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Target-excitation effects are studied in (d,p) and (d,n) reactions using simple microscopic models. These
effects occur when the outgoing nucleon excites the target nucleus; the stripped nucleon then couples with
this excited state to form the final nuclear state. By choosing the optical potential for elastic scattering of the
outgoing nucleon by the target nucleus in its ground state as the generator of the final-state distorted waves,
and making the usual assumptions of the distorted-wave model, the distorted-wave amplitude separates
into the standard distorted-wave Born-approximation amplitude plus one involving target excitation alone.
Assuming a shell-model description of the target and residual nuclei and using two-body forces to describe
the interaction between the outgoing nucleon and target nucleus, an angular-momentum decomposition
of the target-excitation amplitude is made. Numerical estimates of the effect of target excitation are ob-
tained using the following assumptions for the Ca~(d, p) Ca" reaction: the deuteron is a point particle; the
two-body force has a Gaussian shape; the target nucleus is doubly magic; the final nucleus is doubly magic
plus one open shell; the single-particle states are harmonic-oscillator states; both the real and imaginary
parts of the deuteron and proton optical potentials have a Saxon-Woods form factor (volume absorption).
Results are obtained for various oscillator strengths and well parameters. Except for certain cases, the effects
of target excitation are found to be small. Angular-correlation measurements are discussed as a possible
means for detecting the presence of nonnegligible target-excitation effects.

I. INTRODUCTION

N deriving the amplitude of the distorted-wave
~ ~ model of (d,p) reactions, ' several terms are ignored,
either on the expectation that they are small or because
realistic calculations have so far not been feasible. Ke
examine one term from the former class in the present
work. This term is the matrix element of V„t—U~,
where V~t is the interaction between the outgoing pro-
ton and the target nucleus, and U„ is the complex po-
tential well which generates the 6nal-state proton-
distorted wave function. ' Other e6ects, due to inclusion
of higher order terms in approximating the exact wave
function, inclusion of first-order exchange eGects, or
inclusion of the matrix element of the imaginary part of
U„are not considered.

Our treatment of the (d,p) amplitude is standard in
almost every respect (apart from studying the V~&—U~
matrix element) except in our choice of U„. Any choice
of U~ is permitted when the exact amplitude is con-
sidered, since the exact result is independent of U„.
This is not true of approximations. The standard choice
of U~ is a complex well whose phase shifts reproduce the
cross section for elastic scattering of the outgoing pro-
ton by the residual nucleus in its anal state. ' Ke choose
instead, the complex well whose phase shifts fit the
cross section for elastic scattering of the outgoing pro-
ton by the target nucleus in its grolnd state.

The main reason for this choice is one of practicality
and is related to the fact that the parameters of the
complex potential well are determined empirically. The
difBculty of measuring proton elastic scattering by
nuclei in excited states is evident. There is no guarantee
that parameters determined from ground-state elastic
scattering by the same nucleus, or by neighboring nuclei,
as is now done, will always be correct. Kith our choice,
and the usual approximations, all relevant elastic-
scattering measurements are feasible. Our choice also
leads to a slightly simpler approximate amplitude, as we
shall see.

The above remarks are illustrated by a consideration
of the general theory which we outline now. The exact
amplitude T including exchange eGects, can be written
in the form

where 0 ~ is the exact, antisymmetric scattering wave
function (properly normalized),

l k„) is a proton plane
wave,

l JfTr& is the final state of the residual nucleus
labeled by spin and isobaric spin (Jf,Ty) and V„„is the
interaction between the outgoing proton p and the
captured neutron n. Introducing the potential well U„
and the ingoing wave

l
k„& && in this well, Eq. (1) may be

rewritten using the Gell-Mann and Goldberger theo-
rem' as

T=(k„& &,JrTrl V.,+V„,—U„le-'&.~ %ork performed under the auspices of U. S. Atomic Energy
Commission.

f Present address: Theoretical Physics Division, Atomic Energy
Research Establishment, Harwell, Berkshire, England.

'W. Tobocman, Theory of Lbrect Nlclear Reactions (Oxford
University Press, London, 1961); N. Austern, in Selected Topics
in Nuclear Theory, edited by F. Janouch (International Atomic
Energy Association, Vienna, 1963); N. Glendenning, Ann. Rev.
Nucl. Sci. 13, 191 (1963);G. R. Satchler, Nucl. Phys. 55, 1 (1964).

~ Previous accounts of the early portions of this work were dis-
cussed in an unpublished manuscript (1963).See also F. S. Levin,
Bull. Am. Phys. Soc. 9, 446 (1964); 10, 511 (1965).

Let ( l J,Tt)) denote the states of the target nucleus
and ( ln )) denote the states of the deuteron, with spe-
cific labeling: the labels n and p are assumed to be in

l n)
and the remainder are in

l
J,T&&. Then

t, a

' M. Gell-Mann and M. Goldberger, Phys. Rev. 91, 398 (1953).
j.4'7 715
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is a valid expansion for 4'" such that $0,; yields the
complete elastic amplitude. ' The states

I
J~T,& and

In=0) denote the target and dueteron ground states,
respectively.

The major approximation of the distorted-wave
model is that within the ma, trix element of Eq. (2),

(A)

As discussed elsewhere, 4 approximation (A) leads to an
amplitude in the case of elastic or inelastic scattering
which contains second-, and higherorder exchange
effects but no erst-order exchange effects such as the
analog of heavy-particle stripping. ' As stated above, we

make no attempts in the present work to include such
first-order eifects Lsee Eq. (4)j which are also not ob-
tained from (A) and Eq (4)..

It is usual to assume further' that Po, ; may be well

represented by a function Ikz&+'& generated by a com-
plex well U~ such that

I
k~'+&& yields the observed elas-

tic deuteron phase shifts. This is the second important
approximation of the distorted-wave model. Making
this assumption, we 6nd that

T= Tow= (kr ' ' JrTr I
V~r

+Vp, U,
l
J;T;,—n=0, ks'+'). (4)

Since (4) is only an approximation to T, it is clear
that different choices of U„may produce different
amplitudes.

The third important assumption of the distorted-
wave model is that V„t,—U„ is sufFiciently small that it
is ignorable. In the present work we assume instead
that U„ is well approximated by its lowest order term:

U =(J~T;I V
I J~T,);

with assumption (B), U~ will now not cancel all of V„t,
as we shall see. As usual, ' we ignore the imaginary term
in U„. It will be recalled that the lowest order ap-
proximation to the standard choice for U„would lead
not to (B) but to

U =(JrTrl V +V~~I JrTr& (B')

To use (B), we introduce the fractional-parentage
expansion of

I JrTr) into states of the target plus
single-particle states of the captured neutron:

I JfTf&=Z ~~.-(f) I J~T~) Ii.2& (5)

4 This expansion has been discussed for the cases of nucleon-
nucleus and deuteron-nucleus elastic and inelastic scattering:
F. S. Levin, Phys. Rev. 140, 1099 (1965).

'For discussion of exchange effects in (d,p) reactions, see
D. Robson, Proc. Phys. Soc. (London) 80, 1067 (1962); Nucl.
Phys. 33, 594 (1962); 42, 592 (1963); F. S. Levin, ibid. 36, 119
(1962); L. Rodberg, ibid. 47, 1 (1963); S. Edwards, ibid. 47, 652
{1963).In spite of the large literature on exchange effects in direct
reactions (much of it referred to in the above references), no satis-
factory general treatment of the problem has yet been given. The
role of exchange effects has remained one of the major mysteries
of nuclear reaction theory.

'An exception is to be found in the work of Glendenning
(Ref. 1), whose treatment is quite similar to ours.

where At, „ is a product of fractional-parentage co-
efKcient and Wigner coeKcients and (j„;,') are the
spin and isobaric spin of the captured neutron. The
subscript t runs over the values t= i (ground state) and
t=e (excited states).

If Eq. (5) is now substituted into Eq. (4), (8) may be
Ised to ebminate the matrix elements of V„t, diagonal in
the states of the target nucleus Th. e resulting expression
fol TDw ls

Tow ——Q A;, „(f)(ky' ',j, I
V.yln=0, kp'+'&

+p rl. , (f)(k„' ',j ,'I'U„(e,i—)In=0,k &+'), (6)
n, e

=~DWBA+ ~EXC )

where
'U, (e,i)=(J,T, I V„,l J;T;).

