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A model is proposed in which the C" nucleus is composed of three rigid alpha particles. Using separable
alpha-alpha interactions the homogeneous Faddeev equations for the bound states reduce to a set of coupled
nonsingular integral equations in one variable. Specialized to the case of only S-wave interactions, this set
reduces to a single equation which is solved numerically. A ground-state solution is found, with a reasonable
value for the binding energy, but no excited states. Further calculations are suggested, and an appendix
containing the general angular-momentum analysis is included.

I. INTRODUCTION

HK cluster modell —4 has had a long history and
some success in explaining the properties of

nuclei. As usually applied it amounts to approximating
the nuclear wave function by a product of cluster wave
functions, choosing a reasonable two-nucleon potential,
and performing a variational calculation. In this paper
we wish to introduce a somewhat different kind of
cluster model for C".We shall treat the clusters (alpha
particles in this case) as rigid entities without any
internal structure, interacting with each other via a
potential determined by alpha-alpha scattering experi-
ments. With this simplifIcation, and by further choosing
the potentials to have a separable form, it is possible to
solve the resulting three-body problem exactly.

Our original motivation for studying this model was
that it involves the simplest possible three-body sys-
tem'. three identical spinless particles for which a
nonrelativistic theory should be adequate. We hoped,
of course, that in spite of our rather drastic rigidity
assumption the model would have some relevance to
the real C" nucleus, and the preliminary results to be
presented here have been encouraging. If this should
continue to be true the model should be an ideal
"proving-ground" for three-particle calculations. This
is especially true because the C~ system has several
excited states' below or near its breakup threshoM
where numerical calculations are relatively simple.

The foundation of the model is the set of coupled
integral equations from the three-body theory which
has recently been developed by Faddeev, ~ Lovelace,

' J. VVheeler, Phys. Rev. 52, 1083, 1107 (1937).
~ K. Wildermuth and Th. Kanellopoulos, Nucl. Phys. 7, 150

{1958);9, 449 {2958/59).' L. Pauling, Phys. Rev. Letters 15, 499 (1965).'S. Matthies, V. G. Neudachin, and Yu. F. Smirnov, Zh.
Eksperim. i Teor. Fiz. 45, 107 (1963) t English transl. : Soviet
Phys. —JETP 18, 79 (1964}g.

~ This has previously been emphasized by I. Duck, Rev. Mod.
Phys. 37, 418 (1965).'F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 116
(1959}.

'L. D. Faddeev, Zh. Kksperim. i Teor. Fiz. 39, 1459 {1960)
t English transl. : Soviet Phys. —JETP 12, 1014 (1961)g; Mathe-
matical Problems of the Quantum Theory of Scattering for a Three-
Particle System (Publications of the Steklov Mathematical Insti-
tute, Leningrad, 1963},No. 69.' C. Lovelace, Phys. Rev. 135, 81225 (1964).

and others', lo and applied by many workers. " "These
are introduced in Sec. II. Since the three-alpha system
is so simple we hope to eventually be able to include
two-particle interaction in the higher angular-momen-
tum channels and have therefore included the general
angular-momentum analysis (with the details in an
appendix). In this paper, however, we present, in Sec.
III, the results of numerical calculations using only
5-wave alpha-alpha interactions. These are chosen to
fit the experimentally determined scattering length and
effective range with Coulomb e6ects removed. The re-
sults are discussed and a program for further calcula-
tions presented in the concluding Sec. IV.

