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Hartree-Fock Calculation for Finite Nuclei with a Nonlocal Two-Body Potential t'
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An application of the Hartree-Fock (HF) method to calculation of the structure of finite nuclei is pre-
sented. The nonlocal, separable potential of Tabakin is used as the two-body interaction. The calculation is
carried out by writing the HF equations in an oscillator basis and applying the Moshinsky transformation to
relative coordinates. The closed-shell nuclei 0"and Ca~ are considered. Under the assumption that they are
spherical, their binding energy per particle is found to be —2.41 and —3.74 MeV for 0" and Ca~, respec-
tiveIy. Possible reasons for the large discrepancy with the experimental binding are discussed. The single-

particle energies show better agreement with data, but have too much spin-orbit splitting, namely, 10.2 MeV
for ip states in 0", and 11.13 and 14.59 MeV, respectively, for the 1p and id states in Ca~. The rms radii
for 0"and Ca" were found to be 2.38 and 2.96 F, compared with experimental values of 2.64 F and 3.52 F,
respectively. Corrections for Coulomb force and center-of-mass motion have also been calculated.

INTRODUCTION

CALCULATIONS of the structure of finite nuclei~ from fundamental principles, until recently, have
been complicated by the nature of the two-body inter-
action. In order to fit all the data, it was found that the
local two-body interaction' must have a hard core; i.e.,
infinite repulsion inside some core radius. Because of
this, the Hartree-Fock (HF) method, ' which had proved
so convenient in atomic physics, could not be used in
nuclear-structure calculations. To deal with the hard
cores, the much more dificult Brueckner theory' had
to be applied. Finite-nucleus calculations with this
theory have been done by Brueckner and co-workers, 4

but it is not clear whether the assumptions they make
are valid. It would be better if a nonsingular two-body
potential could be found so that the simpler HF method
can be applied. Besides being simple, the HF method
has been extended to correlated systems by means of the
Bogoliubov-Valatin transformation and the random
phase approximation. No such extensions exist for
Brueckner theory.

The nonlocal potential of Tabakin' was designed to
enable application of the Hartree-Fock method to
calculations of the structure of finite nuclei. The present
paper is a summary of the results of one such HF calcu-
lation' for the nuclei 0"and Ca~. It is shown that quali-
tative agreement with experimental data is possible,
but that severe discrepancies remain, notably in the
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total binding energy. This calculation is in many ways
similar to a recent calculation of Muthukrishnan and
Baranger, ' but in our case the potential is one which
fits all two-body data as well as nuclear matter, whereas
that in Ref. 7 fits only nuclear matter. Our potential
has the full complication of tensor and spin-orbit forces,
but that in Ref. 7 is purely central, though also nonlocal.
The results in both cases show similar trends and indi-
cate the usefulness of the method used here.

I. METHOD OF CALCULATION

1. The Hartree-Fock Equations

The HF equations are solved by the matrix method
using a basis of harmonic-oscillator wave functions. The
single-particle states P are expanded in a finite series of
oscillator wave functions p„:

tt-( )=Z.c. 4.( ).
The expansion coefficients C„as well as the number of
terms Ã in the expansion and the oscillator parameter
7= h/(Mcu) are parameters to be determined by the HF
procedure. The assumption of spherical nuclei is made.
Then, P have good orbital and total angular mo-
mentum and the C„are diagonal in angular momentum
quantum numbers and are real. Hence, the sum in
Eq. (l) is over the principal quantum number only.
Kith this representation, the HF equations have the
form of a set of finite matrix diagonalizations, one for
each value of orbital and total angular momentum

Z, &pI (t+U)lp')c; =«-c:. (2)

Here t is the kinetic energy operator p'/(2M) and U is
the effective potential defined in terms of antisym-
metrized matrix elements of the two-body interaction

gaby

&& I
+

I
&')=&„p„&pv

I
+&

I

p' v'), (3)

'R. Muthukrishnan and M. Baranger, Phys. Letters 18, 160
(1965).

