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la,st summation of Eq. (A].). rhe same methods are used to treat this state as in the preceding; we obtain
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Ke discuss a numerical method to determine the binding energy and the wave function for a three-body
system. Radial wave functions of the form g&(r&)g2(r2)g3(r3) are used, r1, r2, and r3 being the interparticle
distances. The method is applied to He' and H~ with central forces and hard core to show the accuracy and
the speed of the calculation.

1. INTRODUCTION

HE study of the bound states of three particles is
of great interest for molecular, atomic, and

nuclear physics. Often only a knowledge of the binding
energy is required but sometimes one needs also detailed
information about the wave function. The variational
method has been extensively applied to these problems
with a radial trial function of the form g~(r~)g~(r&)g3(r3),
rl, r2, and r~ being the three interparticle distances. Such
a radial function is appropriate to describe the correla-
tion between the particles and at the same time has a
reasonable asymptotic behavior. The complete wave
function is obtained by taking a superposition of
products of spin-orbital functions by a radial function
of the above type. The disadvantage of the variational
analysis is well known. The number of trial parameters
and correspondingly the numerical calculations, increase
rapidly with the accuracy required for the binding
energy and, even more, for the details of the wave

function. As an example, when potentials with hard
core are considered, trial functions with a great Rexi-
bility are necessary to reproduce accurately the exact
wave function just outside the hard core, where the
potentials have large values. Austern and Iano' have
proposed a type of trial functions which are constructed
with particular attention in the region where the poten-
tials have large values and go over into variational
functions for larger distances. Such functions give
excellent results for two-particle systems and can be at
once extended to the cases of a larger number of particles
by choosing the trial function, up to a certain inter-
particle separation, as a product of the solutions of a
two-body Schrodinger equation. This method has been
successfully applied' ' to particular states of three and

' N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960).' P. H. Wackman and N. Austern, Nucl. Phys. 30, 529 (1962);
K. W. Schrnid, Y. C. Tang, and R. C. Herndon, Nuovo Cimento
33, 259 (1964).' Y. C. Tang, R. C. Herndon, and E. W. Schmid, Nucl. Phys.
65, 203 (1965); Phys. Rev. 134, B743 (1964).
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four-particle systems. However to determine the best
values of the trial parameters it is necessary to repeat
the same type of calculation many times and this results
in a large computational time. Moreover, the radial
functions used, ' ' also in the inner region, are not the
best product functions one can realize.

Recently, there have been also some attempts to
solve the few-body nuclear problem by direct numerical
methods. Baker et al. ,' starting from the time-dependent
Schrodinger equation and using the di6erent time
evolution of the various eigenfunctions, have studied
the ground state of H' for a central nucleon-nucleon
potential without hard core. In a different approach,
due to Kalos, ' the Schrodinger equation is transformed
into an integral equation whose solution is searched by
a Monte Carlo method.

On the other hand, a variational calculation can
either be conducted by minimizing the energy with
respect to the parameters of a trial wave function, or by
solving the corresponding Euler-Lagrange equations.
In this paper we illustrate the practicability of the
latter method to get an exact numerical solution of the
bound states of three particles using radial functions of
a product form and the technique developed by Bodmer
and Ali' for states with I.=o and by Murphy and
Rosati' for states with arbitrary spin and orbital
angular momenta. AVe also give the results obtained for
He' and H' with central forces and a radial function
totally symmetrical or symmetrical only with respect
to the two identical particles.

2. METHOD OF CALCULATION

In this paper we consider the case of three particles
bound by central two-body forces. It is then appropriate
to use the LS coupling scheme, and the wave function
of a state with total angular momentum J and s com-
ponent J, is written as follows:

4'«i, &»r„s~,z, [Q C(LSJ~LIS~J~)~ «s, ~~~s, sl]

Xg, (r&)g, (r,)gg(r3), (1)

tion. Let us define the functions

(2)

1V,(r;)= dr&'&Zx g g, (r,), (i=1, 2, 3). (3)

In the last equation

and the integration region satisfies the triangular in-
equalities between the coordinates ri, r&, and r3, i.e.,
r;+r, ~&r& with iQ j/k=1, 2,3. Together with g&, g&,
and g3 it is convenient to introduce the functions

f;(r;) = (r;S,)&g,(r;), (i = 1,2,3) .