II. INTEGRAL EQUATIONS

Faddeev' has shown that a well-behaved set of three-
body equations, involving the two-body T matrix
rather than the potential, can be obtained by rearrang-
ing the Lippmann-Schwinger equation. For a bound
state of three identical spinless particles of mass m
there is a single homogeneous integra1 equation:

f(it, q) = 2L z—z(& g)]-'(2 )-' d'q'

x~(&— (q); &, 9'+la)4(a+l»', «'). (~)

The function $(k, q) is related to 4, the symmetrized
momentum-space wave function in the center-of-mass
system, by

4(itly'gl)+4'(lt2yg2)+4'(lr3y%3) y

where, for example,

&i= i(pm —p3),

QI= P2+ 93=—P»

9 S. %'einberg, Phys. Rev. 133, 8232 (1964).' R. Amado, Phys. Rev. 132, 485 {1963).
"A. N. Mitra and V. S. Bashin, Phys. Rev. 131, 1265 (1963)."R.D. Amado, Phys. Rev. 141, 902 (1966).
I~ J. H. Hetherington and L. H. Schick, Phys. Rev. 141, 1314

{1966).
'4 A. C. Phillips, Phys. Rev. 145, 733 (1966)."H. A. Bethe, Phys. Rev. 138, 8804 (1965).
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and the p.; are the individual particle momenta. The
function t(s, it, k') in (1) is the oif-shell two-particle T
matrix, while F.(0 is the bound-state energy and

where

E(k,q) =m 'k'+co(q),

s)(q) =-,'m —'q'.

1
d(q. q')Pe(q q')(k') "g.(k')

2 ]

XLE-E(k" q') j '(k") "'g~ (k") (15)

where

r„(s)= C-'+ (2s')—'m
"P'dP g'(P)

P' —ms—
(7)

the integral equation greatly simplifies. Making the

decomposition

where

4(&,a) = Z |alii'(k, q)'JJ~, i' "(k,q),
JMXl

If we approximate t(s, it, k') by a sum of separable
functions" of the sort that would result from separable
potentials,

t(s it It') =P(2y+1)P), (k k')gg(k)rg(s)gg(k'), (6)

The functions Mq~ q v~ ~(q, q') are the homogeneous
polynomials of degree )+X' in q and q', with coefficients
which can be expressed in terms of 3-j and 6-j symbols.

Since we are looking for bound states the kernels of
the integral equations will have no singularities in the
domain of integration. This imples, among other things,
that the fz&~(q) will be relatively smooth functions.
Equation (10) therefore carries quite a bit of informa-
tion about the bound-state wave functions in our model.
Their asymptotic behavior in configuration space,
for example, is determined by the singularities of
LE—E(k,q) j 'r(E —co(q)), and this can be shown to be
consistent with the limits established by Slaggie and
Wichmann. iv

III. SOLUTION WITH 8-WAVE INTERACTION

If we keep only the X=O terms the set of Eqs. (11)
reduces to the single equation (suppressing the sub-
scri ts X=O

'JJg, (~ M(k, q) =Q(lllpm~ JM)F), ,„(k)F(,~(q), (9)

p and / J)
we can write Pq~~(k, q) as the product

4~~'(k, q)=LE—E(»q)3 '~~(k)r« —~«»f~~'(q). (10) f'(q)=~ ' q"~q'V'(E;q, q')r(E ~(q'))f'(q'),
The "reduced wave functions" kg~(q) are solutions of a
set of coupled equations in one variable:

dQ,dD, .gg (~~~ (k', q) gg (k')

with

X t E—E(k",q')) 'gg((k") Qg v~'"(k",q'), (12)

(13)

In the Appendix to this paper we show that we can write

J+X+X'

Vxtxv (E; q, q')=, E (2&+1)~xi,x v ' (q,q')

X Vxx (E; q, q'), (14)
"This approximation should be good if the channel is domi-

nated by a bound state or resonance. See Refs. 8 and 9.

f~i'(q) =2 2 (2~) ' q"dq' V~~. ~ ~ '(E; q q')
)t' L' 0

Xrv(E ~(q'))fi v(q'), (ll)
where

Vxr, ~ v (E;aq') 8=0.736 F—'

(Ss-j9') 'mC= —2.95.
(17}

These values produce a stable He' bound state at—2.91 MeV, while the observed ground state is unstable
by about 0.1 MeV. The difference is not an unreasonable
value for the energy of Coulomb repulsion between two
alphas, but is probably a bit large since the Hulthen
wave function which results from our choice of g(k)
is almost certainly too large at small distances.

