the extent that the
center-of-mass motion is separable, as is the case for a
shell model with harmonic-oscillator central potential,
we are therefore sure to be dealing with pure intrinsic
excitations if we concentrate on the lowest states be-
longing for instance to the [15$representation of SU(4).
Put more simply, we can say that if we study the states
'Po ~,~, T=O together with the T=1 states which are
members of the [15j supermultiplet as indicated by
Table I, we can be sure we have no spurious center-of-
mass excitation mixed in. The latter will show up in
the 'Pj T=O state.

To make a detailed calculation of the spectrum we
shall assign shell-model configurations to the states
involved. Instead of dealing with a free He' nucleus, we
bind it with a potential U(X) around the point X=O
where X=—4[x3+xs+x3+x3j is the center-of-mass co-
ordinate. This does not change the spectrum of intrinsic
excitations, but superimposes on it a superQuous discrete
spectrum of center-of-mass excitations in the potential
U(X).

The handling of this modified Hamiltonian is sim-
plified greatly, as was pointed out by Lipkin, if U(X) is
a harmonic-oscillator potential. Because of the identity

the effect of binding the center of mass with a harmonic-
oscillator potential U(X) = 33331/o3X3 is equivalent to
that of binding each one of the parttcles with a harmonic
potential ~%co'x,2 and modifying the interparticle inter-
action by the addition of —,'(/M'co3/A)(x; —x;)'. From now
on we shall therefore confine our considerations to He4
whose center of mass is bound by the harmonic
potential. Our Hamiltonian is therefore

&=2 2'(3)+3 Z I'(3f)+U(X) =&3+&3, (1)

where

H3=+; T(i)+33MCO3X' (2)
Na)~

&3=3 Z l'(V) — (*'—x/)'=3 E I'(3i). (5)
j',Qj' 2A

The ground state of He4 is represented by the complete
occupation of the lowest states in the harmonic oscil-

H. L. Lipkin, Nuovo Cimento Suppl. 4, 1147 (1956).

or
I
(s'p); 3P3) and

I
(s'p); 'P3&

l(s3/3) P3/3j 1) and l(s3/3) P3/3j 1&) 7=1.
Suppose we concentrate on the Wigner and Majorana

parts of the two-nucleon interaction and try to deter-
mine the position of the "center of gravity" of the [15j
supermultiplet. We note that the extra term in the two-
nucleon potential in Eq. (3), —g -'(M&o3/A)(x, —x,)'
coming from binding the center of mass in an oscillator
potential, is a pure Wigner force. It cannot therefore
contribute to the splittings within the supermultiplet,
but only to the position of its "center of gravity. "To
determine its effect on the intrinsic excitation energy
of the supermultiplet we must calculate

Rt»~=—Zt»~ —Et» = &(s) p[15jIBI (s)3p[15j&
-&(s) [ill&l(s) (13&. (5)

If the wave functions in (5) were exact eigenfunctions
of the Hamiltonian (1), then the energy difference 8"'
in Eq. (5) would have been independent of co, since &u

affects only the center-of-mass motion, and by our
previous argument the energies E~'& and E~"& both
correspond to the lowest center-of-mass energy ~3hco.

They differ from each other only in intrinsic excitation.
Since, however, we shall be taking for the states in (5)

only the zeroth-order, shell-model, wave functions [i.e.,

lator, i.e., by I (isr/3) 4T= 0, J=0), or in SU(4) notation
by I

(is)4[1)&.To obtain a negative parity excited state
we have to excite the configuration (is)'(1p) at a zeroth-
order excitation energy of ku. Other configurations of
the same parity lie at an excitation of at least 3' and
will be neglected. To classify the spin-isospin states we
must combine a particle which belongs to the repre-
sentation [4j of SU(4) with a hole which belongs to the
representation [4g. This product can be reduced ac-
cording to the rule

44= 1Q+15.

By our previous discussion, we can be sure we are deal-
ing with intrinsic excitations if we confine ourselves to
the [15j representation. If we look at the T=O states
in Table I, we see that the states belonging to [15jare
pure I;S con6gurations:

I
(s'p); 3P, ,3,3&, T=O.

If we look at the T=1 states, then the 0 and 2 are
simultaneously pure I.-S and pure j-j since the wave
functions are identical in the two coupling schemes in
this case:

I (s p); 3)=
I (s3/3) p3/3& 2),

and

I (s'P)i 'P3&=
I (s3/3) 'P3/3i O) (4)

Thus, the only case where the intrinsic states of (s'p)
are not uniquely determined by T and J is in the T= 1
J =1 states where there are two independent states
available:
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and take its matrix elements with wave functions
generated by the Hamiltonian

Po ——Q [T(i)+,'Mooo'x-, o), (7)

where orp may be different from ~. We can also write
Hp in the form

AERY)p

(x,—x;)'+s'AMcoooX' (8)&o=Z T(i)+o Z
2A

and its eigenfunctions thus separate into a product of an
intrinsic wave function and a center-of-mass wave func-
tion. Since the states Is'[1)) and I(s)'p[15))o both
invo1ve the center-of-mass motion in its lowest state,
we have [the subscript 0 indicates that the expectation
value is to be taken with eigenstates of (8)):
(s'[1)

I
—,'AM o'X'I s'[1))o

= &(s)'p[15) I-,'AM~ooX'I (s)op[15))o=-,'Xooh o. (9)