8 M. Baranger, Cargese Lectures in Theoretical Physics (W. A.
Benjamin, Inc. , New York, 1963);R. K. Nesbet, Rev. Mod. Phys.
35, 552 {1963).
710



HARTREE —FOCK CALCULATION FOR F I N I TE NUCLEI

where p» is the density matrix, defined as

p„„=Q C„C„
The summation is over occupied states only. Then, the
total binding energy is -3I—

The detailed calculations are given in Ref. 6. The
most difhcult part of the calculation is the evaluation
of the matrix elements of the two-body interaction in

Eq. (3). Here, it is essential that the potential a be
nonsingular, having no hard core, in order that the
matrix element be finite. And it is here that the useful-
ness of the oscillator expansion is apparent. Because the
states

l pv) are oscillator states, it is possible to make
the transformation to relative and center-of-mass
coordinates, according to Brody and Moshinsky':

l
n~l&, n2t2, Xmq) = P l

nt, NL; Xmq)

-32—

O
4J

-34—

-36—

X&nlNL; Xln&l&, n212 X). (6)

The state
l
n~tq, n~l2, Ant&, ) is the product state of particle

1 in an oscillator state with principal quantum number
e~, orbital angular momentum lj, particle 2 in oscillator
state n2l2 and the angular momenta coupled to Pm~.
The state

l
nl, NL; l),ntq) has the relative coordinate in

oscillator state nl, the center of mass in EL, and the
angular momenta again coupled to Xm), . The transfor-
mation brackets have a number of simple properties
which are listed in Ref. 9 along with tables for 2n~+ l~ & 6.

Corrections for the effects of the Coulomb potential
and center-of-mass motion were computed. The Cou-
lomb correction is included exactly by taking the total
two-body interaction as Tabakin's plus the Coulomb
potential, taking account of the fact that the Coulomb
potential acts between protons only. The wave functions
obtained with and without the Coulomb correction were
not significantly different. Therefore, the total Coulomb
energy could be taken as the difference in Eo with and
without the Coulomb force. The center-of-mass motion
was considered by subtraction of the center-of-mass
kinetic energy P2/(2MA) from the total Hamiltonian.
This kinetic energy operator can be written as a sum of
one-body and two-body operators. The two-body oper-
ator is usually written in the form

Q p"pj)

but it may also be expressed in terms of the relative
momentum p;, = —,

' (p, —p, ), so that the Moshinsky
transformation can be used. Then the one-body operator
cancels exactly the one-body operator t in the total
Hamiltonian. As a result, in Eqs. (2) and (5) the term
in t is gone, but in Eq. (3), t) has a,n additional term
2P;,'/(MA). Also, in Eq. (2) the eigenvalue is no longer

'T. A. Brody and M. Moshinsky, Tables of Transformation
Jjreckets (MonograQas del Instituto de Fisica, Mexico, 1960}.
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Fro. 1. Behavior of Eo with y and S for 0'~.

2. The Two-Body Interaction

The Tabakin potential' has been used as the two-
body interaction v. This is a nonlocil potential, written
as a sum of separable terms containing parameters
which have been determined by a fit to the two-body
scattering and bound-state data. This potential is
smooth, having none of the difBculties generated by the
hard core in conventional local interactions. The energy
per particle (E/A) in nuclear matter has been calculated
in Ref. 5. The first-order E/A saturates at a minimum
of —8 MeV at k p = 1.6 F '; with the second-order term
included, E/A has aminimum of —14.1 MeV atkv 1.8——
F '. This is to be compared with the empirical values:
Z/A = —15.75 MeV, kv=1.5 F '. One may expect this
potential to be suitable for a HF calculation,

the single-particle energy, but it is the single-particle
energy plus the average kinetic energy. Thus, Eq. (2) is
replaced by

(7)

where t=g„„p„„&tI,ltltJ, ')/A. The expectation value of
the center-of-mass kinetic energy E,, , =&P'/(2MA))
can be taken approximately as the difference in Eo
with and without the center-of-mass correction, since
the wave functions in the two cases do not differ
significantly.
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-I IOi ALE I. Comparison of Eo/A (MeV/particle) for 0", Ca4'
with other calculations and data.
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FIG. 2. Behavior of Eo vrith y and N for Ca~.

IL RESULTS

The result of this search, for 0", is shown in Fig. 1.
For X=j, the minimum is at y=2.8 F, Eo= —38.47
MeV. A similar calculation (Fig. 2) for Ca~ yields a
minimum at y=3.0 F', Eo= —149.69 MeV. The sensi-
tivity of E& to y decreases as X increases. This is reason-
able since for /V ~~ the wave function f is represented
exactly by the expansion (1) for all values of p; hence,
Eo must be independent of y in this limit. The complete
results for Eo/A (A is the mass number) are given in
Table I, and a comparison with calculations using
hard-core potentials and Brueckner theory, 4 and per-
turbation theory with soft-core potentials, ' and with
experimental data" is shown.

Corrections due to the Coulomb force and center-of-
mass motion were calculated. The Coulomb energy was
Ec, 1=15.30 MeV for 0"and 73.55 MeV for Ca~. The
usual formula Eo,„~=)e'Z(Z—1)/E gives 14.77 and
73.84 MeV for 0" and Ca~, respectively. The average
"P.Goldhammer, Phys. Rev. 116, 676 (1959).
"A. H. Wapstra, Physica 2$, 367, 385 (1955).