It can be shown" that the best solutions gi, g~, and g3
are such that the corresponding functions f&, f~, and fa
given by (4) satisfy two-body Schrodinger-type
equations

2K;f,"+[8—v;(r~) —W, (r;)jf;=0, (i= 1,2,3), (5)

where E is the total energy of the three-body system,
K,=~A'(m, +m&)/mm&, (i&j /k=1, 2,3), and «, (r,) is
the radial part of the potential acting between the
particles of the ith pair. The efI'ective potential for each
pair of particles is s,(r;)+W, (r,) Thus, the e.ffect on
any pair due to the presence of the third particle is
represented by the "induced" potential W, (r,) given by'

with
where C(LSJ,L,S,J,) is a Clebsh-(jordan coefTicient.
The orbital function @(~, ~,~~ ~' is an eigenfunction of the
angular momentum operators 1' 1 ' i'= (1+1~)' and
L„where 1,= ihr, XV—„, (j =1,2). ; x s' is the corre-
sponding function for the total spin S. It must be
noticed that the dependence of the exact three-body
wave function on the interparticle distances, will not in
general be of the form g&(r&)g&(r&)g3(ra), so that the
function (1) can reproduce only approximately the
exact solution. The problem is to choose g&(r&), g, (r,),
and g3(r3) in such a way to obtain the best approxima-

1
r;& &(r;)=—

2 k=1,
kWi

2gj gi
T;&»(r;) = dr"'Zg (g, ')' —g,"g,— gP,

(7)

4 G. A. Baker, Jr., J. L. Gamel, B. J. Hill, and J. G. KVills,
Phys. Rev. 125, 1754 (1962).' M. H. Kalos, Phys. Rev. 12S, 1/91 (1962).

6 A. R. Bodmer and S. Ali, Nucl. Phys, 56, 657 (1964).' J. W. Murphy and S. Rosati, Nucl. Phys. 63, 625 (1965}.

and Z3 a certain function of the interparticle distances
defined by Eq. (16) of Ref. 7; in the case L=0, we have
Xi=1 and g3——0 so that the induced centrifugal term
v;(~) is zero.
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FIG. 1.Integration
path in the (s/)
plane used in the
calculation of the
function F(r) de-
6ned by Eq. (8).

6nite integral; the constant a may or may not be zero
(in what follows it will represent the radius of the hard
core of the two-body forces), and M(a, ~r —sl) denotes
the largest of the two quantities within the bracket. Et
follows from (8) that

dp
G(r) =-

dr

ds[f (s,r+s)+e(a, r s)f(s—, l
r—s

~ )j, (9)

a

In Refs. 6 and 8 one of Eqs. (5) has been solved
exactly, the two other equations being satis6ed approxi-
mately with trial functions g of a simple form which
allo~ the integrals to be evaluated analytically. The
eigenvalue, which is a function of the trial parameters,
is then minimized.

Here we propose instead to solve numerically the
system of three coupled integro-differential equations
by means of an iteration procedure. Starting with two
input functions g2&2&(r&) and g2&2&(r2) which reproduce
reasonably well the exact corresponding radial func-
tions, we calculate with (6) and (7) the potential term
W2(r2) of Eq. (5) (i=3).The corresponding Schrodinger
equation is then solved numerically to get the eigen-
value and the related eigenfunction. This eigenvalue
gives a first estimate of the total three-particle energy.
From the approximated eigenfunction, a function
g2 "&(r2) can be derived with the help of Eq. (4). g2"&(r2)

is then used as input function together with one of the
proceeding two, say g2"&(r,), to obtain g2&'&(r2) and a
second estimate of the total energy, and so on, until
self-consistency among the three equations (5) is
reached. Since Eqs. (5) have been derived from a
minimum variational principle, the convergence of the
procedure is ensured. As we shall see in the next section,
in all the cases we have examined the procedure con-
verges rapidly. Self-consistent solutions are obtained
after 3-6 iterations, a very small number compared to
the number of iterations which are required to obtain
the best values of the trial parameters in a variational
calculation.

For a numerical evaluation of the various quantities
(7), the main problem we are faced with is the calcula-
tion of double integrals of the following form

o0 t+tt

F(r) = ds
M(a, I t—el )

where the function f(s, t) vanishes when one of its
arguments goes to infinity, in such a way as to have a

' L. Lovitch and S. Rosati, Nucl. Phys. 73, 648 (j.965); S. Ali,
J. W. Murphy, and A. R. Bodmer, Phys. Rev. Letters 15, 534
(1965).

with
t&(a,r—s) = 0

= —j.
1

if
if
1f

lr s/—(a
r—s&a
r—s «( —a.