Using Eq. (9) we now find easily that

&(s)op[15) I&l (s)'p[»))o

=((s)'pl 15)I'll(s)op[15))o+—Xlh o, (10)
COp

&"[1)I&is [1)&,=(s [1)I
ff is [1)),+—X-.'h .; (11)

Mp

hence,

o""= o""= &(s)'pL15) I &I (s)'pL15)&o
—(s4[j) I

&
I s'L1)&o (12)

The expression (12) for ot"' is therefore independent of
the potential U(X) which was introduced to "tie" the
nuclear center of mass. This is, of course, due to the fact
that the wave functions we have used are separable into
center-of-mass and intrinsic coordinates, and their
center-of-mass part is the same in both Is'[1))o and
1(s)'pL»)) .

Our result (12) also indicates the value that should be
chosen for cop. The essence of our approximation lies in
limiting ourselves to only one con6guration for the
ground state and one for the excited supermultiplet.
Both configurations should be derived from the same
central potential in order for (12) to be valid. The state
Is'[1))o should thus be chosen to describe as well as
possible the ground state of He4. It is therefore reason-

eigenfunctions of Ho as defined in Eq. (7) below), it is
no longer obvious that ~t"& still has this property, and
it is worthwhile to devote a few lines to the nature of
the dependence of ~&"j on co in this approximation. To
make this discussion clearer we shall consider the
Hamiltonian (1), i.e.,

Mco'
B=P [T(i)+o'M~'x, o)+o P V(ij ) — (x;—x;)'

iwj 2A

=P T,+-,' P V(ij)+ 'AM-oooX' (6)

TAaLE II. Oscillator parameters for He'. h'/M5 =$Aao0.

Coulomb energy'
Electron scattering"

2.15 F
1.95 F

18.0 MeV
21.8 MeV

a Reference 9.
b Reference 10.

where at creates a particle in the 1p shell and bt creates
a hole in the j.s shell. "We now construct an IS coupling
excited state by defining ILST&=&t(LST) IG), where

IG) is the closed (1s)' shell ground state. If we take
matrix elements of $8;f~(LST)) between ILST) and
IG), we get the excitation energy of the state

I
LST).

We can also explicitly evaluate the commutator and
keep those terms which will contribute to the matrix
element. This is just the Tamm-Dancoff approximation
and leads to the eigenvalue equation"

oLst+g r sT) 0

where the Hartree-Fock single-particle energies are
given by"

(2L'+ 1)(25'+ 1)(2T'+ 1)
o,= oshooo ,'(j+~'/~-oo)+ Q

3X2X2L/S/T/

X [&1p jsL'
I Vl 1pjsL')o —(—1) '+ '

X(jp1sL'I Ul islpL')o), (15)

'3. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
10 8. Goulard, G. Goulard, and H. PrimakoB, Phys. Rev. 133,

8186 {1964).
NOte; b~fj/2 1/2; rrognsxr/of —= (—1) &I/ +1/ 'aljf2 jf2; -r/st~ -rro&

» J. D. Vfalecka, in Preludes in Theoretical Physics, edited by
A. de-Shalit, H. Feshbach, and L. Van Hove (North-Holland
Publishing Company, Inc. , Amsterdam, 1965, p. 59).

'I Note that for a single-particle harmonic oscillator the po-
tential energy and the kinetic energy are equal.

able to assume that ~p should be chosen so as to re-
produce as well as possible some integral property of the
ground state of He'. This can be chosen to be the
Coulomb energy or the electron-scattering form factor.
The corresponding values of cop are given in Table II,'"
where we define h'/Mb'=-, '/uo„, . (The usual oscillator
parameter is defined as h'/Mb' = hoo,.„therefore 5=V2b. )

We shall now derive (12) using the standard shell-
model methods. This will give us an opportunity to
develop also the formalism required for the evaluation
of the "fine structure" within the [15) supermultiplet.

I.et us 6rst construct the expressions for the energy
keeping only the Wigner and Majorana parts of the
force. We first de6ne a particle-hole creation operator

P(LST)= Q(jm), 0m—(, I
10LMr.)(-,'m„,'m„l-,'-—,'SM, )

mgmsmt

X ( omff om~ loool ™T)ole);ml~m ~mob o'jj;mto~n~io ~ (13)
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(2L'+1)(2S'+ 1)(2T'+1)
«, = s2Icooo-2'(1+cop/cpo2)+ E

ix2X2I /S/Tt

X(islsL'I Ul 1slsL')p(1 —(—1) +T'), (16)

and the particle-hole interaction is

iOL'
v . ~eT= —p(2L'+1) L(ip»L'I Vl ipisL')o

L' iOL

—4b&pbTp( —1)'+'-'(IPisL'I Vl isiPL') p7. (17)

If we confine ourselves just to the states in the L15]
representation, then bspbTo =—0 and the last term in (17)
does not contribute.

It is a simple matter to write the matrix elements of
V in terms of Talmi integrals and we arrive at

(lpisL'I Vl 1pisL')p=-,'(I,+I,),
(1plsL'

I Vl is 1pL'), = ', (Ip Ic)-, —
(1s1sL'I Vl 1s1sL')o=Ip,

(18)

where the Talmi integrals are defined by

I„=
r(p+-;)

r'~'U(br)e "'dr

We note that only relative s and p states in the two-
nucleon interaction contribute to our problem. Com-
bining these results, we Gnd

vp. ; T.""= —
2 (I«+Ic)

«„=2 ho«op (1+cd2/cop')+-,' (3Io+5Ic),
«.=pic o2(1+~2/~o2)+3Io.

