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The nonadiabatic method of Temkin which has been applied to electron-hydrogen scattering is generalized
to the problem of electron-alkali scattering. A two-body equation is derived in which the core of the atom
has the principal effect of modifying the two-body interaction and of excluding the two extra-core electrons
from the occupied states of the core. This equation may be viewed as a generalization of the Bethe-Goldstone
equation for the problem of scattering from a finite system.

I. INTRODUCTION

OST methods for the calculation of the scattering

of low-energy electrons by atoms are based upon

a method for reducing the many-body problem to a one-
body problem in the presence of an external potential.
This results in the one-body Schriédinger equation, an
integro-differential equation or set of coupled integro-
differential equations, which is usually solved numeri-
cally. A/l these methods may be viewed as approxima-
tion schemes in the equivalent-potential method.!
This method breaks the Hilbert space into two pieces.
The first is relevant to the scattering problem, while
the second is orthogonal to it and presumably only
loosely coupled to it. An exact equation is derived for
the part of the total wave function spanned by the
first part of the Hilbert space. The second part enters
this equation only through a potential in the equation.
This equivalent potential is a result of virtual transi-
tion in and out of the second part. It is always difficult
to approximate, and a// the methods mentioned above
can be viewed as ways of approximating the equiv-
alent potential. For instance, the close-coupling method?
simply discards the higher terms in the equivalent
potential, even though their long-range behavior,
which can be obtained exactly, actually dominates
the long-range behavior of the terms retained.? A
modification of the close-coupling method?® which in-
cludes these long-range effects suffers from the ambi-
guity in the cutoff of these effects. That is, when long-
range terms of the potential behaving like »—4, for
instance, are kept they must be cut off at short range.
The equivalent potential contains this cutoff but it is
difficult to calculate, so in practice a phenomenological
cutoff function has to be introduced. The method of
polarized orbitals* is one technique for introducing such
a cutoff. It and most others rely on an adiabatic ap-
proximation for the calculation of the cutoff. It is
based on the assumption that the incoming electron
moves slowly compared to the bound ones so that the
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atom may deform adiabatically as a result of the inter-
action with the projectile. When the projectile is far
enough away the approximation is a good one, but as it
approaches the atom the approximation breaks down.
Indeed, it would seem to break down more rapidly for
more polarizable atoms.

The Pauli principle was thought to be the saving
feature of the problem. A consistent derivation of the
equivalent potential with account of the antisymmetry
of the wave function under interchange of the projectile
and target particles requires among other things that the
scattered wave function be orthogonal to the occupied
orbitals of the atom (a Hartree-Fock description of the
atom is implied here, although a generalization to more
complicated wave functions has been given).! For
heavy atoms and slow electrons this requirement tends
to exclude the electron from the interior of the atom.
This reduces the dependence of the phase shift upon the
ambiguities of the short-range behavior of the equiva-
lent potential. This expectation has been confirmed by
explicit numerical calculation.® Unfortunately, this
qualitative effect does not appear to be enough to
allow a completely predictive theory of electron-atom
scattering.

The success of the close-coupling method in electron-
hydrogen scattering indicates that the long-range terms
which are dropped are not important in the actual
problem. It is known that these r—* terms are important
in the vicinity of zero energy and near thresholds but it
seems that they are cutoff in such a way as to give a
negligible contribution to the scattering at intermediate
energies. Calculations with different but reasonable
“cutoff functions” in the equivalent potential yield
significantly different phase shifts and there does not
appear to be any a priori method for justifying one over
the other.

The method of polarized orbitals has also been suc-
cessful in giving reasonably good results for various
atoms. It can be presented as a variationally based
calculation. The trial wave function is taken as a fully
antisymmetrized product of an unknown scattering
function of the scattering coordinate and a modified
atomic wave function. The modification depends upon
the scattering coordinate and allows for the adiabatic
deformation of the ground state by the scattered

® M. H. Mittleman, Advan. Theoret. Phys. 1, 283 (1965).

147 69



70 M. H. MITTLEMAN

particle. This introduces the ambiguity of a cutoff
function into the wave function instead of into the
equivalent potential. The equation of motion for the
scattering function will contain an approximation to
the equivalent potential which will reflect this am-
biguity. Again the hope is that the symmetry of the
total wave function will minimize the effect of this
ambiguity but this has not been demonstrated in that
only one form of the cutoff function has been used. In
any case, no matter how the derivation is presented it
may be shown that the error in the tangent of the phase
shift is proportional to the error in the equivalent
potential.

Temkin’s nonadiabatic method® does not fit directly
into the above outline. It has been applied only to
hydrogen where it deals directly with the equation of
the two electrons in the Coulomb potential of the
nucleus. The approximation procedure is one of ex-
panding the wave function in a relative partial-wave
series. We illustrate for total angular momentum equal
to zero. The total wave function ¥ can be considered a
function of the three variables 7y, 72, u, where r; and 7,
are the distances of the electrons from the nuclei and
w="71-#2. The function is expanded as

T=>1Yi(r,r2) Pi(u),

and only a small (/=0, 1) number of terms are retained.
The result is a system of coupled partial differential
equations. The method accounts for the correlation of
the two electrons more accurately than the methods
described above. More of the long-range potential is
included and no cutoff procedure is necessary. The
method is equivalent to including all /=0 and 1 states
in the close-coupling method.