The term in TDw involving V „ is the familiar
distorted-wave Born-approximation (d, p) amplitude,
denoted here by TDwB~. It is diagonal in the states of
the target nucleus and corresponds to formation of
I
JfTf) by adding a neutron to the ground state of the

target. The second term in Tow, involving 'U~(e, i),
contains the new eGect that we examine in the re-
mainder of this paper. This new amplitude TExc cor-
responds to formation of the final state by coupling the
neutron to an excited state (and only to an excited
state) of the target. The target is excited by the inter-
action of the outgoing proton with the target nucleus.
In shell-model language, the states

I J,T.) are those
obtained by angular-momentum recouplings within
a shell or else by promotion of a single nucleon to an
unoccupied j shell, since we shall assume that V„t, is
given by a sum of two-body interactions.

If we had used assumption (B') rather than (B), we
would have obtained an equation for Tow that was the
sum of the right-hand side of (6) plus an additional
term diagonal in V„&,

. i.e., a term (J~T,
I V~&I J,T;)

would have made an extra contribution to TDw~~.
Our concern is with evaluating TEx~ and comparing

it with Tow'~. We thus have to translate the sche-
matic form of (6) into matrix elements with specific
magnetic quantum numbers. This in turn means that
we must specify the states

I JrTr) I J.T,), and
I J,T,)

(i.e., the nuclear model) and thus the quantities A~, „(f),
and also choose a form of V„t. In the remainder of this
paper we carry out this program.

II. THEORY

A. Angular-Momentum Expansion

In this section, we outline the steps required to ex-
press Tmx~ as an expansion in angular-momentum
quantum numbers. Detailed formulas for TExc for the
case of arbitrary target nuclei are not presented since,
on the one hand, such expressions are rather unwieldy,
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while on the other hand, we consider only a greatly
simplifying special case for our calculations. Instead,
we provide enough details for the interested reader to
be able to derive the formulas of the general case or the
special case of Sec. II-C for himself. The various
assumptions concerning nuclear structure, the form of
the interaction U„t,, etc. , are indicated. Since we include
the eGects of closed shells in evaluating TExc, and since
we need not only parent but grandparent states (unlike
the case of ordinary stripping) to evaluate reduced
matrix elements, we discuss at some length the shell-
model wave functions and the generalized codBcients of
fractional parentage (cfp's) that have been used in the
calculations. Although similar discussions have often
been given, we include the present one as an aid to
understanding the few formulas we do give and because
they help to emphasize the important role played by hole
states, i.e., core-excited states. A further point is that
the generalized cfp's are not the familiar ones of the
standard shell-model calculation. Finally, the discussion
given, plus the material in the Appendix, should help
to make this work reasonably self-contained.

We begin by rewriting Eq. (4) in a form which dis-

plays the relevant magnetic quantum numbers. Thus,
~

JT)—+ I JM ,TMr) and the 'state ~+=0) of the deuteron
becomes

~
1M',oo) with the second pair of numbers re-

ferring to isobaric spin. Equation (4) becomes in this
notation

Tow=(k„& '~(2o~;2r„~t(JgMr, Ter, ~
V ~

+ V„,—tI„~J,M, , T,M,,) ~
1M.,OO) ~k.&+&), (g)

where
~
2'0„,2'r~) is the spin, isobaric-spin state of the

proton. '
We now must specify the initial and 6nal nuclear

states so as to be able to use Eq. (5) and approximation
(8). Since our purpose in this work is to obtain an
estimate of the relative size of TEx(:, and not to 6t
particular data, we choose the simplest of nuclear
models: the spherical shell model. For simplicity, we
assume that the

~
JrTf) and

~
J~T;) may be well repre-

sented by a mixture of those con6gurations in which no
more than two different j shells are un6lled. This re-
striction may be dropped, but the formulas become
rather cumbersome; the case of two uv6IJed shells is
suSciently illustrative for our purposes. As an example,
we consider the 6nal state

~ Jar, TfMr~) whose general

form is given by

~
JfMg, TgAIr~)

B.[j"(J.'T 'e.')j "'(J."T "a„")j
a+5 =@+1

X~II j. + (00)j-(J.T„.„)
Xj"'(J."T„"n„");JrM f TfMrf). (9)

The notation of Eq. (9) is as follows. The quantities a
and b denote the number of nucleons in the open shells

j ' and j", respectively (6 is the number of open shell
nucleons in

~
J~T;)) and j ' (J„'T„'a,„') are the quantum

numbers of the group of nucleons of spin j'. A subscript
e is included to account for the various possible spins
and isobaric spins that are allowed for the con6guration
(j'); n denotes additional quantum numbers, such as
seniority. The symbol j, represents a closed-shell angu-
lar momentum. There can be 4j,+2 nucleons in a closed
shell, with resulting (JT)= (00). The numbers 8„(j are
the various con6guration strengths obtained, in general,
from a shell-model analysis of energy-level spectra.
Finally, J„'and J„"are to be coupled to form Jf, etc.

Equation (5) represents the erst type of fractional-
parentage expansion we need to evaluate TDw. To de-
terrnine such an expansion for Eq. (9), we need the
generalized cfp's for removing a particle from one of the
states in (9), which contains identical, but inequivalent,
nucleons. Let us consider one such state. Conforming to
the standard convention, we remove the last particle,
which is always taken to be the stripped nucleon. It is
evident that this nucleon may come from the groupj"', j', or any closed shell, and further, we note that
when a nucleon in group j is removed, none of the
other groups are disturbed. Hence, the generalized cfp
for removal of a nucleon having angular momentum j
while leaving the remaining group of nucleons undis-
turbed is closely related to the ordinary cfp for removal
of one nucleon from the usual con6guration j".How-
ever, the requirement that the separated nucleon be the
last nucleon regardless of its angular momentum, means
that Racah coeKcients appear as factors in the expres-
sion for the generalized cfp's, as we discuss in the
Appendix. '

As an example of the equation that results on
making such a fractional-parentage expansion, we ex-
hibit the portion describing the removal of a nucleon
in state

~j '2) (we partially suppress magnetic quantum
numbers):

C(Jj 'Jf Mes'Mr)C(T 2Tg, Mrr Mry)(gj
' (J2T«2)j" (J„"T„"a.„")j(JTa),j' fJrTr)

J Tsar~
JT~

X
~
J" (J,T«,)q" (J„"T„"n„-");JM, TM, ) ~~'~, —,r )+.. . .

7 By leaving ~„unspeci6ed, we can also include {d,n) reactions in our treatment.
8 The generalized cfp's were 6rst brought to the author's attention by D. Amit {private communication). A discussion similar to thatof the Appendix is given by D. Amit and A, Katz, Nucl. Phys. 58, 388 {1964), although the generalized cfp's for ho]e statesare not treated by these authors.
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The closed shells are not explicitly included since they are not disturbed; the fact that they are considered is
indicated by the normalization of the ( ( ) s, as discussed in the Appendix. For that portion of Eq. (10) de-
scribing the removal of the last nucleon from a closed-shell state, the generalized cfp is

(([j"(J„' T„'n„')j" (J„"T„"n„")](JrTr)j,+" '(j,2)) (JTn)j, (Jf f),
and only a summation on JTa is needed since the 4j,+1 particles couple to the unique value of (j;,). From these
examples, it is evident that a shorthand notation for cfp's and the nuclear states would be convenient. The following
is used: for an open shell cfp such as appears in Eq. (10) we write ([J2T»~](JTn),j p(JyTy), while for the closed
shell cfP, we emPloy (([e,a,b](JrTr))(JT),j.(JrTI). The nuclear states

I
JT) are labeled in the same way as

the cfp's.
Substitution of (10) into (9), and (9) into (8) will then lead to a detailed expansion of Tow similar to Eq. (6).

However, we shall only consider the TEX(:part of TDw in this section, since formulas for TDwpz have been given in
many places. Since only states

I
J,T,) can occur in the expansion of

I JrTq&, we must omit those configurations
(with proper strength) that s,re present in

I
J~T,&. We indicate this symbolically by placing a prime on the coeffi-

cients 8„[].
Carrying out the relevant substitutions and using approximation (8), the TExo part of Tow becomes

TExc= 2 8~'[a,b] P C(T;,'Tf Mr, r Mr, )
~+b =8+&

Jd Tgcxy
MgM r~7 ss

X( 2 C&J«j oJr; M, in My)([J2T2nz]&J T n.)j u[JrTr)
J2T2cx2
jPtlt rs

x (b„i-i
I
(-,'~„,-'...I (j,m. ,—,".

I
~... I

b, &+i&
I
1M,,OO&

+ P C(Jj.JI,' M.m„Mr)(([n, a,b](JrT&))(J.T».)j,(JfTf)
jcre A

x&b. ' 'I &2~«2~«l 0 ~., lr-l&~r:Ib. '+'&I 1M„OO&}, (11)

where the coefFicients 8„' are also written in an obvious
shorthand and C(abc; nay) is a Wigner coefficient in the
notation of Rose. ' The labels 0 and c refer to open and
closed shells, respectively. The effective interactions
'U&, &,

' and 'UJ, z, ' are defined by

'O~.r.'=([J2T»~] J T
I V«il J'T'&

U& r =&[ri,o,b](JfTf) J T
I
V.il J'T'&

with the dependence on (J~T~), any intermediate-state
quantum numbers, and magnetic quantum numbers
suppressed.