(19)

Let us now concentrate on the contribution of U(X)
to e'15&. Let us write

I„=I~+I~e™,
where the second contribution comes from the addi-
tional potential in Eq. (3). We find

I e.m. 2
ic (~2/& 2) I c.m. 5Ic (cp2/& 2) (20)

and therefore

« l" =-'icco (cp'/cdp')+-'(3Ip' +5Ic'm )
3I c.m. 2(I e.m.+I c.m.)

—0

This is equivalent to our result (12). We can therefore
finally write

(2L'+ 1)(2S'+ 1)(2T'+ 1)
"=(»ITl»)o+ &

iX2X2I 'S'T'

X L(is i sL'
I
V

I
is 1 sL') o(1—(—1)e'+T')], (23)

v„, 2, '"' = —(1plsL
I
V

I
ipisL) p. (24)

X K2 ~&12mt2
I 2 2T~"& T/~1j;mjimtl bol;m&~mt2

These are just the equations one would write down in
the shell model without ever worrying about the center-
of-mass problem. They are true, however, only if we use
harmonic-oscillator wave functions and consider states
from whose symmetry we can conclude that they involve
the center-of-mass motion in its lowest state.

The next question is how to determine e„—e,. The
usual method is to take the particle-hole energies from
neighboring nuclei. If we do this we have"

«T—«, = PEc„(He')—(M'(He4)+31 (42))j
—LM(He4) —(M(Hep)+M(rc)) j—+2 MeV —

L
—20.6 MeVj=+22. 6 MeV, (25)

where the first term involves an estimate of where the
lp state lies between the 1ppj2 and ipcj2 states in He'.
The result (25) agrees fairly well with that one would
get by merely taking the harmonic-oscillator spacing
ignoring v (see Table II):

«„,=«heep—18 MeV (Coulomb energies)

21.8 MeV (electron scattering)

but we see there is some ambiguity about what we mean
by particle-hole energies in such a light system. Ke also
see that e~, „,&"j—the particle-hole interaction —is re-
pulsive and moves the "center of gravity" of the super-
multiplet ~&"~ to higher energies.

Before attempting to calculate this, let us formulate
the problem of determining the splittings within the
supermultiplets. To get the splitting we can simply
replace

V(cj) ~ V(cj)

since they diGer by a Wigner force and we know from
the supermultiplet theory that this cannot contribute
to the splittings. We introduce for convenience the
jj-coupling particle-hole creation operators

$jT ( pj 1 2/2)= (jT (j)= p (j mjcpmjc I jpIM j)
m1'm g

where now

(«T «, «[col+v„, lcpl) =0, and look for excited states of the form

IIT)=Z ~,"tjT'(j)IG) (26)

(2L'+ 1)(2S'+ 1)(2T'+ 1)
"=(lpl Tl lp)o+ &

L'$'T' 3X2X2

XL(ipisL'I V
I
1pisL')o

—(—1)e'+T'(1P 1sL'
I
V

I is lPL')p j, (22)

Except for the T= i, J = 1 states there will only be
one term in the sum (26) for any given value of I and T,
since for the T=O, J =i—state we must take the
correct combination of states to have a pure 'E1. The

' F. H. Lewis, Jr., and J. D. %'alecka, Phys. Rev. 133, B849
(&964).
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transformation coefficients in this case are just the
9-j symbols I we couple (sl)j)

I'P~)=(v'x)
I peto»»1 )—(v'o) I p»»»o1 &

I
'Pi) = (go) I pxtosito1 )+(go) I poto»to1 ).

Linearizing the equations of motion in the same way
as before, we arrive at the equation

Z(L(o — )—"')b '+""}'"=o (

~here e„,. and e„„are again the single-particle single-
hole energies. The particle-hole interaction is given
by"

v" ~r= —Q Q(2J'+1)(2T'+1)
J' T' j J' — —.

' T'j

X L(p~'»to J'T'
I

V
I pt»to J'T')o —(—1)~'+ '

X(—1)"'+*'(p~'»toJ'T'I V
I »top~ J'T')o) (29)

Equation (29) allows us to express the particle-hole
interaction in terms of matrix elements of the particle-
particle interactions. We give the matrix of coe%cients

—(2J'+ 1)(2T'+ 1)

in Table III.
These relations can also be derived using fractional-

parentage coefficients. "If we are only interested in the
splittings we obtain

12
P(i TJ') = 'Z(~T'+I) -V (T'J)

T' T' T 2

2

+Q(2J'+1) V,(TJ'), (30)
JI J' J j

where the particle-particle matrix elements V;(T'J') are

the same as in Eq. (29). Equation (30) again expresses

the particle-hole energies in terms of the particle-particle
energies. The coefFicients giving one in terms of the other
(Table IV) differ from those of Table III, because the

energies are calculated with respect to a di6erent zero

point. If we include the Hartree-Fock energy of the p;
particle in the interaction matrix rather than in the

con6guration energies, we obviously change nothing.
This energy is given by

(2J'+ 1)(2T'+1)
, H—F

z ~ (2j+1)(2)

X Dp,'„,J'T'I V
I p,e„,J'T'), ( 1) '——

X(—1)'+' r'(P, sqtoJ'T'I Vl»toP;J'T')o), (31)

or writing it out explicitly, we have

v(Peto)" v= —,'(v(0,0)+3v(1,0)+3v(0,1)+9v(1,1)},
v(Pot, )n F~~—(3v(l 0)+—5v(2 0)—

+9v(1,1)+15v(2,1)}.