It seems appropriate to raise the problem of the
generalization of this method for heavier atoms, in
particular for alkalis where the improvement will
probably be greatest. This is accomplished in the next
section.

II. FORMAL DERIVATION

The nonadiabatic method as applied by Temkin to
electron-hydrogen scattering starts from the full equa-
tion for two bodies in an external field. For the problem
of electron-alkali scattering we therefore seek an
analogous two-body equation, but we may expect that
all the interaction potentials will be more complicated.
We shall make the usual assumption of neglecting spin-
dependent forces so that the singlet and triplet scat-
terings decouple. Let the two-body wave functions
describing these be X (r,r;) with the symmetry

X (r0,r1) = =X (r1,70) . 1)

The first problem we encounter is that of defining
this function in terms of the full wave function
W, (ror, - - +,r;). That is, again we break the Hilbert

8 A. Temkin, Phys. Rev. 126, 130 (1962).
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space into two pieces. The first one, spanned by a pro-
jection operator P, which we want to determine, will
contain the function X, while the other spanned by the
projection operator Q.=1— P, will be formally elimi-
nated. The problem is how do we define X;. One ap-
proach is to write

P:E\Ili = Axi(rorl)(l/\/j)

X[p+(1- - -2)a_(0)Fp_(1- - -2)o(0) ]
=AX3hy, (2

where ¢, is the ground-state wave function of the
alkali (spin and space), and the subscript denotes the
spin direction. 04(0) is the spin wave function of
particle ““0.” The wave functions ¢, are antisymmetric
in their arguments and A4 is the appropriate antisym-
metrization operator. The equation for P arises from
the requirement that all the scattering be contained
in PV.

So/d2‘ : ‘dzAi*(l"‘P:t)\I/i:O. (3)

Here” we use the notation that S; is the spin sum on
coordinate ¢ and d;= S;d%;. This leads to an intractable
equation for P, even when one makes a Hartree-Fock
approximation for ¢. In addition, it is difficult to ob-
tain the symmetry (1) with this definition. We therefore
try a less ambitious definition which will lead to re-
strictions on the method. We replace (2) by the equation

Py =AXy(ro, )Y (2 - 2)
X (1/V2)[0-(0)0(1)F04(0)o(1)]
=AX4(ro,r1)D4 (01,2 - -2), 4
where ¥/(2- - -2) is the normalized and antisymmetrized

ground-state wave function of the alkali ion. The
asymptotic form of the total function ¥, is

eipr
lim ¥, — (eip"°+fi 0)

— ®©
ro r

1
X\72_[¢+(1~ +2)a_(0)F¢_(1---2)01(0)], (5)

where, for simplicity, we have taken only the elastic
channel. We would like the asymptotic form of (4)
to coincide with (5). To that end we can have

")su ©)

lim X:i: g <eip"°+fi

70 —
If we now demand that

lim fo(l—Pi)‘I/i=O (7)

which is the statement that the Q part of Hilbert space

7 Actually this equation could be written only in its asymptotic
form 70—, but we use the stronger statement (3) here.
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have no scattered wave, we obtain

ipro 1 R
lim ro(e"l’""-i-e fi)\/—z{a—(o)[¢+(1' o z)—AE(r)o (DY(2---2))]
7o — © ro “
For(0)[o_(1- - -2)—AE(r)o— (1Y (2- - -2)) ]} =0,

where A is the operator which antisymmetrizes the object upon which it acts. This requires that the coefficients
of ¢,(0) individually vanish. R
¢:(1- - 2)=A[E(r)o(DY(2- - -2)]. @®

This says that the atom is composed of a core plus an additional electron and that the core is identical to the ion.
That is, that the valence electron does not perturb the core. This is a good approximation for the heavy alkalis,
but not for lithium. We shall adopt this approximation for the rest of this paper and in addition describe the core
by a Hartree-Fock wave function

Y2 ) =[E—D!T" det]viu ()], i=2---z, ©
where the orbitals are given
vie(D)=gi(r)or(i), j=1---3(z—1). (10)
With these approximations we now define P, by the requirement that there be no component of Q, ¥, which lies
in the subspace with the core in its ground state.