3. Computation

The solution of Kq. (2) was done by computer using
an iterative method. An initial set of expansion coef-
Gcients C„was chosen, the effective potential U was
computed, using Kqs. (3) and (4) and the diagonaliza-
tion (2) performed. This yielded a new set of coef-
6cients C„which initiated the next cycle. At each
stage Eo was computed and the iteration was stopped
when Eo reached a constant value. This was done for a
series of values of S and y and the minimum in Eo as a
function of y was found.

center-of-mass kinetic energy in the HF solution was
E, .=(P'/(2M'))=13. 00 MeV for 0" and 10.82
MeV for Ca~. There is an accidental cancellation of
Coulomb and center-of-mass corrections in the case of
016

The single-particle energies are the eigenvalues ~ in
Kq. (2). These are shown for 0" and Ca~ in Tables
II and III. They are compared with Brueckner-theory
calculations~ and the experimental data from (p, 2p)
experiments~ and stripping reactions. " The single-
particle levels obtained here compare well with the
empirical values, but are more spread out, the high
ones too high, the low ones too low. In particular, the
spin-orbit splitting is too great. For 0 ', the 1pg/2 1ps/2
splitting is 10.2 MeV, compared to the empirical 6.16
MeV; for Ca~ the 1pr/2 —1p3/2 splitting is 11.13 MeV,
the 1d3/2 —1d&~2 is 14.59 MeV, the empirical value for
the d states being 7.0 MeV. In addition there is a large
gap (11.76 MeV for 0") between occupied and unoc-
cupied levels. This is consistent with the observations of
Kelson and I.evinson" and is probably an important
feature of HF calculations.

Also calculated were the single-particle wave func-
tions, particle density, and rms radius. The detailed

Q.
O. I

FIG. 3. Total and charge density in 0'6.

~ M. Riou, Rev. Mod. Phys. 37, 375 {1965).
1g 3.L. Cohen, Phys. Rev. 130, 227 (1963).
"Z. Kelson and C, A. Levinson, Phys, Rev. 134, 3269 (1964).
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TABLE II. Single-particle energies in 0", in MeV.

State
No. c.m. correction

Neutron Proton

This work (y=2.4 F, X=3)
Kith c,m.
correction
¹utron

BLR~
Neutron Proton Neutronb

Data
Proton'

isl/2
ip„,
1p~/s
i~s/s
2$1/s
i~s/s

—48.72—19.65

2.31
6.12

10.74

—41.88—14.71—5.83

9.38

—50.55—23.07—11.56

7.16

—44.3—19.0—14.9

—39.6—14.6—10.7
—21.81—15.65—5.02—4.15

0.93

—34~3.5—18~2.5—13~2

+ Reference 4.
b Neutron energies are taken from Ref. 13.
e Proton energies are taken from Ref. 12.

TmI.E III. Single-particle energies in Ca~, in MeV.

State
No c.m.

Neutron

This work (&=3.0 Fs, X=3)
Kith c.m.

correction correction
Proton ¹utron

BLR.
Neutron Proton

Masterson and
Lockett»

Neutron Proton
Data

Neutron Proton'

1$i/2
1ps/2
1P&/2
i~s/2
2$] /2

1&s/2

—71.80—44.87—34.73—20.99—14.13—7.66

—62.35—36.99—26.88—14.42—6.94—1.38

—75.57—47.40—36.05—23.31—15.38—8.23

—70.1—44.7—38.6—20.6—16.0—13.4

—60.0—35.1—24.2—11.6
7%3—4.9

—48.7—34.0—30.4—17.5—14.8—12.6

—41.4—26.7
2302—10.3—7.6—5.5

—22.8—18.4—15.8

—14.5—10.6—8.3

a Reference 4.
b Neutron energies are taken from Ref. 13.' Proton energies are taken from Ref. 12.

results of these calculations are given in Ref. 6. Table
IV is a summary of the rms radius values and Figs. 3
and 4 show the total and charge density in 0"and Ca~
respectively. The total density is compared to that of
BLR' obtained by Brueckner theory. The rms radii and
densities are close to the experimental values and to
what one expects from previous calculations with other
potentials. The rms radii are too small, as in other cal-
culations, but one might expect higher order eHects to
increase the radii, since these eGects will bring in states

with higher principal quantum number and longer
range.