Adding this matrix of coe%cients to those of Table III,
we get Table IV.

We proceed now to write the particle-particle matrix
elements in terms of Talmi integrals. Let us assume a
nucleon-nucleon interaction of the form

V(r) = (a +a~Pod+a. ,P.+a(P,) V(r&o)

+J(rto)(SQL)(ho+ b,P,), (32)

where P~, P„and I', are the space-, spin-, and isospin-
exchange operators and SQJ is the tensor operator,
S~o=3(cr~ r) (eo r) —(e~ eo), written as the scalar prod-
uct of two irreducible tensor operators of rank 2, where
S=

I a(1)So.(2)),~ and L—=
I r»sr&o) oor. LWe can easily

generalize our results to include different radial de-

pendences for the forces by letting (a +aor+. ) V —+

(a V~+aorV~+ ) at the end. ) We first go over to
I;5 coupling. We have

(pj'&xto J'T
I

V
I pj&&toJ'T')o (—1) '(—1) (ppsyto J'T

I
V

I estop~ J'T')o

1

=6L(2j+1)(2j+1))'"Z (2S+1) 1 0 L 1 0 L (a~+aor( 1)'+syr +as( 1)'+s+a,( 1)'+—r )
S~O J' j' 2

J'
X(o(I'+I') —(—I)'+'o(I' —I'))+6 3 L(2j+1)(2j'+1))"'

0 I. 1 0 I. (b,+b,)(—1)' (2+5)br yIr, (33)

where Iv= (1pll J(r) Lr Gr)oll1p) is the matrix element of the radial part of the tensor force in a relative 1p state.
We note that since the tensor force vanishes both for 5=0 and in a relative l=0 state, we can only have a con-
tribution from the tensor force in an I= 1, S=1, T= 1 state. Writing these equations out we find for the particle

"A. de-Shalit and l. Talmi, Nuclear Shel/ Theory (Academic Press Inc., New York, 1963), p. 538.
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parhc1e matrix elements

v1)(0 0)=(u +apr+a, u,—)Ip&

2+5
vga(0 1)=(a utgg—+a,+ag)It+ (bp+bg)Ir,

3

vgt(1~) = ;(a +-ups+a, «)I—o+ p(a apt —a& at)I1,

2+5
v) &t(1 1)= p(a»&+at&f a&+at)Io+ p(a»& a&+as+at)I1 (bo+bt)Ir &

9

vt~(1 0) = p(u„+—at&r+a, at)Ip—+ ', (a -at&r —a. —at)It—,

v)g(2 0)=(a +atgg+a, a,)Io, —

v)&(1 1)= p(a +atgg a.+«—)Io+p(a attr+—a.+«)It— (bo+bt)Ir,
9

5
v~ t(2 1)= (a„attr—+at+at)It+ (bo+bt)Ir,

15
42

vg)(1 0)= $(a +—u—t&r+a, ag)Ip (—a apt—a, —at)I—tj, —
3

V2

vugg(1

1)=—Da +at&r —a.+at)Io —(a atgg+a. +—ag)It j+
3

10
(bo+b, )Ir.

We can now use our coeScients to get the particle hole energies-(we are only interested here in sp/ittigggs within
the L15$ snpermultiplet so we use the coeScients in Table IV).

Particle hole energies -(we define bp+bt =b since onl—y this combination enters our results):

El/p(0 0) = (a +at&r+u, at)Ip+(2a —2atjg+a, +ag)I—t+(+5)bIr,
5

Ettp(1&)= p(Su +Sagt+2a, -2ag)Ip+ ,'(2a 2—apr+a, +-at)It — bIr, —
3

5
Egtp(0 1)= (a„+attg)Ip+2(a attr+a, +ut—)It+ bIr,

3
5

Etio(1 1)= (3a~+3apr at+at) pIo+ p—(6a 6apr+Sa. +Sa—t)Ir bIr &—
9

Eptp(1%) = &t(7a +7atgt+a, at)I—o+ p(2a 2attr+—a,+at)Ig —bIr, —
6

5
Eatp(2~)=(a +attr+a, —ag)Io+(2a 2apr+a, +at)It+— bIr,

10
5

Eptp(1 1)=-pt (3a„+3attr—2a, +2ag)Ip+xp(6a —6atgr+4a, +4ag)It bIr, —
18

5
Eptp(2 1)= (a +apr)Io+2(a upr+a, +ag)It+ bIr—,

30

v2 +10
Vy p(1%)= (4a +4at&r 2a,+2—ag)Ip+ ( —4a +4attr 2a,—2a—g)It+ b—Ir, —

6 6 6

(34)

v2 +10
Vy~(1 1)=—(ag—a )Ip——(kg+a&)Ig+ bIr

&

3 3 18
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Tasl.E III. Matrix of coe%cients to go from particle-particle
(J'T') to particle-hole (JT) interactions in He4:

$j J $)T—(2J'+1){2T'+1)
ki J' kkT'

I~

Og

T
Pt

2

Pj =P&l» Pj' =P&/2

J'T'
JT (o, o)

(0 0) —1/4
(1,0) 1/4
(0, 1) 1/4
(1, 1) -1/4

(1-, O) (O-, 1) (1-, 1)

3/4 3/4 -9/4
1/4 —3/4 —3/4—3/4 1/4 —3/4

-1/4 -1/4

0( O~ 0~

T T

J=2

S~

2

~i 2 ~S

T T

J=O

Pi P&/» Pjr =Pa/2

J/T/
JT (1,o)
(1-, 0) —1/8
(2, 0) 3/8
{1,1) 1/8
(2, 1) —3/8

(2 , 0) (1 , 1) (2 , 1)

5/8 3/8 —15/8
1/8 —9/8 —3/8—5/8 1/8 —5/8

-1/s -3/s -1/s

Pj =Pl/23 Pj' =Pa/2

LJIT/

JTL (1 0) (1»
(1,0) —1/2 3/2

where V~~ are the o6-diagonal elements of e in the
particle-hole configuration.

%e stiB have to pick out the correct combination for
the J = j. , T=O state corresponding to the 'P~. %e use

I'I'3)=(v'r')
I p»3(s~/3) '1 )—(v'3) I p3/3(»») '1 )

and after a little algebra arrive at

E p,(1,0) = (a +asr+a, —a4)Io
+5

+ (2a 2a3/+a—,+a/)Iq bIr—. (35)
2

Ke are now in a position to draw several interesting con-
clusions about the splittings within the supermultiplet.

(i) If we look at the splitting of the 0 and 2 states
for both T=O and T= j., we find

E(0,0)—E(2,0)= (9/10) (+5)bIr,
E(0-,1)—E(2,1)= (3//10) (+5)bIr .

(36)

TAsLE IV. Same as Table III only including the
single-particle energy of Eq. (31).

Pj =PI/23 Pi'=PI/2

Pj=PO/23 Pj/=PS/2

J'T'
JT {0 0)

(~) 0
(1 0} 1/2
(0 1) 1/2
(1 1) 0

J/T/
JT (1-o)

(1&) 1/4
{2-0) 3/4
(1 1) 1/2
{2-1) o

(1 0} (0 1) (i 1)

3/2 3/z o
1 0 3/2
O 1 3/2

1/2 1/2 2

(2 0) (1 1) (2 1)
5/4 3/2 0
3/4 0 3/2
o 5/4 5/4

1/2 3/4 7/4

Therefore, none of the central forces contribute to this
splitting. This can be understood very easi1y as this

FIG. 1. Structure of the J~=0 and J =2 levels.

splitting must be due to the d3fference between the inter-
action of the pr/3 particle in the J=O state with the
(ss/3)' configuration and that of the p3/3 particle in the
J=2 state with the same configuration. Neglecting
differences in the radial wave function for p3/3 and p3/3,
such a difference in the interaction can result only from
Spin-dependent fOrCeS. HOWeVer the Spin 434 Of the p
particle always sees a saturated pair of spins e~ and e2 of
the unlike particles in the s orbit, and as far as the spin
of the like particle o3 is concerned, it is parallel to e4
both for J= 2 and for J=0, as can be seen from Fig. 1.
Thus, the central spin-dependent interaction of the

p particle with the (s~/3) 3 is the same for both J=O and
J=2 and does not lead to an additional splitting be-
tween them.

There is one eGect we have not yet included, namely,
that it is known that the p3/3 and ps/3 levels are split by
a single-particle spin-orbit force. If we go back to our
Hartree-Fock single-particle energies we see that with
the two-particle force we have assumed in Eq (32), .
we have

6@I�/2

6y&/2= 6 ~ (38)

We can either take this value from p nand n -nscatter--
ing to be

3—4 MeV (p nand n n-SCatteri-ng)

or use e as a parameter to be determined from the
splittings within the supermultiplet. The spin-orbit
splitting may come from the spin-orbit part of the
nucleon-nucleon interaction or from second-order eGects
of the tensor force. In any event, it is a quantity which
we will not attempt to calculate in the present approxi-
mation. Since the 0 and 2 states are pure j-j con-
figurations, we can immediately include e and obtain,

3/(pi/3)" =&(p3/3)" =a3(a~+ ass) Io

+,'(5a 5ass+4-a, +4a—,)I3 (37)

and we cannot explain this splitting within the present
approximation. Ke will therefore simply add an em-
pirical single-particle spin-orbit splitting in our single-
particle configuration energies, and define
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instead of (36),

E(0,0)—E(2,0) = o+ (9/10) (+5)bIv,

E(0,1)—E(2,1)= o+ (3/10) (+5)bIv .

we must solve the two equations

(39)
[oo os+El(2(1, 1)—o' ']al/2

+vs, (1,1)ao/o ' =0, (44)

(ii) If we look at the T= 0 splittings, we just have to
compute the energy splittings within the triplet 'Pz.
From the above we get

E(0,0)—E(1,0) = ,'o+ oo(-+5)bIv,

E(1,0)—E(2,0) = —,
'

o—-', (QS)bI7 .