A more tractable expression may be obtained by ex-
panding the deuteron wave function into spin and
isobaric-spin components:

=
I
l=o)2-"' Q (—1)l-'«'C(-' —,

' 1 o„'(r„'Mg)

x I-.",'&I-,' —.„'&I-,'~.'&I-,'~.'&, (12)

where Il=o& is the 5-state portion of the deuteron
ground state. Because of an approximation we make
later, it is not necessary to consider the deuteron D
state, although its inclusion is straightforward. Substitu-
tion of Eq. (12) into Eq. (11) and evaluation of the
isobaric-spin scalar product for the captured nucleon

' M. E. Rose, Elementary Theory of Angmlar Momentum (John
9/i1ey and Sons, Inc. , New York, 1957).

then leads to an expression from which we define the
effective proton interaction 'lid, ~,

'tLJ, r, —— g (—1)l '«'C(T;,'Tr; Mr—, r„'Mr,)—
ry'.VT8

where we have dropped superscripts.
The next step is to reduce the effective interaction

'U~, ~, to a more tractable form. To do so, we assume
that the interaction V~& may be adequately represented
by a sum of two-body central forces. Spin-dependent
forces could be included, as could three-body forces, but
our aim is to obtain an estimate of the size of Tgx(:. It is
sufficient to use central forces to do this. (Similarly, in
generating the distorted-waves Ik«' '& and Ik~i+'&, we
shall take the complex wells to be spin-independent. )
Ke thus assume that

V(r,.) =P r, (r„r.)V,«(O.) V~«*(n„).
kp

(15)

V«= Q V(r )
a+ target

nucleus

X[1w+-4iiP« ' ;$HP„'+~1„,P« *], (14)—

where the I"s are the usual exchange operators with
coefFicients normalized to unity.

%e next expand the two-body interaction into multi-
poles ln the usual way,
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On substituting Eqs. (14) and (1S) into (13),writing the
exchange operators in the spherical basis and using the
%igner-Kckhart theorem' we may express %.J-,~, in
terms of Kigner coefFicients and reduced matrix ele-
ments. The reduced matrix elements may be evaluated
in the standard way" in terms of various recoupling
coefFicients and generalized cfp's for grandparent states;
we shall not, however, state the results here. It is
sufficient to note that, in general, the resulting expres-
sions involve many restricted sums on angular mo-
menta, in contrast to the simpler case of TD~BJ,. These
sums generally do not have closed-form expressions.
There is also a dependence of %Lg,~, on the radial part of
the effective interaction V~~~. (r„) given by

Vp, ~ (r„)= dr r2pI(r)vt;(r„, r)p~ (r). (16)

In Eq. (16), p~ is a bound-state shell-model wave func-
tion of angular-momentum l and is assumed to be inde-
pendent of j(=l&-,'). The principal quantum-number
dependence in q ~ is suppressed. The subscript h in (16)
is the multipolarity from Eq. (15).

In evaluating %t,~,~, in terms of signer coefFicients,
etc. , we also obtain the isobaric-spin dependence. A
simple calculation then sufFices to show that Tgx~ has
the same isobaric-spin dependence as TD~B~, viz. ,
C(T,-', Tr, Mv, r~v—r)

It is evident that the k dependence of J, ~, will be
restricted because of the assumption that

~
J,T,) and

~
JsT~) are described in terms of the shell model. A

further restriction arises, however, because the nucleon

p is only allowed to interact with the open-shell nucleons
of

~
J,T,), while the nucleon in

~
J,T,) must be an open-

(closed)-shell nucleon as j„ is an open- (closed)-shell
angular momentum, where j„is the angular momentum
of the captured neutron.

To see this, we first remark that because of the
antisynunetry of

~
J.T,) and

~
JrT;)& g vq(r &r„)~

Avt, (r~,rv), where A is the number of nucleons in the
target (also, it is the label for the last target nucleon).
Next, in order to evaluate the reduced matrix elements,
it is necessary to expand both

~
J.T,) and

~
J~T,) via

single-particle cfp's; the resulting core states are grand-
parent states for

~
JJTt). The reduced matrix elements

then become a sum of products of a single-particle re-
duced matrix element and a scalar product of two
grandparent states; a nonvanishing result is obtained
only if the grandparent states are identical. I.et us
now suppose j„to be an open-shell angular momentum.
Then

~
J,T,) and

~
J~T,) both have identical closed-shell

structures, and a nonzero overlap among grandparent
states will occur only if nucleon ~4 comes from an open
shell in both

~
J.T.) and

~
J~T;). On the other hand, if

j„is a closed-shell angular momentum, then
~
J,T,) has

one more hole state and one more open-shell state than
' I. Talmi and A. de-Shalit, Esglear Shel/ Theory (Academic

Press Inc. , New York, 1963).

~
J~T;). A nonzero scalar product now occurs only if

(a) an open-shell nucleon is removed from
~
J.T,),

(b) the same hole state is created in the
~
J~T;) parent

as in
~
J,T.), and (c) the remaining open-shell nucleons

in the
~
J.T.) parent state couple to form

~
J~T;).

An interesting consequence of the above rules is that
for those reactions where Tow'~ vanishes because

~
J~T,) is not a parent for

~
JrTf) Le.g. , 8"(d,P)Bn.q4"*j,

j„can take on only open-shell values. This follows from
the fact that if j„is a closed-shell angular momentum,
then the open-shell nucleons in the

~
JfT&) grandparent

state must couple to form
~
J~T;), but this is impossible

by hypothesis.
Once 'hg, z, has been expressed in terms of the U~p~

and has been substituted into Tgx~, the remaining
radial integrals can then be attempted. There are two
such three-dimensional integrals to carry out: on the
neutron (r„) and on the proton (r„) spatial coordinates.
In order to do this, the deuteron internal wave function
(r„v~ t=0) must be expanded in terms of r and rv. The
resulting expressions involve many coherent sums on
angular momenta and an infinite sum of double integrals.
These are rather complex to carry out because the
deuteron center-of-mass state ((r„+r„)/2~he'+&) will
also have to the expanded in terms of r and r„. To
simplify the calculations, we now assume that the
deuteron ground state may be adequately represented,
for the purposes of our calculation, by a delta function:

(C)

where the normalization is determined by requiring
equality of the volume integrals of each side of (C).
Except for normalization, use of (C) in Tnws~ produces
the same matrix element as the standard zero-range
approximation given by (r „~ V„~t= 0)= —(h'/Jf)
X(47r)'"Xdb(r —r„). Here, .'Ve is the deuteron nor-
malization factor and n ' is the size of the deuteron:
n '=4 3f. On.e effect of (C) in Tnwa~ will be to pro-
duce a factor V„v(r„„=0),and by choosing V „=V(rnv)
to have the same fgnchonrtl form as V(r„) in Eq. (15),
we shall be able to compare Tgxg and Tow pg d&'ectly.

%e believe that the e6ect on TEXC of approximation
(C) will be twofold. First, it should produce a sharpening
of the di8raction peaks of the angular distribution be-
cause the angular dependence of Tgx~ will now be con-
centrated in a sum of terms similar to those of TDwgg,
rather than in an infinite sum of terms in which the f„
and r„ integrals tend to smear out the angular de-
pendence because of the finite size of the deuteron.
Secondly, we expect that now TEx& will represent an
upper bound to the result obtained if (C) were not used.
This remark is based on plane-wave calculations" which
showed that use of (C) increased the cross section over
the result when (C) was not used. We do not expect that
the use of distorted waves instead of plane waves should

"F. S.Levin (unpublished). Further comments are given in the
next section.
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alter this result. Hence, use of (C) is reasonable in that
it allows us to bound the magnitude of Tzxg, even
though the angular distributions may not be too
accurate.

The result of using (C) in Tzxo is to simplify the
angular-momentum sums slightly and also to permit
Tzxc to be put into a form resembling Tow». The
general expression for TDw is now

Tow= (2x)"'Nga '(—)~'~C(T,—,'Tr, Mr, r„M.r—)'
X Q C(-,'Jsl; o~2Md)C(JQJJjj MjMQMf)

J1JSX
M&M ye

XC(lIJsJg, mMsMi)LB~"+Bi"(JiJs)7. (17)

3. Properties of the Amplitude

We now examine the amplitude Tow. In (17), Bq is
the angular-dependent factor of the usual stripping
matrix element TDwp~. It contains the spectroscopic
factor, reduced width, radial integrals, etc., and P labels
the transferred angular momentum. Also, Bq contains
the factors b~q, and 8;„q„ i.e., no spin-Rip terms occur
and only the angular momentum of the captured neu-
tron j„couples with J, to form JJ.

