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The formalism of Feshbach as used by O' Malley and Geltman for finding resonances in elastic electron-

hydrogen scattering is extended to more than one channel. A result of Feshbach's is rederived. It is found

that resonances occur in all open channels at the same energy and with the same width. Infinities of "reso-
nances" are found below the higher S levels in electron-hydrogen scattering, and recurrence relations
determining the relative positions of the higher resonances are found.

I. INTRODUCTION
' "N recent years, resonances in elastic scattering have
~ ~ received much attention in the field of electron
scattering by atoms. This began with the theoretical
discovery by Burke and Shey' of an elastic scattering
resonance in the scattering of electrons by atomic
hydrogen in its ground state. This was quickly followed

by other calculations' confirming the first resonance and
finding others. In all these methods the resonances were
obtained by solving a complicated set of equations for
the phase shift as a function of energy. Since the reso-
nances are all very narrow, very many energy points
were necessary, and there is no guarantee with this
method that resonances have not been missed.

More recently, O' Malley and Geltman' have used a
formalism of Feshbach' in which the definition of a
resonance is made more precise. But more to the point,
the approximate calculation of the position of the reso-
nance is reduced to finding the lowest eigenvalues of
some Hamiltonian. O' Malley and Geltman used the
method to reproduce the approximate positions of the
elastic resonances in electron-hydrogen scattering. In
this paper we extend the idea to multichannel scattering
so that resonances in excitation processes are described.
An interesting result of Feshbach's is derived but given
slightly diGerent emphasis; that is, if a resonance occurs
in any one state amplitude (for instance for the elastic
scattering), it will also occur in all the other states (the
excitation amplitudes will also be resonant) at the same
energy and with the same width.

The formal derivation is presented in the next section.
Unlike O' Malley and Geltman who used a standing-
wave formalism to obtain expressions for the tangent of
the phase shift (K matrix), an outgoing wave formalism
is used here so that the connection with the cross sec-
tions can be made more directly. In Sec. III an applica-
tion is made to resonances in electron-hydrogen scatter-
ing just below each of the higher thresholds. There is a
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single infinite sequence of resonances below the n=2
threshold for total angular momentum equal to zero.
It is also found that there is the same kind of sequence
below the n=3 level, but that below the n=4 and higher
levels there are multiple sequences.

II. FORMAL DERIVATION

The starting point of our discussion is, of course, the
Schrodinger equation

(E H)P(+) =0

with the boundary conditions

ei Ic~rp

lim f'+~(0, 1 . ) ~ P e'~""5„0+f„o(ro,ko)
f'p ~00 n=p fp

where the P„are the bound-state wave functions of the
target and the f 0(ro, ko) are the amplitudes for the
transition from the initial state, 0, to the state n. k„ is
the momentum available to the outgoing particle when
the target is left in the nth state. We have assumed that
only the (%+1) lowest states may be excited. The next
step is the definition of a projection operator I' and its
complement Q=1 P, such that —P projects out of P&+'

all of the open-channel components of f'+'. The con-
struction of this projection operator has been discussed
in many places, 4 and we shall not dwell upon it here.
The wave function for the open-channel part of P is
then PP. It satisfies the Schrodinger equation

PEP PDCP]PQ'+' =0, —
where

X=H+HQ QH.
E+iq QHQ—

The infinitesimal ig has been inserted to make the out-
going-wave boundary condition more explicit.

The operator Q[E+iv —QHQj ' may be represented
by

u.(01 . . z)1„*(0'1' s')

E,+ig—e,

where the u„are the complete (in the space of Q)
normalized set of eigenfunctions of QHQ and e„are their
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eigenvalues. One might expect the spectrum of the e„ to
start at lV&+&, the energy of the lowest state of the
target which cannot be excited, and go up since Q forbids
the target from lying below 8'&+&. However, the system
of target plus projectile may form one or more "bound"
states with the Hamiltonian QHQ. These states will

cause resonances. For the sake of clarity let us suppose
only one such state exists and call it Np,

Hg„u„*H HupNO*H
3C= H+Q +

vs E 6q+ Zg- E—CO+2/
(6)

is known. Then the solution to Kq. (3) can be written

P&p(+' =P&p&+&+G&+'HNO ) (N,HP&p(+&), (8)
p+

where G(+) is the outgoing wave Green's function,

[EP PBPjG&+—'= P.