Again the central forces do not contribute to these
splittings, the e6ect being entirely due to the single-
particle spin-orbit interaction and to the tensor force.
The former can be evaluated directly from the fact that
it involves the scalar product of two vectors, "leading,
in the absence of tensor forces, to

E(2 0)—E(1&) 6—2
=2 if Iv=0. (41)

E(1 0)—E(OW) 2—0

Combining the results of (i) and (ii) we see that we have
three independent splittings in terms of the two param-
eters ~ and bI&. The contributions of these two quantities
can therefore be determined and the consistency of the
whole picture can be checked, by comparing (39) and
(40) with experiment.

(iii) The splitting between the isospin multiplets can
be obtained from the above as

E(2,1)—E(2,0)
= (a& a*)Io+(as+a()I& (1/15)(+5)bIv ~ (42)

It is independent of the Wigner and Majorana forces,
as it must be, and is also independent of ~ since both
states in (42) are pure po/o configurations.

(iv) In the limit of pure j-j coupling, the T=1
spectrum splits into two sj ~~ doublets. It is known" that
the lowest member of such doublets has even or odd J
according to whether the parity of the configuration is
negative or positive. The splittings of these doublets is
evidently given by

Eo/o(1, 1)—Eo/o(2, 1)
=—,'(ag —a,)Io

—
o (a,+a,)I,—(4/45) (+5)bIr,

El/2(1, 1) El /&(0,1)—
3 (a,—a,)I, o(a,+a~) Iz (4/9—)QS)bIv, —

(j-j coupling) . (43)

With no tensor force these splittings would simply be
in the ratio of 2:1.For the J =1, T=1 states, how-
ever, we must actually diagonalize the interaction to
find the correct state vectors. From Eq. (28) we see that

"Reference 15, p. 279.
"A. de-Shalit and J. D. %alecka, Nucl. Phys. 22, 184 (1961).

v»(1 s1)ag/&' ' +[—oo—&s

+Eo/o(1, 1)—o ' ]ao/o ' =Os

and the center of gravity of the two J =1,T=1 levels
is not a6'ected by the "mixing" introduced by v~~.

(v) "Center-of-gravity" theorem.
From Eq. (21) we have

o[&ol = o o,+v, , (&ol (46)

This is the energy of the supermultiplet before the spin-
dependent forces are turned on. We can ask how ~~"& is
related to the actual spectrum, that is, do the spin-
dependent forces shift the position of the "center of
gravity" of the supermultiplet? I et us define this new

quantity by

Q '"'(2I+1)(2T+1)E~v

Q ""(2I+1)(2T+1)

where E~~ is the actual energy of the level J, T. If the
spin-orbit force is of the form H, ., = —$(r)l s, then it is
a simple matter to see that (note that os~/o" ——0):

Q""(2J+1)(2T+1)o.,, ~v=—0. (48)

If we now take the energy shifts obtained from Eq. (29)
and sum them over the supermultiplet, we obtain

Q ~"'(2J+1)(2T+1)v ~

P '"'(2I+ 1)(2T+ 1)
(49)

In the sum we have to take the correct combination of
matrix elements for the 'I'&, T=O state [see Eq. (35)]
and we can forget the configuration mixing in the 1,
T= 1 states since the "center of gravity" of these states
is unchanged by the mixing as we saw in (45). Carrying
out the sum we arrive at

o, o o„—o,—[——-,'(a +a/k/)Io+-, '(a —aor)Ig]
——', (a,+ag) Ii

= ov os+ vvs; vs o (as+ at)I1
= o"'t —-,'(a, +a))Ir. (50)

in order to get the splittings and the coefhcients of the
state vectors ag/o '' and n3/o '. Note that v,*1(1,1)
=vent(1, 1) since the matrix elements of the potential
are real, and that again, only the spin-dependent parts
of the interaction enter into this calculation.

If we denote the two new eigenvalues by e+' ', we

see that

1(e 1,1+o 1,1)

= o[E~/o(1 )1)+Eo/o(1 s1)+so—2os] (45)
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TAsr.z V. Potential parameters. ENERGIES IN MeY

Shap. V, (Mev) &(F-)
—P0e t'/Pr 36 0.714

f Singlet 46.9 0.855
h Triplet 52.1 0.726

Singlet 108 1.409
Triplet 193 1.506

Force

Kurath

Free (Serber- Yukawa)

Free (Serber-exponential) —V0e t'"

3.2

2.2

2.8

0

& =3.2MeV

r
EXPERIMENTAL

SPLITTING

We conclude therefore that the central spin-dependent
forces give rise to an additional shift in position of the
center of gravity beyond that given by the supermulti-
plet theory according to Eq. (46).

T=O

KURATH FORCE

Numerical Results
Fro. 2. Splitting of the I 15] supermultiplet using

the Kurath force.