The amplitude Tzx~ is given by that portion of Eq.
(17) containing the factor Bq (J~J2). Each term
Bx (J~J2) is given as a sum on numerous angular-
momentum labels and involves the 8 'La, b7 of Eq. (9),
the generalized cfp's of Eq. (10), various recoupling
coefFicients, and radial integrals with the factors V~A, &.

as integrands. All magnetic quantum numbers have
been removed from the Bq (JrJ2), for which it may be
shown that J2 may be either -,'or ~, the latter corre-
sponding to spin-Qip processes due to the spin-exchange
operator I". Furthermore, since j„couples with J,
to form J~, and J, and J; are linked via the multipoles
of the two-body interaction, then Jy and J; can be
linked by angular-momentum values other than j„,
as indicated by the Jq sum in Bq (JqJ2). A restriction
on the coherency of like values of X in TDwB+ and Tzx&
thus follows: equal values of A, in Tz~» and Tzxc are
coherent only when J2=-,' and J&= jo in Tzzt:. The
other values of J~ and J2 will add incoherently with
each other and with Tows~.

These latter comments become obvious when the
differential cross-section formula is written out:

that P takes on the open-shell value or values that give
rise to the Butler stripping patterns. However, this is
not true in Tzxo for two reasons. First, J,T,) may
contain configurations not occurring in J~T,), and
second, j„can assume all possible closed-shell values
because of the Pauli principle. As a specific example of
which we make use later, consider Ca"(d, p) Ca"
(ground state, g.s.) and assume Ca" to consist entirely
of closed shells and Ca4'(g. s.) to contain these con-
figurations plus an f7 j2 neutron. Then in Towzg, l =3,
but in Tzx~ one finds l„=0, 1, and 2, corresponding to
the Ca" configurations s 'f, p 'f, and d 'f The. value
l„=3 in Tzxc is not allowed since only Ca4'(g. s.) is ob-
tained from the closed-shell configuration and Ca4'(g. s.)
by hypothesis cannot be a parent state in Tzxt:.

In general, not all the J,T, states are necessarily
found in Tzxc for each j„value, since the selection rule
J~= J,+j„must be satisfied. We may also write this as

mini J +Jr+21&f &J +Jr+2
in analogy to the similar form of the selection rule
A(J;J~j„) for Towzz. The parity selection rule s.Jy
= (—1)'"wz. is also obeyed, but because of core excita-
tion it does not limit l as in the case of TDwg~.

In addition to the above rules, there are three others
which we now summarize:

(1) If the "parity" of Tnwzj, is defined as (—1)'",
then in Tzxz the only allowed X values are those such
that the parity of all matrix elements in Tzx& is

( 1)x —( 1)l»

(2) When j„ takes on closed-shell values in Tzxc,
only those states

~
J.T,) are allowed in which the open-

shell nucleons have the quantum numbers of the initial
state of the target nucleus.

(3) For the cases where Tnwsg 0 because of failure
to satisfy the triangle relation h(J;Jr j„), the values of
j„ in Tzxc are restricted to open-shell values, unless
core-excited configurations occur in

~
J,T;).

These rules, and our other remarks, are easily
established from the angular-momentum expansions for
%LJ,~„reduced matrix elements, etc. The methods for
expanding these quantities are given in detail in a
number of places, " and their derivation here is un-
necessary. Detailed expressions for these expansions
are available from the author.

C. Specialization to Closed-Shell Targets

To carry out calculations using the results obtained
so far requires that the con6gurations to be considered,
as well as the target nucleus, be speci6ed. It would then
be necessary to carry out the various angular-momentum
sums of Tzx~. In this work we limit ourselves to the
idealized case of a doubly magic nucleus, so that the
target consists entirely of closed-shell configurations.
For this case, it can be shown that nearly all the
angular-momentum sums may be determined analyt-

'~ See, for example, Talmi and de-Shalit, Ref. 10.

2Jg+1
X Z E(2J +1)(23+1)7

2J;+1 ~xJ2&sos

X i 8),"+8 "(JJ ) i
'.

A few further remarks may be made concerning the
properties of Tzx&. A weU-known feature of TDw&& is
that only

~
J~T,) is allowed as a parent state, implying

do' p, „p,„k&—[(2z)'I'NgC(T;,'Tr, Mr, r~r,)7'—
(2~g&)s P„
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ically and that TExc reduces to a very simple form.
Hence, Tzxc becomes relatively easy to evaluate, which
is consonant with our aims of obtaining an estimate of
the size of Tmxc, and not in Qtting particular data.

We therefore assume that the target nucleus is de-
scribed by the state

~
J~T;)= ~g;, j,4'~'(00)) and that

the 6nal state is sufficiently low lying that it is simply

~ JfTj)= ~g;, j,"~'(00)jo(jo-,')). Clearly, the quantities
B„are unity since only one con6guration occurs. A
further obvious point is that only the closed shells can
contribute to TExc.

In order to compute the values of %,g,z, we need three
generalized cfp's, corresponding to: (1) removal of a
particle in state

~ j;,') from
~
JfTf), (2) removal of a

particle in state
~
jo-,') from parents of I Jr'), and

(3) removal of a particle in state
~ j;,') from

t J~T,).
Expressions for these coeQicients may be determined
from the formulas of the Appendix. Once this is done,
the quantities B&,~(J~J2) of Eq. (17) can be evaluated.
A straightforward and lengthy calculation yields the
extremely simple formula

Bg (JgJg)=[47ra'(2+1)'/2) 'i "8g y8g)

XQ(2L,+1)C'(L,lok; 000)

In this equation, /o is the orbital angular momentum of
the open shell in the residual nucleus corresponding to
lo= jo~-,' and is also the value of the transferred orbital
angular momentum in the standard matrix element,
TD~B~. The quantity' is the number of target nucleons.

We note several interesting aspects of Eq. (18).First,
only the values J2=-,' and X=lo are allowed, so that
Bq and Bq~(JqJ2) are completely coherent. Second,
Bq~(JqJ2) is independent of the exchange nature of the
two-body force, a result that follows since we are con-
sidering the interaction with a spherical, closed-shell
nucleus, and it is known that in such a case the interac-
tion is equivalent to that with a spherical well. '0

Finally, we see that all the closed shells (there is an
implied summation on the principal quantum number in
q ~.) contribute coherently so that there is constructive
interference. That is, we have a cooperative eGect among
all A nucleons: this "collective" type of behavior could
cause TEx~ to be large. No such simple expression
arises, for example, when the (d,p) or (d,n) reaction is
on a single-hole nucleus leading to the ground state of a
doubly magic residual nucleus, despite the fact that
the Anal state consists only of closed shells.

The corresponding expression for B~ is found to be"

B), =Ln'(3+1)"'j 'i "V(r„=O)b/, /

X(k~' '
j q Y /~/k ')e. +(19)

"This expression for 87, takes into account the effect of the
exchange operators occurring in Eq. (14) that are also present in
t/'„„.

If we write the two-body force as V(r;;) = Vof(r;, ),
and also the multipole coefficient v~(r, ,r,) as Vof/, (r, ,r;),
then Eqs. (18) and (19) are seen to differ only in the
matrix elements 5RDwg~ and BR@xg.

ORDwsg f(r „=0)(k,' '
~
y/, V/, "*~ke&+'),

ORExo= (4s) ' Q(21,+1)C2(l,lok; 000)

(20a)

'4 All shells in the same nucleus vrere thus chosen to have the
same value of b (or r0). This should have a relatively small effect,
since the difference in values of b for the ipsf~- and the if~fq-
shells, for example, is only about iQ%.

X(k ' 'i q .f/, 4V/, "*eke&+'). (20b)

It should be recalled that there is an implicit sum on the
principal quantum number for each y4 in Eq. (20b).

Specific forms for the y~ and f(r;;) were chosen in the
present work. Ke used oscillator wave functions for the

q ~, with oscillator parameter b:

q g(r) =E/(r)e —«"/'&',

where E/ is a polynomial of degree /. For f(r,;) we chose
a Gaussian dependence:

f(r) e
—(r/ra)~

so that f(r=0) = 1. In all calculations we set b= ra. Re-
taining diferent values of ro and b would conceivably
alter the value of Tzxo by 15% or 20%, but we believe
this to be ignorable since we are interested only in
an order of magnitude estimate of TExg, which is all
we can expect our calculations to give. "

With these assumptions, the f&,/, &, of Eq. (20b) may
be evaluated, if the closed-shell con6gurations are given.
%'e have chosen as a target an idealized Ca" nucleus,
whose con6gurations are assumed to consist of all
closed shells up through and including daf2. The residual
nucleus was chosen to be Ca"= Ca4 +f7/2, where the
value of jo added to the target nucleus is the extra
open-shell conhguration present in the Gnal state.