The last term in Kq. (8) is a separable potential so that
the solution of Kq. (8) is immediately

py(+& —pp(+&+G(+&HN )
1

(NOHPg '+') . (10)
E—«—(upHG&+&Hnp)+i»

The amplitude for scattering is then obtained from the
asymptotic form of G.'

1 (&p&,„( &PHno)(NOHP&p&„&+&)

f o(k,ko)= f 0( „,ko) ——
4&r E « (IpHG&+&—HNO—)+ir&

We denote the term in the bracket by 8.Then suppose
the solution to

[EP PBPj—P&P&„(+&= 0

simpliaed as

o k 1
=—j 0(k,ko)+

dQ k, (E—«—6)'+ F'/4

XL~ A 0~
—2 Ref p*A 0(E—«—&—iF/2) j (13)

where
(NOHG&+&Hno) =5—iF/2, (14)

(&Pp„& &PHnp)(NOHP&tp, &+&)=A„o. (15)

This is a typical Breit-Wigner shape. Note that the
resonant energy is not the eigenvalue eo but is slightly
shifted by A. However, 6 is independent of n so that all
amplitudes are resonant at the same energy. Their widths
I' are also identical.

It might be thought that the limitation in Kq. (6) in
which only one eigenstate of QHQ was separated off
would limit the application to S states. Otherwise, ep
would be (2L+1)-fold degenerate and it would seem
that (2L+1) terms must be included in the last term
of Kq. (6). These states will differ only by their mag-
netic quantum number and since P&P(+& is an eigenfunc-
tion of L, (along the direction of incident momentum),
only one of the (2L+1)u0 will couple to P&p+ and the
above analysis applies.

If more than one state of QHQ must be included, then
the step leading from (8) to (10) must be generalized
slightly and the resonance structure becomes more
complex.

We note that if No is an I=0 eigenstate, only 1.=0
components of &P(+& will couple and the resonance will
occur in the S wave part of cr„p. Similar remarks apply
for higher values of I..

The elastic resonances recently observed' in the scat-
tering from various atoms occur just below excitation
thresholds and are very probably those described here.
It would be of interest to look at the inelastic cross
sections at the same energies to confirm the appearance
of the resonances in other channels.

where P&t&, „& & is the time-reversed wave function with
incoming-wave boundary conditions and where f„o is
the amplitude obtained from &p'+'. The differential cross
section is then

d~.o k. . 1 (g~„( &P»o)(NOHPA~, (+&) '
=—A .,k.)—

dn k, 4~ E « (~H—G&+—&H~)+i~

If j„o, (&P&,„( &PHN0)(NOHP&P&„&+') and (noHG+ Hug)
are all slowly varying functions of energy in the vicinity
of E~«(there is no reason for rapid variation of these
quantities), then the second term in (12) makes the
cross section vary rapidly. Equation (12) may be

' M. Gell-Mann and M. L. Goldberger, Phys. Rev. 131, 679
{1963).

III. EXAMPLE OF ELECTRON-HYDROGEN
SCATTERING

O' Malley and Geltman have used the one-state stand-
ing wave analog of the preceding section to calculate eo

for the problem of electron-hydrogen scattering. They
obtain an eigenvalue for the singlet S channel at 9.559
eV above the ground state of H which is 0.645 eV below
the n=2 threshold. Burke and Schey's' is-2s-2p close
coupling approximation yields 9.61 eV for the position
of the resonance. This last number is an approximation
to ~p+6, indicating that 6 is of the order of 0.05 eV.
Temkin and Walker used the formalism of O' Malley
and Geltman to show that there is an infinite sequence

' C. E. Kuyatt, J. Arol Simpson, and S. R. Mielczarek, Phys.
Rev. 138, A385 {1965).