We shall calculate the spectra of He' with three
diferent nucleon-nucleon potentials. The first is a
potential of the type used by Kurath" in his systematic
attempt to 6t the spectra of light nuclei in an inter-
mediate coupling calculation. This potential is of the
form

V(r) = —UOPPsr+ ,'P.j(e 4"-/t4r) . — (51)

We give the numerical value of the parameters we use
in Table V. The second and third potentials are taken
from 6tting low-energy nucleon-nucleon scattering. "
We chose a Serber force (which fits the data up to
about 90 MeV). Note that if we really have a Serber
force then the tensor force does not contribute to the
splitting of the superrnultiptet since we have shown that
it can only contribute through the odd relative angular- ~=~u1t2 ~S3(2) g—= ——,'('Ip —'Io) .

which we can calculate most reliably. The resulting
spectrum with the Kurath force is shown in Fig. 2. The
spin-orbit splitting was taken as

&=+3.2 MeV

to fit the 0 —2 T= 1 separation in Li4.4 We therefore
predict 6ve spacings. The experimental spectrum is
shown in Fig. 3.' ' The agreement is very satisfactory.
We note that the i and 0, T= 1 states have not been
observed so far in He4, and these energies were taken
from H4 and Li4.

The spectrum with the free Serber force depends on
two parameters chosen to be positive:

momentum states. We take
We give the general spectrum in Fig. 4. (Recall that a

V= PV(r)-,'(1—4rr 4r2) Serber-tensor force does not contribute to the split tings. )
+.&V(r)&(3+.4r, .4r,)j&(1+Pu) (52) The values of the parameter a which we get from

Table VI are
which we can also write as

Tmr.E VI. Talmi integrals (5=1.95 F) (in MeV).

Force

Ku rath
Free (Serber- Yukawa)
Free (Serber-exponential)

MIO Mlt BIp Blj IIO

—8.8 —3.2 —2.2 -0.8
—14.5
—15.2

—9.6
9 4

» D. Kurath, Phys. Rev. 101, 216 (1956};G. J. Malosh, uni-
versity of Pittsburgh Technical Report, 1965 (unpublished).

'9 L. Hulthdn and M. Sugawara, in Handbuch der I'hysik, edited
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39, pp. 52, 62.

V=4'f('V+'V)(1+Psr)+('V —'V)(P —P,)) (53)

and calculate the energies using both a Yukawa and
exponential radial dependence. The parameters are also
summarized in Table V.

We can immediately evaluate the necessary Talmi
integrals, and the results are given in Table VI. (We
use 5=1.95 F.)

Let us 6rst concentrate on the splittings within the
supermultiplet since these are really the quantities

~25.rrrrrr I .S= I

r/////r4///'/////4

248)pyr 2,S= I

/r'4/J//JJFr JfF//Jr'

2Nr4rrjgr' I,S4
/l/ll&JWJY&/ff'l

27.7rrrrrrr. O-.S= I

7jgjf~jf/t'if/J7/JA
25.VJPrlir' I .S= I

&f/////F&f//i'd//A
245rrrrr 2".s = I

23.845 /J//////Jf//l/fi
D+0

26Pr(I, T= I)
4// ////////N/j

l

22&i(2.T=O)
yj~ p/wive///wr

19.6 I 5
t T+p
I o,'&s~)r-rf

Ho

19.795

He+ p

Fio. 3. Experimental spectrum in the 3 =4 system.

a=+2.45 MeV (Yukawa)
=+2.90 MeV (exponential) .

The resulting spectra, again using

e=+3.2 MeV (Li4)

from the 0 —2 T= i splitting in Li4, is given in Fig. 5.
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2
3

p-

2

ll —02
3

r
I ---~----

) ~0
p 3

O'- —0I

3

4--0 +—0

6+0
2

Kurath

Force

Free (Serber- Yukawa)

Free (Serber-exponential)

e», „,t"j —-', (a&,+a,)I1 e„ea &c.g.

+2.8 +0.3 22.6' 25.7
21.8" 249
18.0 21~ 1

6.0 0 22,6' 28.6
21.8b 27.8
18.0' 24.0

6.1 0 22.6' 28.7
21.8b 27.9
18.0' 24.1

TAszE VII. Predictions for &,,, (all in MeV).

T50

SERBER FORCE

FIG. 4. General spectrum with a Serber force.

a From neighboring nuclei 1 Eq. (25) g.
~ From Ace as determined from electron scattering (Table I).
e From Sos as determined from Coulomb energies (Table I).

ENERGIES IN MeV' 2'
EXPERIMENTAL NUMBERS

IN PARENTHESIS I.3

277 0

1.6
3.5

0

C EXPERIMENTAL
L SPLITTING

3.2 ll II

l3

The Yukawa and exponential potentials give almost
identical spectra and the results are very similar to
those of the Kurath force, although somewhat closer
to the experimental splittings.

Ke can next ask what the prediction is for the position
of the center of gravity of the supermultiplet. This
depends on the signer and Majorana parts of the force.
There is some ambiguity in this calculation because of
the de.culty of locating the unperturbed particle-hole
energy e„—e,. %e summarize the results in Table VII.

The experimental value, using the Lande interval
rule to locate the missing 1 and 0, T=O states is

e, .s.= +25.8 MeV (experimental) .
In all cases, 7'= 18.0= e„—e, gives too low a result and
should probably be discounted. In the other cases the
Kurath force does very well and the free force is 2 to 3
MeV too high. The free force also gives a result too high
by 1 to 2 MeV in the giant resonance region'4 in C"and
0".It is dificult to draw any definite conclusions from
this, however, since the levels we are discussing are not
really bound states but broad continuum resonances.

Finally, we discuss electric dipole transitions from the
T=1, 1 states to the ground state. In the case of the
Serber force the matrix equations (28) for the states

T=1 J =1 are of the form

(
e—-', a—X -,'V2a (ng/s =o.