Equation (16) has certain features which simplify its
solution. Since the "potential" U~(E; q, q') is a, sym-

'7 E. L. Slaggie and E. H. KVichmann, J. Math. Phys. 3, 946
(1962).' N. P. Heydenberg and G. M. Temmer, Phys. Rev. 104, 123
(1956).

' J. L. Russel, Jr., G. C. Phillips, and C. K. Reich, Phys. Rev.
104, 135 (1956)."D.R. Harrington, Phys. Rev. 139) @691 (1965).

(16)

where V~(E; q, q') is given by (15) with lj, =&'=0.
Taking g(k) = (k'+P') ' we choose the strength pa-
rameter C and the range parameter P such that two-
particle T matrix gives the experimentally determined
alpha-alpha scattering length and effective range""
with the Coulomb effects removed. "We find
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metric function of its two arguments and nonsingular
in the domain of integration we can apply the well-

developed Schmidt-Hilbert theory2' of integral equa-
tions. Furthermore, if, as is the case with our choice,
the function g(k) has its nth derivative with sign

(—1)", then the kernel has everywhere the sign (—1)~.

Roughly speaking, then, an attractive S-wave alpha-
alpha force produces attraction only in the even J
channels of the three-alpha system. Also, the extremum
properties derived in the Schmidt-Hilbert theory re-
quire that the eigenfunction f~(q) corresponding to
the lowest energy eigenvalue for each even J have
no nodes.

Making use of these general features we have solved
Eq. (16) numerically using three-point Gaussian inte-
gration, with abscissas and weights appropriate to the
rapid convergence at infinity, to convert the integral
equation into a matrix eigenvalue equation. The eigen-
values of the matrix were traced as a function of E;
the bound-state energies are those values of E at which
a matrix eigenvalue takes the value one. In this way we
found the J=0 ground-state energy to be —12.8 MeV
(relative to the three-alpha breakup threshold), with
the reduced wave function shown in Fig. j.. Experi-
mentally, excited states of C" are found at 4.4 MeV
(J=2) and 7.6 MeV (J=O) above the ground state. '
We do not find any excited states below threshold; the
behavior of the second matrix eigenvalue for J=O,
however, seems to indicate that a bit more attraction
would produce an excited state in this channel.

In comparing our calculated value for the C" ground-
state energy with the observed value of 3I(C")
=331(He') = —7.28 MeV, we must remember to add
in the energy of Coulomb repulsion among the alphas.
This is difticult to calculate accurately but should be
of the order of several MeV. The formula" for a uniform
spherical charge distribution, E,(Z")= (0.584 MeV)
XZ(Z —1)A '", for example, gives E.(C")—3E.(He')
= 5.44 MeV. Our calculated value for the ground-state
energy is therefore quite reasonable, indicating that
our model may not be completely unphysical.

IV. CONCLUSIONS

We have proposed a model for C" in which this
nucleus is composed of three "rigid" alpha particles.
Specializing to the case of separable interactions in S
waves only, we have solved the Faddeev equations
numerically, obtaining a reasonable value for the ground-
state energy. We do not, however, find the observed
excited states.

We hope to extend these calculations in the near
future. First of all it will be of interest to see whether
the inclusion of D-wave forces will give the additional

"See, for example, R. Courant and D. Hilbert, Methods of
Mathensatkal Physics (Interscience Publishers Inc. , New York,
1953), p. 122."I. Kaplan, Nuclear Physics (Addison-Wesley Publishing
Company, Reading, Massachusetts, 1963), p. 540.