7 A. Tempkin and J. F. Walker, Phys. Rev. 140, A1520 (1965).
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of eigenvalues of QHQ below the 24=2 threshold, and
that for the higher ones the ratio of successive ones is

hm e; 2/e, =e '~" u'=(+37 —5(4)"' (16)

become"

(
d' /(/+ 1) 2

24/= —g A // I/j,
p 2

These results were obtained previously by a different
method by Gailitis and Damburg. Whether any one of
these eigenvalues corresponds to a true resonance is still
a moot point. The energy shift of the jth resonance,

where ~ is the energy below the %=3 resonance. Here
A« is a real symmetric matrix given by

«&'&/'/Pm, Q (IM/2/2
~
4m2/2m')

p llll ~1/111 /1$2042

/2; = Re(24,HG'+&H24/), (17) X (/2m2/lm&
~
r2 r2

~

/2'm2'/2'm2')

may shift the position of the resonance above the n= 2

threshold, in which case it is no longer a resonance. Ke
shall see below that the fact that there are an inhnite
number of eigenvalues e; below the n=2 threshold is a
direct result of the degeneracy of the 2s and 2p levels.
These are, of course, not exactly degenerate but are
split by the Lamb shift so the infinity of levels is cut oQ.

Ke shall illustrate the multichannel aspect of this
formalism by looking for resonances in electron-hydro-
gen scattering below the I=/V thresholds (/V=3, 4 . .).
This requires that one 6nd the eigenvalues of QHQ
where Q projects out the 22(1V components of f. We
shaH not attempt the lengthy problem of 6nding the
lowest eigenvalue, but we merely show that there are
an in6nity of such eigenvalues similar to the infinity
below the n = 2 level and we obtain the result analogous
to Eq. (16). We use the Rayleigh-Ritz principle to
obtain the eigenvalues

(VQHQV) (V.HV. )

(4) (4 A4/)
(18)

pq=(laX»)p 4„(r2)F„(r2), (19)

wheie Xy2 is the coordinate exchange operator, @„are
hydrogenic states, and F„are undetermined functions.
The sum runs over all states above the n=X level, but
we need only the n=E level here. The calculation is
much easier when the expansion is made an angular
momentum eigenfunction. Thus Eq. (19) becomes

1
ling

" = (1&X12)Q @xl (r )24/ (r2) y / ('r2)
/1W1 f2
lsmm

X (/2m2/2m2
~

I.M/2/2) j (20)

where the last factor is the usual vector-coupling co-
efFicient and u~ is now only a radial function. Variation
of Eq. (18) with respect to the functions I& yields the
close-coupling equations' which at large distances

' M. Gailitis and R. Damburg, Proc. Phys. Soc. (London) S2,
192 {1963).

' K. Omidvar, Phys. Rev. 133, A970 (1964).

Here tp is any trial function and p4/ is a trial function
orthogonal to I'. Ke take the form for singlet or triplet

- d' b.
e v.=0

dr r
(25)

where the b; are the eigenvalues of the matrix B.Positive
b, represent repulsive potentials which cannot result in
positive e and so are of no interest here. A variation of
Sturm's theorem" can be used to show that there is at
least one negative eigenvalue and that for S)3 there is
more than one negative eigenvalue. We 6rst note that
the eigenvalues //; are all real and distinct (otherwise
one of the off-diagonal elements would vanish). Sturm's
theorem applied here can be stated as follows: Let D„
q=0, 1, ,X, be the determinant of the qth minor of 8
with Dp=1. Then the number of sign changes in the
sequence DpD& ~ .DN with zeros discarded is the number
of negative eigenvalues of B.The recurrence relation

j$ 2 g2
D2+2= D2q(q+1) 9N2q2 D—

2 2,
4q2 —1

D g=0,

greatly aids in computing the D,. The 6rst few are
given by

Dp=i,

D2 —3/V2(/V2 —1), —— (26)
D2= —18/V2(1V2 —1),
D4 ——27/V2(/V2 —1)[(9/35)1V'(E'—9)—8].

"Rydberg units are used here."L. E. Dickson, Em First Course in the Theory of Fqnations
{John Wiley R Sons, Inc. , New York, 1939), p. 83.

X (/2'm2'/2'm2'
~

131/2'/2') . (22)

We further simplify by looking at S-wave resonances,
I.=M =0. In that case the only nonvanishing elements
are

/j, /2 (/+-1)2- 4/2

A /, /+2= A 4~2 4= 2X(/+1) (23)
4(/+ 1)'—1

Equation (21) can be uncoupled by diagonalizing the
matrix

B/4 =/(/+1)bu +2A/4. . (24)

The resultant equations are
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TmLE I. Kigenvalues b for the Grst few states. excited bound states, the bulk of the wave function lies
in the region where this asymptotic form (25) applies,
and its solution can be used to get the dependence of the
eigenvalue on the quantum number. The result is

~ +~0)(p)
lim =e' ' ' ~ ai(iV)=[I &J(X) I

—'j'" (27)
~ (i)(+)

Thus, when there is more than one negative eigenvalue
of 8 there will be more than one sequence of inanite
eigenvalues of QIIQ below the Eth threshold. In Table I
we show all the negative eigenvalues and their corre-
sponding values of e; for the 6rst few E.