—',v2a —Z En 3/2

(54)

and if we define the coupling parameter

x—=a/6 q

then the ratio of coeKcients is

(56)

(n~/s/ns/s)+ = —3~x/(1 —
3 x—

L (1—3*)'+(8/9) x']"'}
~

(nr/2/n3/2) = —-',v2x/{1 —sx+ [(1—sx)'+ (8/9) x']"'}.
(57)

Now, electric dipole transitions to the ground state can
only take place from the ~'P& T=1) components of
these states. Using the above and Eq. (27), we can
compute the ratio of the probabilities for finding the
upper and lower J =1, T=1 states in a 'I'~ con-
figuration to be

(
(~P,

( P~) ~

' -1—x—[(I—-'x)'+ (8/9)xs]'/s-2

[ ( Py [tP ) (
1—x+[(1—~x)2+(8/9)x&y/&

[(1—-', x)'+ (8/9) x']'"+(1—ax)
X

[(1—-,'x) '+ (8/9) x']'/' —(1——',x)

This ratio has the following limiting values for pure
I.-S or j-j coupling:

(We have shifted our energy origin to simplify things.
This does not change any results. X is the new eigenvalue. )

The eigenvalues are

~+= k((~—sa) +[(»—sa)'+(8/9)a']"'} (55)

25.2

24.I

0
I.I

l.2
(24.5) ii

2

2.5 2.9
(j-j coupling)

2.I YUKAWA EXPONENTIAL

22 (22) v

c
EXPERIMENTALl

VALUE
T= I

FREE (SERBER) FORCE

FIG. 5. Splitting of the $15) supermultiplet using the
free Serber force,

- s9x' ~~ (L Scoupling) . -

~P+) is the upper state and ~P ) the lower state. As
x~0, the upper state becomes pure

~
(1sg/2) '(1pg/2) 1 ),

the lower state becomes pure
~
(isq/2) '(1ps/2)1 ), and 2
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TanLz VIII. I'P&l content of the I"=1, T= 1 states.

Force

Free (Serber- Yukawa) 0.77
Free (Serber-exponential) 0.9i

2.4
3.1

is just the square of the ratio of the
I
'Pt) content of

these states. As x —+~ we have pure I.-S coupling and
the upper state becomes pure I'Pt) while the lower
state is I'Pt). Therefore E1 transitions from the lower
state are forbidden in this limit. The results for the free
force are given in Table VIII which says that the upper
T=1, 1 state should have most of the E1 strength
(phase space only increases this ratio). This appears to
be in contradiction with the experimental results where
the peak in the photoabsorption cross section is at the
lower state. The only way out of this dilemma within
the framework of the present calculation is through the
use of more complicated forces. In the calculation which
we have carried out, a and ~ can be thought of as being
determined experimentally from the observed spectrum
and the above ratio is therefore fixed. (The Kurath
force gives the same results. ) One must go farther and
include for example the two-body tensor and spin-orbit
forces with the hope of improving the wave functions
without drastically changing the spectrum. One would
like to be closer to the j-j coupling limit for then

I &'Ptlf+& I'/I &'Ptltf-&I'= s which is in agreement with
the experiments. ' Since all the splittings within the
supermultiplet come only from the spin-dependent parts
of the nucleon-nucleon force, these other components of
the force may well play a non-negligible role even though
they enter only in relative p states.

CON CLUSlONS

The negative-parity excited states of He4 at an exci-
tation energy of about Ace are described by exceptionally
symmetric wave functions. Because of this symmetry
their splitting can be due only to a part of the nucleon-
nucleon interaction: signer and Majorana forces can
lead to no splittings among these levels, and one has to
resort to spin-dependent interactions to obtain the
observed structure of the s'p 15-dimensional super-
multiplet. Furthermore, if we use harmonic-oscillator

wave functions as described before, only two averages
of the interaction come in—those taken in a relative
s state and relative p state. If we believe that the He'
structure is not too sensitive to off-energy-shell matrix
elements of the interaction and that only low relative
energies play an important role there, a further simpli6-
cation results. The low-energy nucleon-nucleon scatter-
ing data are well accounted for by a Serber-type force,
and this force leads to no interaction in relative p state.
%e are then lef t with just one integral of the interaction,
in addition to the ps~a-ptls splitting, which determines
the structure of the configuration s'p. Hence the
"selectivity" of these states as far as information on the
nuclear force is concerned.

The position of the known levels could be calculated
to an accuracy which is an order of magnitude better
than their widths. This was achieved by a calculation
that assumed no width whatsoever. One would expect
that energy shifts are less affected than widths of levels

by small modihcations of the wave functions. The ob-
served widths of the levels indicates that a resonating
nucleon is reflected ten or more times before it over-
comes the centrifugal barrier and manages to escape
from the excited He4; success of a bound-state approxi-
mation is perhaps not unexpected. Still the fact that
levels of diferent widths turn out to have equal shifts
is surprising and may have interesting physics behind it.
One is reminded that a similar situation exists in other
nuclei as well as in elementary-particle physics. The
conclusion that the four I multiplets in the SU(3)
decuplet are equidistant in mass is basically a "bound-
state" approximation. Experimentally they are indeed
found to be equidistant although one of them —the 0=
has practically a zero width, and the widths of the others
vary wildly. The understanding of these results may
prove to be interesting, especially if their seemingly
general validity could be explained.
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