Fxo. 1. The reduced wave func-
tion for the model C"ground state.
Since the wave function has not
been normalized the ordinate scale
is arbitrary.

lF'

attraction necessary to produce the excited states. This
will involve solving sets of coupled integral equations
with somewhat complicated kernels, but should be
straightforward numerical work. We should also like to
investigate the effect of changing the form of g(k) and,
although this is not very well justified, using two-term
separable potentials to approximate the repulsion which
must be present in the alpha-alpha potential at small
distances.

A second kind of further calculation would apply and
test the wave functions found in the model. Perhaps
the simplest of these would be a calculation of the C"
charge form factor, following the work of Amado" on
the triton. One might also be able to estimate the
Coulomb energy, but we suspect that a first-order
perturbation calculation would not be accurate. A
better scheme might be to use the Coulomb-modified g
functions of Ref. 20, treating the pure Coulomb T
matrix as a perturbation on our integral equations. Even
this might be futile, however, if our g functions do not
have the correct asymptotic behavior, since the Cou-
lomb energy will be sensitive to the form of the Be'
wave function at small distances.

We can easily extend our calculations to energies
above threshold by adding an inhomogeneous term to
the integral equations. Since there is no stable Be'
nucleus, and three-particle scattering seems impractical,
there is no possibility of a direct confrontation with
experiment. The best we could do would be to search
for the positions and "wave functions" of the three-
alpha resonances, possibly testing the latter in experi-
ments in which a C" compound-nucleus description
seems to be valid.

Even if these further calculations reveal that our
model does not provide a particularly good description
for C", we feel it may still serve as a useful proving
ground for methods of attacking the three-particle
problem. The distraction of "inessential complications, "
such as spin and complicated kinematics, is reduced to
a minimum and, at least in certain cases, it may be
possible to penetrate the veil of numerical calculation
and see what is really going on.
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APPENDIX

To reduce (12) to the form given in (14) we begin
with the expansion

[E—E(k",q') l-'(k') —
"gg (k') (k")—"'g), (k")

=P(22+1)V», e(E; q,q')Pe(q q'), (A1)

where

Dz, , r, ;i~= dQ~, 'Jjz, ~~'*(q,q)Pg(q q)

Xpi," (q,q'). (A6)

It is a straightforward matter then to show that

DI.;,I. ;~~

= (—1)~"(LilLi')lL Jl:I'3)'"

where Vzz z(E; q, q') is given by (15).Then

M„,,„,~z= dQQQ, (k')" tip)~~*(k', q)Pz(q q')

X (0")"tlx.i.~~(k",q') . (A2)

By using the expansion theorem for solid harmonics"
we can express (k') ~Vq „(k') as a sum over l. and 3E of
terms proportional to (q') Vz„,~(q') (q")" Fx I, ~~
X(q"), with I running from zero to X. Then, by re-
coupling, we find

(&')" ti»' (k',q)=Z~xi, z'(q'q)'tie' (q', q) (A3)

where, using the shorthand notation Lej=2n+1,

The general expression for M is rather complicated
but, especially when one of the angular momenta is
zero, there is usually considerable simplification in
particular cases.

Sum rules are always useful in checking numerical
values. In this case the completeness of the spherical
harmonics gives

2 (2&+1)~xi,x'i

= (q'+kq)" (q+kq')"'(LQI. lb'3LilU'j)'"

X
l Ji V 1' J~

(AS)oooi o oo)'
and

Z (2~+1)D».x i "=(I:GP'jLilLi'l)'"

Therefore

(X—I. / j L, X—I.
xI

0 0 0 / J j
~» x'p Z +»Lj (q yq)D, LjL'j',

LL'jj'

(A4) while taking q'= q in (A3) gives

I. j J
Z Cx~.z~ (q' q)(LLLLi])'"
Lj 0 0 0

XCx p, z p (q q ) (A5)

"M. Danos and L. C. Maximon, J. Math. Phys. 6, 766 (1965}.

X l J= (q'+-', q)"(P]Dl)'" (Aio)
0 0 0