A value for Vo was determined by requiring Vyx '
to give the same strength amplitude for TDw~~ as in
the normal zero-range approximation. That is, we set
Voe/ '= (—k'/M). Then Vo= —2 Mev. This very small
value of Vo actually is an indication that the point-
deuteron approximation is a poor means for estimating
the strength of the amplitude: the deuteron wave func-
tion is simply too disuse to be approximated by a delta
function.

If we regard as a more reasonable value for —Vo a
number at least an order of magnitude larger than 2
MeV, then this implies that o. &1.35 F, which is small
enough that the delta-function approximation is not
too bad. Hence, the low value of Vo may be regarded as
a renormalization of 0,. Note that the renormalization
is fully equivalent to including on the right-hand side
of (C) a factor $, which can also be used to compen-
sate for the inherent over-estimation associated with the
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TAIII.E I. Comparison of optical-potential parameters used in
the present work and in the Oak Ridge —Argonne Collaboration
(Ref. 15).

6—
E

5
O

O
(fl

V)

IX
O

2

V& (MeV)
wd (Mev)

(F)
cq (F)
V, (Mev)
8 (MeV)
R„(F}
a,"(F)

Present work

—105.0—5.95
5.14
0.654—50.0—4.37
4.30
0.50

Oak Ridge —Argonne

—108.6—7.77
3.63,a 6.30b
0.773 0.314—55.0—11.0
4.1,a 4.27b
0.65,' 0.47b

a This value refers to the real part of the optical potential.
b This value refers to the imaginary part of the potential well.

0 I I I I I I I I

0 20 40 60 80 100 120 140 160 180 200
8 (c.m. )

FIG. 1. Angular distributions at Ed = 11 MeV: Curve (A) with
target excitation; curve (8) with TExc ——0.

point-deuteron approximation. Had we done so, and
chosen a reasonable value for Vo, say —50 MeV, then we
would have found that the value (=0.04 was required to
obtain the proper magnitude for TD~pIA as calculated in
the zero-range approximation and noted above. Thus,
the low value of Vo= —2 MeV (which, it should be re-
called is common to bo/h Tnwsg and Taxc) is only to be
regarded as a device that guarantees cross sections of the
proper order of magnitude. The important point is that
the ratio Tzxo/Tnwsj, is independent of Vo (and of any
extra parameter such as $, introduced above). It is this
latter fact on which we have based the reliability of our
estimates of the ratio Tmxc/Tnws~.

III. CALCULATIONS

In order to calculate TDw» and Tzxz, it is necessary
to specify ro, the deuteron energy E&, and the values of
the optical-model parameters such as well depths,
radial shapes, etc. Since our development of the ampli-
tudes involves a number of approximations, it was de-
cided to vary all of the above quantities, thus per-
forming a computer experiment to determine the de-
pendence of the amplitudes on ro, Ed, etc. The numerical
work was done on the IBM 7094 at Brookhaven Na-
tional Laboratory using a code developed by W. R.
Gibbs and modified by E. H. Auerbach to include both
a fast search program and a means for computing TExc.

The reaction Ca"(d,p) Ca" leading to the ground and
excited states of Ca4' has been extensively studied, the
most recent work being that of the Oak Ridge —Argonne
collaboration. "Angular distributions for Ed taking on
the values 7(1)12 Mev were measured for the ground-
state and three excited-state transitions. An extensive
program of fitting the data using diGerent optical po-
tentials was undertaken. Reasonable agreement with

"L. L. Lee, Jr., J.P. SchiBer, B.Zeidman, R. H. Bassel, R. M.
Drisko, and G. R. Satchler, Phys. Rev. 136, B971 (1964).

the data was obtained for those potentials which also
fit elastic-scattering data Lparticularly the (d,d) elastic
scatteringj, and it was concluded that spectroscopic
factors could be determined with an accuracy of 20'%%uo

or better.
The code of Gibbs used in our numerical work em-

ploys the standard Woods-Saxon form factor for the
radial shape of the optical potential; thus, the imaginary
part is "volume absorption, "with the same size param-
eters as the real part. The Oak Ridge —Argonne collabora-
tion" also studied the case of volume absorption, and
we decided erst to see how well the Ed =10-MeV data
could be fitted using our calculational method. That is,
we regarded the results of Lee et al."as a norm against
which our results could be measured. Since our model of
Ca40 is unrealistic, " and since our aim is to give an
estimate of the size of Tmxc, rather than 6t data, we do
not show the results of our attempted ht to the experi-
mental angular distribution. Ke simply remark here
that the agreement was sufhciently encouraging, and
the values of the optical potential parameters were close

E
4

O

C3
4l
CO

Ch
(f)
O
C3

0-
0 20' 40' 604 80o 100' 1204 1404 160o 180

e {c.m. )

FzG. 2. Angular distributions at 10 MeV: Curve (A) with target
excitation; curve (B) with TExc=O; curve (C) with TExo five
times as great as in curve (A).

"Recent experimental evidence for the nonclosed-shell nature
of Ca~ ground state is given by R. Bock, H. H. Duhm, and
R. Stock, Phys. Letters 18, 61 (1965).
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enough in value to the set VZ of Ref. 15, to warrant
carrying out the remainder of our exploratory cal-
culations. A comparison of the parameters of our cal-
culation with those of set VZ (these are well parameters
for the deuteron) and the set of proton parameters of
Ref. 15 is given in Table I. Surface absorption was
used in Ref. 15 for the proton optical potential, but this
should not give significantly different its to angular
distributions, although better Gts seem to be obtained
using surface absorption or surface plus volume absorp-
tion. "The value r0=2.06 F was used in conjunction
with the optical-model parameters of Table I.

The second stage of the calculations was the deter-
mination of the energy dependence of the angular dis-
tributions calculated using the above mentioned set of
parameters. Ke varied Eq in the range 3 MeV&E~&12
MeV and in addition, we computed Tow, and thus
do/dO, for Tzxo both zero and nonzero. The results of
these calculations are shown in Figs. 1—6, with curves A
based on TDw= TDwg~+TExc and curves B based on
TDw= TDwg~ only. It is evident from these curves that
inclusion of TEXC decreases the over-all angular dis-
tribution due to Tr&w»z alone by at most 5% and only
3% in the region of the stripping peak for all energies
studied. An interesting feature of using oscillator wave
functions is that the peak cross section occurs at 40'
rather than 35' as observed experimentally at Ed& 10
MeV. Furthermore, the shift of the peak to larger angles
as E~ decreases is much too pronounced in the theoreti-
cal calculations. However, use of a more realistic wave
function in the amplitude Towp~ alone corrected this
behavior. Since both TDw p~ and TEXC employ oscillator
wave functions, we do not believe that this use strongly
affects the value of the ratio

I Tzxc/TnwaA ~.

I I I

v)

J3
E

z 5—
0
LLI
CO

V)

0

2—
O

0 I I I I I I I I I

0 20 40 60 80 IOO 120 l40 l60 I 80 200
e (c.rn. )

Fio. 3. Angular distributions at 9 MeV: Curve (A} with
target excitation; curve (B) with TKxo=0.

"See comments of F. Percy, Phys. Rev. 131, 745 (1963} and
similar ones for the case of Ca~(d, d)Ca~ by R. H. Bassel, R. M.
Drisko, G. R. Satchler, L. L. Lee, Jr., J. P. SchiBer, and B.Zeid-
man, Phys. Rev. 136, B960 (1.964).
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FIG. 4, Angular distributions at 7 MeV: Curve (A) with
target excitation; curve (B) with TFxo=0.

For the E~=10-MeV case, we also have included a
calculation in which the magnitude of Tglg was arbi-
trarily increased by a factor of 5, shown as curve C in
Fig. 2. It will be seen that the shape of the angular dis-
tribution is not significantly altered from curves A and
II, while the peak magnitude is decreased by 9% com-
pared to curve B.Thus, even if we have underestimated
Tzxc by 500%, the corrected amplitude would not pro-
duce substantially different results than those obtained
f lorn TDqyp, A alone.