HI. CONCLUSIONS

It has been demonstrated that the HP method in an
oscillator basis is applicable to calculation of the struc-
ture of 6nite nuclei if a nonsingular two-body force is
available. The results of such a calculation are, on the
whole, very good. The radius and density, the single-
particle energies, the Coulomb energy compare well with

TABLE IV. Rms and charge radius (in F) for 0"and Ca4';
comparison with other calculations and data.

This work

Source

Masterson and Lockett'

Goldhammerb

Datae

This work with c.m. correction

BLR~

Type

Charge
Total

Total

Charge
Total

Charge
Total

Total

Charge

Nucleus
01B Ca40

2.420 2.992
2.380 2.963

2.276 2.870

2.41 2.91
2.40 2.88

3.00
2.99

2.33

2.64 3.52

0.3

0.2
I

O.I

' Reference 4.
b Reference 10.' R. Hofstadter, Ann. Rev. Nucl. Sci. I, 231 (1959). FzG. 4. Total and charge density in Ca".
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what is expected from other calculations and experi-
mental evidence. The oscillator expansion (1) con-
verges very rapidly, 3—4 terms being quite sufFicient.
This agrees with the observation of Muthukrishnan
and Barangerv who 6nd four terms sufhcient for the
single-particle energies. To 6nd the wave functions
correctly, Davies et al.I5 need eight or more terms. This
is necessary to give these functions the proper expo-
nential behavior at large r, but these higher terms have
little effect on the energies.

However, the large discrepancies in Eo/A and the
spin-orbit splitting are disturbing, and an explanation is
needed. A large part of the error can possibly be at-
tributed to the Tabakin potential, since it does not 6t
the data too well. A similar calculation with a more
realistic potential is not yet available for comparison. "
The potential used in Ref. 7 is a much cruder 6t to the
data. It does not seem likely that the additional binding
needed can be obtained by taking more terms in the
oscillator series. The convergence of the series is so
good that higher terms cannot be expected to give the
additional 5.57-MeV/particle binding required in 0' .
Since the HF equations come from a variational
principle, any relaxation of the constraints imposed on
the f by the assumption of spherical nuclei and good
parity could increase the binding (make Eo more nega-

"K.T. R. navies, S.J. Krieger, and M. Baranger, Nucl. Phys.
{to be published).' A calculation for 0"with the BKL potential t C. Bressel, A.
Kerman, and E. Lomon, Bull. Am. Phys. Soc. 10, 584 (1965)j
was attempted, but the core repulsion was still too strong and the
system did not bind. However, when the Tabakin potential was
allowed to act in the s states and the BKL in all other states, 0"
did bind, but not as strongly as with pure Tabakin potential. This
suggested that the core repulsion of the BKL potential could be
reduced by making the core nonlocal. This program is currently
being undertaken at this laboratory and there is hope that a real-
istic, nonsingular potential will soon be available which will be
suitable for HF calculations.

tive)."Whether this will be sufhcient cannot be esti-
mated at this time.

The importance of second-order effects should also
be considered. In the nuclear matter calculation,
Tabakin' found a second-order potential energy of
V&'& = —6 MeV/particle. The 6rst-order potential
energy was Vo&= —40 MeV/particle. If we assume
this ratio V&2'/V&'&=0. 15 to hold in the 6nite nuclei,
we can estimate the second-order effect for this case.
Such an assumption is not unreasonable since the second-
order calculation involves excitation to high energy
states whose wave functions are approximately plane
waves. Hence, the same type of matrix elements enter
in the nuclear matter calculation. In 0" we obtained a
6rst-order potential energy of V&"= —351 MeV. Then
V&"=0.15V&')= —53 MeV. Adding this to the total
energy obtained for 0" we get Eo&') = —91 MeV. This
compares much better with the experimental number
of —127.7 MeV. A similar calculation for Ca~ gives
V&'& = —157 MeV, then Eo&'& = —307 MeV. This ex-
perimental value is —324.1 MeV. Thus it is possible
that all the required binding can be given by the
higher order effects with good convergence.

The large spin-orbit splitting, likewise, may be at-
tributed to the Tabakin potential until calculations
with other potentials are available. There is no spin-
orbit splitting in the calculation of Ref. 7. The Tabakin
potential does not separate uniquely into central,
tensor, and spin-orbit terms. Therefore, it is not possible
to investigate the source of the large splitting. However,
we have found that the p~~2 and p3~~ wave functions
differ signi6cantly, suggesting that the tensor force
contributes to the spin-orbit splitting.

'~%ork has recently been started to extend this HF calculation
to deformed nuclei by mixing difFerent orbital and total angular
momenta in the sum UI Eq. (l).