501/Di*(01,2~ -2)(1=Py)¥yds- - -d.=0. (11)
We define
ii(ro,r1)=501[d2~ <d Dy *(01,2- - - 2)W ., (12)
and use Eq. (4) with
A=1-E (Xt Xo)+} T XiXus, (13)
=2 k=3

where X, exchanges the coordinates j and % (spin and space). Some straightforward manipulations of (11) yield

Ry (to,r1) =X (x0,11) — /Ki (rors,ro'ry ) x4 (ro', 11" )dorod?rs, (14)
where
K4 (rory,ro'ny) = 6(ro—10) 2 gi(r1)gs* (1) +8(r1— 1) X g5(ro)gs*(r)
7 7

-3 Zk Lgi(ro)gr(r1) £ gi(r1)gi(ro) JLgs(xe ) gr(r1) £ gi(r )ga(rs) J*. (15)

The sums here and below run over the 3(z—1) different  all its eigenvalues are unity. The eigenfunctions are the
occupied orbitals. Equation (14) is an integral equa- appropriately symmetrized combinations of the prod-
tion for X,. Following Feshbach' it is solved in terms of uct ga(ro)gs(r1), where at least one of g, and g, is an
the eigenfunctions of K, defined by orbital occupied in . Using the completeness of all

K LU()=Un(=£), (Un(=)Ur(2))=bm. (16) the functions g;, Eq. (18) may be written

In terms of these we get

fdafogj*(ro)xi(fo,r1)=/d”flgf*(fx)xi(fo,fx):() (19)

) —[1+z DNEXUET, -
== = A—1 + ( which is the physically reasonable statement that
neither of the electrons in X, can get into a core state.
and we also obtain Combining (17), (11), and (12) we may infer that
(Un=a(x£)X4)=0, (18) P =(4/+/N)DL)s(ro—1y)
which is the orthogonality requirement resulting from Xo(ri—r/)(Dy(4/+/N), (20)

the Pauli principle. The kernel, (15), is degenerate and where N =4z(z41).
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The equation for P,y may be obtained directly from
the Schrodinger equation which we write as

(E—H)P Y. +(E—H)Q. ¥, =0. (21

Multiplication from the left with P, and then with Q.
yields a pair of coupled equations. If Q. ¥, is elimi-
nated, the usual result is obtained

[E—Py5y Py 1P, ¥, =0, (22)

where
Jeo=H+H[Q./(E—Q+HQ.)]H. (23)

Here E is the total energy and H is the Hamiltonian.
The equation for X, is obtained by the operation
(D4(01,2- - -z) on Eq. (22). Using the result

(D1ADy)=1-Ky,

and
KX.=0, (29)
which follow directly from (19), the equation is
EX:!:— (I—Ki)<Di5’CADi>x:t=0 . (25)

The orthogonality relation (19) follows immediately
from the form of (25) because the operator

[dsrlga*(r1>K;i;(r0r1,r0/r1,) —ga*(r1)8(ro—ry’)

vanishes when operating on a function with the sym-
metry of Xy, [Eq. (1)]. Thus Eq. (25) has the same
property as the one-particle equivalent-potential equa-
tions; the Pauli principle tends to exclude both electrons
from the interior of the core.

If we make the approximation of neglecting core
excitations, the Q which projects onto excited core
states may be set equal to zero and 3C.=H. Equation
(25) then may be written more explicitly as

(BHWo—WoH)Xe+(1—K )
X (Vo*+ V12— Var(0)— Vur(1)—2/r10)X1=0. (26)

Here Var is the Hartree-Fock potential of the core

22
VHF(I'o,l'o,) = 5(1’0-1’0')(11(70) *———)

7o

gi(ro)g;*(ro")
23—,
[ro—ro’|

p(x)

|x—r|’

@7

where

V(r)=2 / i
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and p(x) is the electron density of the core. W, is the
ground-state energy of the atom and Wyt that of the
ion. K, is the integral operator (15). The kinetic-energy
and Hartree-Fock operators are both one-particle
operators. This fact, coupled with the orthogonality
statement (19), results in a simplification of the form

K (= V24 Var(1))Xy. (28)
In this term K immediately becomes

Ky — 8(ro—ro)2; gi(r)gs*(ry).

Now, using the equation defining g;, the form (28)
becomes

2 gf(n) 5jfd3’1,gj*(’ll)x;{:(ro,rll) =0

so that (26) becomes

(R 43X 4 (ro,r1)+[Vo>+ V1>~ Var(0)

—Var(1)—(1—K4)2/r10]X:=0. (29)
Thus the presence of the core only modifies the two-
electron interaction. A factor (1—K,) could be in-
serted to the right of 2/7y, to make the interaction
explicitly Hermitian. Here A; is interpreted as the
ionization potential of the atom. The boundary condi-
tions are

lim X — (et 704 frei?r0/r)g(ry),

rg — @

where g(r) is the Hartree-Fock orbital of the valence
electron of the atom which by the assumption of
Eq. (8) is the same as the first unoccupied orbital
in the potential (27). The symbol f, is the scattering
amplitude.

Equation (29) is just the finite-system Bethe-
Goldstone equation® for a scattering problem.

Note added in proof. The reasoning followed here re-
quired two assumptions. The first is Eq. (8) which
identifies the “core” with the ion, the second, Eq. (9)
makes a Hartree-Fock assumption for the core. The
net is a Hartree-Fock assumption for the whole atom.
If the Hartree-Fock assumption for the atom were made
immediately there would be no need to introduce the
ion and consequently the first assumption would be
obviated. Thus the final equations should be as ap-
plicable to lithium as to the heavy atoms.

SH. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957).