The general trends of curves A and B in Figs. 1—6
indicate that 5Rgx~( —0.025RD~g~. "To help under-
stand the small value of TExc, we have plotted in Fig. 7
the stripping "form factors" of Kqs. (20a) and (20b).
For 5RDwB~ this form factor is simply q~„ the single-
particle radial wave function, plotted as curve A
in Fig. 7. For OREx&, the form factor is given by
(47r) ' P&,o(2l.+1)C'(&.lok; 00)'p&, f&o&,&„and is plotted
as curve B in Fig. 7.

ff we interpret the (d, p) reaction as a surface reac-
tion, and so use the damping of the

~

k„~ &) and
l
kq~+&)

in the interior of the nucleus plus the rapid fall off of the
form factors with r, then we have a simple explanation
of the small size of TEx~.. the distorted waves cannot
reach that part of the nucleus to sample the form factor
of SRExq where it is large. The consequent small overlap
in BRExc thus produces a small amplitude TEx~.

The above explanation is, however, incorrect. As dis-
cussed by Austern" and McCarthy, ' the apparent
surface nature of direct reactions is, in fact, due to
complex interference effects that only permit certain
partial waves to make large contributions to BED~~~.
Since the structure of 5REX& is quite similar to that of
BED~~~, we can expect interference effects similar to
those of 5RD~v~~ also to occur in 5RExg. The behavior

'g 'We note that 5RDw~p, and 5RExo have the same phase factor,
viz 8 s =+i.

' N. Austern, Ann. Phys. (N. V.) 15, 299 (1961)."L E. McCarthy, Phys. Rev. 128, 1237 {1962).
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to 2.06 F, and the shape parameters were varied as in
Table II for E~= 5 and 10 MeV.

Rather than display a large number of curves
illustrating the results, we list the general trends
arising from our calculations. The following notation
is used: crow is the angular distribution arising from
Tnw —Tnwss, +TExo j rrnwsg Is tile allgtllal' dlstrtbu-
tion arising from Tow'~ alone; OExt: is the angular dis-
tribution arising from Tgxg alone.

1. As ro increases, both rDw and a.o~g~ increase in
magnitude, and 0.Exp decreases in magnitude.

2. All cross sections increase in magnitude as E~
increases.

3. Increasing 8'„causes all cross sections to decrease.
4. As 8'~ increases, 00~ and cro~g~ increase for

E~= 10 MeV and decrease for E~= 5 MeV. However, in
all instances but the exceptional cases noted below,
0mxc decreases with increasing 8'~ for both values of Eg.

5. There are no systematic variations in any of the
angular distributions as either Vq or V„ is changed.

6. Both 0Dw and fTD~g~ decrease as E~ is increased,
while amxg correspondingly increases.

7. Changing a~ leaves both rDw and 0owI3~ rela-
tively unchanged, while Omx~ increases with increas-
ing ud.

8. All cross sections are relatively independent of
changes in R~ and u„.

9. For 6xed values of E~ and V~ or Vq, the position
of peaks in angular distributions remains the same to
within approximately &6' for changes in ro or S.

10. Variations in E~, V~, or V~ lead to no systematic
variations of the position of peak cross sections.

11. Omxg generally exhibits one or more very broad
peaks. By proper choice of the optical-potential param-
eters and ro those can be made to have a 6rst maximum
nearly anywhere in the range 0'—80'.

12. Finally, except as noted below, the magni-
tude of onw differs by no more than 6% (over the
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FIG. 9. Angular distributions at 10 MeV, ro= 1.95 F:Curve (A)
with target excitation; curve (8) with TExq =0.

whole angular range) when compared with trowels,

I Tmxc/TowBA I
&0.06; and ~Exc/&~we, is both posi-

tive and negative.
The general result, expressed above in item 12, that

TExg makes a small contribution to 0.DW is encouraging,
since it implies that previous analyses based on Towp~
alone have not omitted an important term in the ampli-
tude. However, the existence of certain exceptions does
not make the preceding statement an inevitable con-
clusion. Instead, these exceptions would seem to make
more accurate calculations a necessity, especially in
view of the possibility of explaining certain forbidden
stripping reactions and low cross-section stripping re-
actions in terms of a target-excitation model, a point
we discuss in the next section. The exceptions that have
been referred to above are cases in which

I Tsxc/Tow' I

&0.06 and the change in 0Dw resulting from the in-
clusion of Tmxc ranges from 10% to nearly 40%. The
majority of these instances are for V&= —90 MeV and
ro= 1.95 F and occur for both the large and small values
of 5'~ or 8'~ listed in Table II, as well as for either
value of V~ or E~. No such large eGects are found for
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rp=2. 20 F, and only a few occur for rp=2.06 F, in-
cluding the case 8~= 5.5 and both values of a~ and Ed"
(recall that for this variation, Vd, U~, Wd, R„, and a„
are as given in Table I), for which the change in aow
is slightly more than 10%. However, the total number
of cases in this category was only 15 of the more than
160 cases considered.

The angular distributions for these exceptional cases
do not show a consistent pattern: wide variation in the
position and widths of the diGraction peaks occur. It is
interesting to note that the shape of fTExc remains much
the same as rp is varied at 6xed values of energy and
well parameters. However the shapes of fTD~ and o-ow~~,
though similar, vary with rp and do not resemble fTgxq.
This is especially interesting since fTDw and oDw&~ can
diikr by 25% or more in magnitude.

These remarks are illustrated in Figs. 9—12. The
energy here was fixed at E&=10 MeV and the well
depths used to calculate the distorted waves were
V~= —90 MeV, 8'~= —4 MeV, V„=—60 MeV, and
8'„=—8 MeV with the remaining well parameters held
at the values of Table I. Figures 9, 10, and 11 show both
fTD~ and o.owg~ for rp=1.95, 2.06, and 2.20 F, respec-
tively, while Fig. 12 shows 0Exc for the various values
of rp. It is evident that frD~ and 00~» are quite similar
for each value of rp while crmxc is noticeably different.
Also, o-Ex~ maintains the same general shape for dif-
ferent rp, even though oDw and ao~g~ are changing
with rp. The interference efrects noted above are appar-
ent in these curves, since in Figs. 9 and 10, o-Dw& crowa~,
while in Fig. 11, some portions of o.Dw are less than the
corresponding segments of fTDwg~. As these are the ex-
ceptional cases, all three cross sections are seen to in-
crease with increasing rp, although the effect of TExq
is greatest for rp = 1.95 F and then becomes significantly
smaller as noted in preceding paragraphs.

For other values of the well parameters, the shapes of
o.ow and o-D~g~ can di6er from those of Figs. 9—11.In-
cluded are angular distributions with a sharp peak at 0'
and those with four or five peaks spaced over the entire
angular range and of nearly equal magnitude. On the
other hand, the shapes of crpxg do not show such wide
variations. This is seen on comparison of Figs. 8 and 12.

"Similar effects do not occur for variations in R„and a„.

We have found only a few cases of a.Exc exhibiting the
truly sharp di8raction peak characteristic of the usual
stripping process. The general shape of o-Ex~ is that
given in item 11 above. We discuss this behavior in the
next section.

IV. DISCUSSION AND CONCLUSIONS

The general conclusion implied by our calculations is
that TEX~ is small enough to be ignored. However, this
conclusion must be tentative, and to a large extent may
be weakened, because of both the crudity of our models
and the presence of the exceptions noted in the preceding
section.

Let us discuss the exceptions first. We note that they
are obtained when values of the complex well parameters
are used that diGer from those associated with elastic
scattering. Now, at the present stage of understanding
of both the optical model of elastic scattering and the
distorted-wave model of direct reactions, we have no
valid theoretical reasons for believing that the elastic
well parameters should be used in (d,p) analyses. Thus,
even though well parameters other than those for
elastic scattering may produce a f7Dw&+ not in agree-
ment with experiment, this is not necessarily an argu-
ment against their use, since the distorted-wave model
in its standard form still remains to be validated.
Future developments may point to use of such well
parameters, or may suggest other approximations. "
We see that the Gnding of exceptional cases is closely
connected with the validity of the distorted-wave
model. This is not unexpected in a situation where a
multiparameter model is used to fit data and in which
small deviations from a set of parameters can drastically
change the results. A similar dependence on the well
parameters has also been found by Kozlowsky and
de-Shalit in their study of the (He', d) reaction pro-
ceeding by a pure core-excitation process. " These
authors have found that the size of Tmx|-, as calculated
in their model, is strongly dependent on the radius of
the imaginary part of the deuteron optical potential as
compared to the radius of the real part of the well.
Although in the present work and in that of Kozlowsky
and de-Shalit diferent nuclear models are used, both
find a strong dependence of TFXC on the well parameters.
It is clear that further investigations are necessary be-
fore this particular dependence can be understood.

We now consider the nuclear models we have used to
help evaluate TExg. There are three aspects involved:
first, the use of the point-deuteron assumption; second,
the assumption of a closed-shell target; and third, the
use of oscillator wave functions to evaluate the factors
V~I, E, and the matrix element 5Rgx~."
"B.Buck and J. R. Rook, Nucl. Phys. 67, 504 (1965) and to

be published.
~ A. de-Shalit, Brookhaven National Laboratory Report No.