(10)

The integration path for the integral (9) is shown in
Fig. 1; to obtain G(r) we have to add the integrals of

f(s,t) along the lines 1 and 3 of Fig. 1 and then subtract
the integral along line 2:

ds+ ds — ds f(s, t) .
Lq LI Ig

As F(0)=0, we derive from (9)

r

F(r) = G(r')dr'.
0

(12)

To get F(r) from this relation it is necessary to know
the function G(r') also for values r'(a; this does not
however require the knowledge of f(s, t) in the regions
where either s or t are smaller than a. Equations (11)
and (12), as is more fully discussed in Appendix, can be
used to calculate F(r) by numerical integration.

V, , =-,'(1+P;,;)V, (lx;—x;l)
+-', (1—P;;)V, (lx,—x;l), (13)

where P, , is the spin-exchange operator. The most
general wave function for the three-nucleon state with
I.=o can be written as

%~= Qs(r& r2 r2)XA+NA(r& r2 r2)XB

where X~ and X& are spin functions antisymmetrical and
symmetrical, respectively, in the spin coordinates of the
two identical particles; the radial functions N~ and uq
have a similar symmetry property with respect to the
spatial coordinates.

3. NUMEMCAL CALCU'. TIONS

Ke present now some of the results obtained by
applying the method discussed in the preceding para-
graph to the study of the He' and H' nuclei. We consider
two-body charge-independent central potentials of the
form
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TABLE I. Results obtained for the potential of Baker et al.
(Ref. 4). n is the number of step-lengths h considered in the
calculation of the various integrals.

Step-length Number of
h (F) step-lengths

0.25 60
0.20 75
0.15 100
0.10 150
0.05 300

(MeV}
—9.749—9.761—9.766—9.767—9.767

Rms radius
(F)

1.489
1.490
1.490
1.490
1.490

L:c
(MeV}

0.8878
0.8876
0.8875
0.8875
0.8875

The iteration procedure discussed in Sec. 2 has been
applied to two special cases:

(A) The potential (13) is replaced by an "effective"
spin-independent potential -', LV~(r)+V, (r)$, i=1,2,3
(the radial wave function is in this case totally
symmetrical).

(8) The wave function (14) is approximated by

+=gx(ri) gm(rm) g~(r3) X~, (15)

r~ being the distance between the two identical particles.

First of all we consider the potential of Baker et al.4

V&(r) = V, (r) = Vo expL —(r/b)21, (16)

with Vo= —51,5 MeV and b= 1.M F. The lack of spin
dependence ensures that the radial eigenfunction is
totally symmetrical, so that in this case the functions
g~ and g2 in (15) are equal. In Table I the results ob-
tained for the binding energy and the rms radius of
the triton and the Coulomb energy E& of the He'
nucleus are given for diferent values of the step-length
h. ' The calculated numbers are given with four figures
to show how large the step-length h or how small the
number n of steps can be chosen; this is important
because the computing time increases approximately
as n'. lt may be worthwhile to notice that the deviations
arising for the largest values of h given in Table I, are
partly due to the use of a large step-length in the
solution of the two-body Schrodinger equation; this
could be avoided by interpolating other values of the
potential on the values directly calculated. However,
at least in this case, the question is unimportant because
the total computing time is only a few seconds for
k=0.25 and not more than a minute for k=0.05. With
the same two-body potential but a different method of
calculation, Baker et al. 4 obtained E= —9.42 MeV,
Kalos' E= —9.47 MeV and Tang et al. ' an upper bound
E„=(—9.74&0.05) Mev which is quite close to our
estimate.

Also the radial functions obtained for each value of
h given in Table I are essentially coincident and, as a
consequence, the results for Eg and the radius are nearly
independent on h. The Coulomb energy E~ has been
calculated by first-order perturbation neglecting the
proton radius.

' All the numerical calculations have been performed on the
IBM 7090 computer of Pisa University.

TmLE II. Results obtained for potentials of exponential shape.

Hard
core
(F)

0.2

0.4

0.6

Ref.

10 (~)
(8)
(~)
(~)
(a)
(&)
(A)
(&)

—7.69—7.95—9.04—9.52—7.78—8.49—6.29—7.40

Rms
radius

(F)

1.685
1.70
l.53
1.525
1.64
1.63
1.75
1 ?26

(MeV)

0.81
0.75'
0.82
0.77
0.74
0.69
0.67
0.63

Let us now consider the case of an exponential radial
dependence of the potentials

V, (r) = ~, (r(a)
= Vo( expL —og(r —a)j, (r) a)

V, (r)= ~, (r(a)
= Vo, exp) —o;(r—a)j. (r) a)

(17)

For hard core a= 0, the results depend smoothly on the
step length h as in the preceeding case. We give (first
and second line of Table II) the results obtained for the
spin-dependent potential used by Rarita and Present
in a study of the two-, three-, and four-body problems, "
having the following parameter values:

Vog= —123.56 Mev, Vp, = —70.429 Mev,

og=fT, =1.156 F '.
KVhen we consider a completely symmetrical radial
function it is not necessary to specify the potential for
neutron-proton states with odd orbital angular momen-
tum. The situation is different when two of the g func-
tions in (15) are different and we assume, for simplicity,
that the potential in the odd states is still given from
(13) and (17). With a potential having a different
space-exchange character (for example Majorana type)
the total three-body energy can change' by about
0.1 MeV. However it is possible to modify the procedure
so as to treat correctly all the cases; the difference
would be the appearance of an inhomogenous term in
Eq. (5) which would not however essentially modify
the procedure.

For potentials with a nonzero hard core the situation
is a little diferent. If a constant step-length h is used
in all the calculations, values k=0.05 F are required to
get results with three significant figures. This is due to
the fact that the radial solutions for potentials with
hard core contain components which vary faster than
the components due to the potentials with a=0. The
best way to treat this situation is to use a small step-
length in the region where the rapidly varying com-
ponents are important, and then change it to a larger
one. A similar procedure may be quite useful when a
long computational time becomes a problem.

Ke present in Table II some of the results obtained
"%'.Rarita and R. D. Present, Phys. Rev. 51, 788 (1937).
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FIG. 2. The full lines reproduce the
functions g1 and g. of a partially

adial func-
efers to the
ymmetrical
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for potentials of the form (13), (17). The computing
time for each case (B) has been 2—4 min; about 1 min
for each case (A). In Fig. 2 we have plotted the radial
functions calculated for an exponential potential with
a=0.2 F. g corresponds to case (A), gz and gz to case
(B). The normalization is jo"Lg(r)7 rdzr=1. As can be
seen from the curves, the functions obtained in the two
cases are considerably diferent though they give
essentially the same binding energy.
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4. CONCLUSIONS

This investigation shows that for a three-body system
it is possible to obtain an exact numerical evaluation of
radial functions of a product form. The accurate wave
functions can be used to calculate other quantities more
sensitive than the binding energy to the behavior of the
radial functions in the external region. For example
they can be used to determine the nuclear radii and the
form factors. The technique we have discussed allows
a greater precision than the usual variational method
and requires a shorter computing time. This last point
is especially important if we want to study the properties
of H' and He' with a nucleon-nucleon potential more
realistic than the one here considered. As an example, if
the potentialcontains a tensor part, we must take for the
wave function a superposition of terms with diA'erent

angular momenta, and the calculations increase rapidly
with the number of terms. However, the method here
applied to L=O states can be extended to these more
involved cases, the computing time being still reason-
able. Numerical calculations on this subject and on the
structure of three-particle molecules are now in progress.

We discuss here a possible way of calculating the
function F(r) defined by (8), for a set of equally spaced
values rI, =a+kh, , k=0, 1, , n. Let us suppose that
the function f(s,t) of Eq. (8) has been tabulated for the
values (s;=a+ik, t, =a+jIz), z, j=0, 1, &

zz; more-
over, let f(s,t) be essentially zero outside the above
region in the (s,t) plane. We take the quantity a to be
a multiple of the step-length k so that the same is true
also for (rz+s;) and

~
rz —s;~: this reduces the number of

points in the (s,t) plane where the function f(s,t) must
be known to numerically perform the integrations of
Eq. (10).

First of all from (12) we calculate G(rz), k=0, 1, ~,zz

by means of an accurate numerical integration formula.
Then we evaluate (for all possible values of k) the
integral

G(r')dr'

approximating G(r') by the polynomial interpolating
the values G(r& „), G(rz ~z), , G(rI+~), with p an
integer. Finally, F(r,) is obtained as

G (r') dr'.

This method of calculation has been tested in a
number of cases. Quite accurate results have been
obtained using (i) a seven-point Bode integration
formula" to calculate G(r), and (ii) an eight-point
Lagrangian interpolation formula" to calculate the
integral of G(r) on the interval (rk z&rz). As an example,
for f(s,t)=(s—a)'(t —a) exp[ —(s+t)j, l and I in-
tegers, with h=0.1 and a number n= 100 of step-lengths
for each of the variables r, s, and l, the results are
obtained in the main to an accuracy of 10 ', and the
computing time turns out to be a fraction of a second.

1See, for example, Handbook of Mathematical Functions, edited
by M. Abramowitz and l. A. Stegun (U. S. Department of Com-
merce, National Bureau of Standards, Washington, D. C., 1965),
Appl. Math. Ser.