Again we should point out that whether these con-
stitute true resonances is in doubt. The value of the
lowest eigenvalue of QHQ can be determined by a calcu-
lation analogous to that of O' Malley and Geltman with
a Q chosen to project out the levels below 1V, or by a
close coupling calculation which includes the levels up
to and including N.

—5.08—16.20—3332—5.34—56.45—20.67—85.57—42.02—1.63

2.20
3.99
5.75
2.26
7.50
4.52
9.24
6.46
1.17

Thus for S=2 there is one sign change, the one negative
eigenvalue. For X=3 there is still only one negative
eigenvalue. However, for X=4 there are two sign
changes and so two distinct negative eigenvalues. For
higher X, Eq. (26) shows that there are still at least
two negative eigenvalues. The remaining analysis is
identical to that given in Refs. 6 and 7 for the resonances
below the n=2 levels BrieQy, it utilizes the result of
Landau and Lifshitz" that an equation which behaves
like Eq. (25) with negative b(~~ at large distances has ACKNOWLEDGMENT
an udinite number of bound states. For the very highly I am indebted to Dr. R. von Holdt for an illuminating

»L. D. Landau and E. M. Lifshitz, quantlm mechanics discussion of Sturm's theorem and for obtaining the
(Pergamon Press, Ltd. , London, 1958), p. 118 8. eigenvalues quoted above.
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Resonant Electron Capture in Small-Angle Collisions of Ar+ on Ar and Ne+ on Nef
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Measurements of the electron capture probability Po have been made for single collisions of Ar+ ions with
neutral Ar atoms and Ne+ ions with neutral Ne atoms, the latter measurements being an extension of work
previously reported by this laboratory. The incident ions ranged in energy from 200 eV to 4 keV, the scattered
particles being detected at angles ranging from 0.75' to 15' in the laboratory coordinates. A charge analysis
of the scattered particles has yielded values of Po as a function of the incident ion energy T and scattering
angle 8; in both cases Ps is found to oscillate rapidly as a function of 8, with some dependence upon T also.
The periodicity of Po as a function of T and 8 is consistent with a description of the collision wherein the
electronic state of the ion-atom system changes adiabatically and is a superposition of symmetric and anti-
symmetric energy eigenstates of the diatomic molecular ion. The data are discussed in terms of this descrip-
tion, yielding empirical values of an integral I, dedned as the energy difference ~ between these two eigen-
states, integrated over the collision path of relative motion. For the range of collisions studied, I varied from
about, 6 to 26 eV-L in the case of Ar+ on Ar, and from about 5 to 25 eV-L in the case of Ne+ on Ne. An
approximate functional dependence of ~ upon internuclear separation R is also obtained, although there
is some evidence that ~ may also depend upon the relative collision speed e in the case of the Ar -on-Ar
collisions. It is proposed that the ~ measured for the gentler collisions which produce no excitation of
either atomic system is the energy difference between the II, and II„states of the qpasimolecule.

I. H%TRODUCTION

'HE measurements presented in this paper are a
continuation of work previously performed in

this laboratory and reported upon in a paper, ' herein-

)This work was supported by a grant from the National
Science Foundation.

~ P. R. Jones, P. Costigan, and G. Van Dyk, Phys. Rev. I29,
211 (1963).

after called I. The present measurements of Ne+ on Ne
are an extension of that earlier work to lower incident
ion energy T and smaller scattering angle 8. A brief
preliminary report of the Ar+ on Ar measurements
presented here was given in another paper. '

' P. R. Jones, G. Van Dyk, and N. Eddy, in Proceedings of The
Third International Conference on the Physics of Electronic aug
Atomic Collisions, edited by M. R. C. McDowell (North-Holland
Publishing Company, Amsterdam, 1964), p. 862.