BNL 948, 1965 (unpubbshed), p. 552; and to be published.
2'As noted in the preceding section, we do not believe the

assumed equality of ro and b to be an important factor and we
consequently ignore it.
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The point-deuteron approximation has already been
discussed and we believe that its main features are
understood and its shortcomings accounted for. Veri-
fication of this statement can only be obtained by a
speci6c calculation, but we shall assume that this par-
ticular approximation does not strongly aGect our
results.

Use of the idealized closed-shell target nucleus allowed
us to obtain a very simple expression for TExc, al-
though such an idealized nucleus has no natural counter-
part. Since the final nucleus is closed shell plus one,
we might imagine that this case is, theoretically,
the one most likely to give a minimum value for
~ORzxc/9Rnws~~, since OIt'owned is a maximum (spec-
troscopic factor of unity). While it is to be expected
that the use of model wave functions containing several
open-shell con6gurations will reduce the size of MD~B~,
we must anticipate that in this more general case 5Kgxc
will also be reduced in magnitude. The reason for this is
to be found in the general formula for TExc, which
contains many angular-momentum sums involving
3-j, 6-j, and 9-j coefficients as well as additional
generalized cfp's. These latter do not occur in TDwp~.
The combination of the generalized cfp's and recoupling
coeKcients will. tend to reduce the size of 5Kpxc thus
obtained as compared with ORsxo given in Eq. (20b).
(Conservative estimates of the reduction factor lie in
the range of 1/3 to 1/50.) Hence, we may assume that
the use of an idealized doubly magic target to evaluate
5KExc gives results that are typical even for a much
more realistic model.

The use of oscillator wave functions for the single-
particle states is, we believe, the crudest of the several
assumptions made in evaluating 5KExc. This is already
evident in the dependence of our results on the param-
eter ro and also in our lack of an external criterion for
choosing any one particular value. However, another
defect is the reduction in size of 5RExc due to the short
range of the oscillator functions. This occurs through
the presence of the two oscillator functions in V~I, ~.
Because of their short range, these functions will cut
down the size of V~I, ~ as compared with the result to be
obtained by using wave functions with longer tails. An
increase of only 15% in the contribution of each nuclear
wave function that contributes to V~~~ will mean an
increase of V~~~ over the values found herein by 30%.
While this may not have strong effect on vow, as in-
dicated by curve C of Fig. 2, it would increase 0.Exc, a
point we shall examine shortly. A further point along
this line concerns the use of one value of b (viz. , b= ro)
in all osciHator wave functions. Now the values of b

used are too large (b=1.67 F for 1p-shell nuclei),
though we have ignored this. Use of more realistic
wave functions not only would eliminate the bad choice
of b, it conceivably could increase the size of SKExc and
thus of OExc

We have argued in the above that it is possible for
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Fro. 12. Angular distributions at 10 MeV due to TEXT alone:
Curve (A} r8 ——2.20 F; curve (B) ro ——2.26 F; curve (C) r0=1.95 F.

BE+« to assume values larger than implied by the
majority of our numerical calculations. Some means for
doing this are through the use of optical-potential well

parameters not associated with elastic scattering; by the
occurrence of strong configuration mixing in the nuclear
states; or by use of more realistic wave functions. Al-

though this may not alter the shapes of aDw», as
indicated by our calculations, it is conceivable that the
target-excitation process can then be used to account
for certain stripping processes, hitherto unexplained.
These are (d, p) and (d,n) angular distributions whose

peak magnitudes are in the range of 1/20 to 1/100 of the
peak magnitude of a cross section to a strongly excited
state (theoretical spectroscopic factor near to unity);
and (d, p) or (d,e) reactions for which Towsj, is zero
because of selection rules.

Numerous examples of the former type of angular dis-
tribution have been reported in the literature, with
the shapes of the angular distributions seen to have a
great variation, occasionally having a partial re-
semblance to particular l-value stripping patterns. The
magnitudes of these cross sections often are between
0.01 and 0.05 of those to the ground state or a strongly
excited state. These values could be obtained by 0Exc
using one or more of the means mentioned above.

Instances of the second type of angular distribution,
observed when TDwB~ vanishes, are also known. Per-
haps the most famous of these "forbidden" stripping re-
actions is B"(d,p)82.$4."*Despite the many attempts"

"A. P. French, Phys. Rev. 109, 1272 (1958); J. E. Bowcock,
ibid. 112, 923 (1958); B. Neudachin, Zh. Eksperim. i Teor. Fiz.
35, 1165 (1959); B. G. Neudachin eI al. , ibid. 37, 548 (1959}
t English transls. : Soviet Phys. —JETP 8, 815 (1959); 10, 387
(1960)j;G. E.Owen and W. Reichelt, Phys. Rev. 121, 547 (1961);
N. Menyhard and S. Zimanyi, Nucl. Phys. 29, 687 (1962);
M. Tanifuji, ibid. 40, 357 (1963). In addition to none of these
authors being able to explain the energy dependence of the cross
sections, they all employ the Born approximation (in various types
of matrix elements). In addition, some obtain nonzero results for
matrix elements that can be shown to vanish.
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to explain the occurrence of this reaction, none have
succeeded in accounting for the main features of the re-
action, viz. , the appearance of an /= I type peak at
30', a secondary peak at 80', and especially the over-all
energy dependence of the reaction. We suggest here
that the target-excitation process can be used to ex-
plain the occurrence of these forbidden reactions.

The above suggestions are, at the present stage of
understanding, only speculations. Whether or not for
example, ozx& can be made to display the sharp peaks
of the 8"(d p)82 ~4"*reaction, can only be decided by a
direct calculation using more realistic models. The
evidence at the present time, both from our work and
that of other investigators, " is not favorable. It is,
therefore, of interest to seek methods other than those
based solely on evaluation of angular distributions that
would test the target-excitation hypothesis. One such
method is the measurement of angular corrections.

Let us consider a (d,p) or (d,n) reaction leading to a
nuclear state of spin Jf that decays by gamma-ray emis-
sion. The angular distribution W(8,&) of gamma rays
relative to the direction of the outgoing proton is of the
form'~

with

The aspect of W(8,p) we wish to consider here is the
maximum value of X, denoted X . In general,

=min(I. ,[Jr]),
where L is the multipolarity~ of the gamma ray and
[J~] is the largest integer contained in Jf. If Tnwsz is
the only amplitude that contributes to the angular dis-
tribution, then an additional restriction on X is
-', X &[j„],where j„is the angular momentum of the
captured nucleon. However, if TExg also contributes to
the angular distribution, then the additional restric-
tion on X, is not —,'X &[j ]but —,'X, &[J],where
J itself is restricted by the triangle relation 6'(J;Jf1)
and also by other model-dependent relations. The new
restriction, —,'X &[J], is independent of the model
used to evaluate Tzx&, and is derived directly from
Eq. (8). For our shell-model calculation of Tnxo, the

additional restrictions on J follow from the fact that
J=J& of Kq. (17):we thus have 6(jokJ) and h(j,kJ),
where k labels the multipolarity of the two-body force
and jo and j. are the open- and closed-shell angular
momenta. These latter restrictions on J(=J~) come
from the shell-model assumption alone and are not
limited to the closed-shell target case. Other nuclear
models will provide a diferent set of additional re-
strictions on J. Obviously, the coefficients A&„will also
depend on the model used to evaluate TEx~, and can be
calculated when the model is specified, but we do not
consider them further here.

The possible application of angular-correlation meas-
urements to the problem of identifying the presence of
TExg is now evident, although favorable cases will be
needed. That is, [j ] is usually limited to a specilc
value because of the nuclear model, whereas [J]may
be allowed to take on a larger value than does [j„].
Hence, in favorable cases, the presence of Tgx~ will

lead to a larger value of X, than allowed by [j ],
and thus an extra term (or terms) in W(8,@) will arise,
due eltire1y to TExo [in our model of direct (d,p) and

(d,n) reactions].
Of course, experimental observation of terms in

W(8,$) forbidden on the assumption that Tow =Tnws~,
is not necessarily an indication that Tzxz is making a
non-negligible contribution. Other processes could be
occurring that would give rise to the additional terms in

W(8,$). However, if the energy is suSciently large,
say E&&10 MeV for light nuclei (A &60) and if the ex-
perimental angular distribution displays the usual
forward peaking and/or diffraction behavior associated
with direct reactions, then we have good reason to ex-
pect that target excitation is playing a role in the re-
actions. To minimize the possible role of exchange
amplitudes, the outgoing proton angle should be in the
forward direction, thus assuring that the terms in TDw
we have considered are dominant. Under these cir-
cumstances, we have a necessary criterion for Tgx~ to be
present, but unfortunately, not a sufFicient one. That
is, Tzxo could be strong, but [J&]=[j„],and no addi-
tional effects will be observed in W(8, &). Despite this,
we believe that gamma-ray measurements provide a
simple means for identifying at least some cases where
TExc is non-negligible; a model can then be invoked
and Tgx~ evaluated and compared to Tow~~.

As yet unpublished numerical results indicating that TExc is
small have been obtained by G. R. Satchler and S. K. Penney,
D. Dillenburg, and R. Sorenson, and P. Iano, and N. Austern
(private communication from N. Austern}. See, also, S. K. Penney
and G. R. Satchler, Nucl. Phys. 53, 145 (1964};and D. Dillenburg
and R. Sorenson, Bull. Am. Phys. Soc. 10, 40 (1965}.Spectro-
scopic factors, including the effect of target excitation have been
calculated by W. Beres, Phys. Letters I6, 65 (1965}, using the
model employed by Koslowsky and de-Shalit and Dillenburg and
Sorenson.

'~ G. R. Satchler and W. Yobocman, Phys. Rev. 118, 1566
(1961);R. Huby, M. Y. Refai, and G. R. Satchler, Nucl. Phys.
9, 94 (1958)."We assume, for simplicity, that only one multipole is involved.
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APPENDIX

The formulas for the generalized cfp s are obtained in a straightforward manner using the recoupling tech-
niques introduced by Racah. " Let Ll JxT&)Qxl J2T2)]q& represent the state

l
JT) obtained by ~ector coupling

together the states
l JrTr) and

l J2T2) by means of Wigner coeKcients. Then the full cfp expansion of the
typical state as given by Eq. (10) is

lIIj"~'(00)j"(J-'T-'n')j"'(J-"T-"n") JT)

= + {(Lj '(J2T2nm) j"'(J "T "a.")](JT~ ) j'VT)L
I
j" '(J2Tmnm) j"'(J."T„"n„");J,T,)Qxl j'2)]»

+(l j"(J„'T„'a„')j" '(J2Tgnm)](J, T~,),j"pT)l
l
j"(J„'T„'n„')j" '(J2Tma2); J,T,)Qxl j"2)]Jr)

+& 2 ({Lj"(J'T-'n-')j "'(J-"T-"n")](JT)j"~'(i.k))(J.T~ )j.VT)
2'c J'e&ecse

X(l {j"(J.'T„' „')j" (J„"T„".")](JT)j" '(j,-', );J,T, ,)Qxl j.—,')]„. (A1)

Since removal of a nucleon in a particular state changes only the quantum numbers of the group from which the
nucleon came, we have omitted all closed shells on the right-hand side of Eq. (A1), as they do not enter the cal-
culation. It is clear that the group j,"~'(00) can be moved to the right of the open-shell nucleons without the
introduction of a phase factor. We also note that the total number of nucle onsV is given by S=u+b+p;, (4j,+2)

An alternative form for the cfp expansion is in terms of the single-configuration cfp's:

i?I j. ~2(00)j' (J.T.'a. ')j"~(J."T„- „") JT)

g 1/2

(j" '(J2Tmn2), j'll j' (J 'T~'a„'))
l
$j" '(J2Tgag) j'](J„'T„'n„')j"'(J„"T„"n„");JT)

J2Tpa2 g
1/2

+ — (j"-(J.T2n.),j"(j"(J-"T-"n-"))lj"(J-T- -.)LJ""(J.T.-.U-](J.-T.--.-); JT)S
4j,+2 'I'

+& (j." '(j.2),j.lfj" '(00))

XI' "(J'T-' -')j"'(J-"T-" -')](JT )Lj" '(j.l)j.](oo);JT) (A2)

In each of the states on the right-hand side of Eq. (A2), the single nucleon state can be brought to the right and
coupled to the resulting angular-momentum state of all the other nucleons by using the recoupling techniques. "
Doing so, and comparing with Kq. (Al), we 6nd the following results:

(t j" '(JRT2n2) j"'(J "T "a ")]J.Tw.),j'VT)
= (a/Ã)'~'(j" '(J2T2a2), j'll'j"(J 'T ' n„')) L( 2J+1)( 2J'+1)(2T.+1)(2T '+1)]'"

Xw(J.'J."J'J.; JJ,)w(T.'T."2T„TT,), (A3)-
(Li"(J-'T.' .')j""'(JT.)](J.T~.),~"VT)

=(b/&)'"(i" '( J2~Ta), jlfi"'(J-"T-"a-"))
XL(2J,+1)(2J "+1)(2T.+1)(2T "+1)]"'W(J 'J2Jj";J,J„")W(T 'T2Ts'; T,T„"), (A4)

({Lj"(J-'T-'n-') j"'(J-"T-"n ")7(JTn)j"~'(j.k)) (J T~.),J.VT)
= —X '"( 1) '~ ' r "'L(2J +1)(2T +1)/(2J+1)(2T+1)]'~' (AS)

These cfp's are normalized to unity as long as we assume the single configuration cfp's to be so normalized. The
minus sign in Eq. (AS) arises because the closed-shell cfp appearing in Kq. (A1) is equal to minus one.

In addition to the above results, we also need the cfp for removal of an originally open-shell nucleon when one of
the closed-shell nucleons has been removed. The daughter state is, for example, given by the

l J,T,}state in the

"G. Racah, Phys. Rev. 63, 367 (1943).
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la,st summation of Eq. (A].). rhe same methods are used to treat this state as in the preceding; we obtain

((t j'~—
'(J3TQQ3)j ~(J„T„'n„")g(J4T4n4)j,~'+ (J',k)}(JST&ap)&J peT~e)

l/2

(j" '(J3T3~3),j'itj"(J.'T-'~-'))
.~Y—2

&(L(2J„'+1)(2T„'+1)(2J+1)(2T+1)(2J4+1)(2T4+1)(2Jr+1)(2Tg+1))'i'

)&W(J J j J4,' J+3)W(T~ T& 2T4; TsT&)W(J&cp Jz,' JeJ4)W(T 2 & Tsi TeT4) (A6)

((5j"(J-'T-'~ ')j" '(JSTs~a)j(J4T4~4)j"'+'(j 2))(J5T5~5),j"V T~)
b 1/2

(j"~'(JSTaaa), j"Ij"'(J."T "n."))
V 2

&& L(2J„"+1)(2T„"+1)(2J+1)(2T+1)(2J4+1)(2T4+ 1)(2Jg+1)(2T5+ 1))"'

XlV(J„'JSJj";J4J„")8'(T„'T&T2;T4T„")W(Jj„j "Jz, J+4)W(T 2 2 T5, T.T4). (A7)
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Ke discuss a numerical method to determine the binding energy and the wave function for a three-body
system. Radial wave functions of the form g&(r&)g2(r2)g3(r3) are used, r1, r2, and r3 being the interparticle
distances. The method is applied to He' and H~ with central forces and hard core to show the accuracy and
the speed of the calculation.

1. INTRODUCTION

HE study of the bound states of three particles is
of great interest for molecular, atomic, and

nuclear physics. Often only a knowledge of the binding
energy is required but sometimes one needs also detailed
information about the wave function. The variational
method has been extensively applied to these problems
with a radial trial function of the form g~(r~)g~(r&)g3(r3),
rl, r2, and r~ being the three interparticle distances. Such
a radial function is appropriate to describe the correla-
tion between the particles and at the same time has a
reasonable asymptotic behavior. The complete wave
function is obtained by taking a superposition of
products of spin-orbital functions by a radial function
of the above type. The disadvantage of the variational
analysis is well known. The number of trial parameters
and correspondingly the numerical calculations, increase
rapidly with the accuracy required for the binding
energy and, even more, for the details of the wave

function. As an example, when potentials with hard
core are considered, trial functions with a great Rexi-
bility are necessary to reproduce accurately the exact
wave function just outside the hard core, where the
potentials have large values. Austern and Iano' have
proposed a type of trial functions which are constructed
with particular attention in the region where the poten-
tials have large values and go over into variational
functions for larger distances. Such functions give
excellent results for two-particle systems and can be at
once extended to the cases of a larger number of particles
by choosing the trial function, up to a certain inter-
particle separation, as a product of the solutions of a
two-body Schrodinger equation. This method has been
successfully applied' ' to particular states of three and

' N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960).' P. H. Wackman and N. Austern, Nucl. Phys. 30, 529 (1962);
K. W. Schrnid, Y. C. Tang, and R. C. Herndon, Nuovo Cimento
33, 259 (1964).' Y. C. Tang, R. C. Herndon, and E. W. Schmid, Nucl. Phys.
65, 203 (1965); Phys. Rev. 134, B743 (1964).


