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Based on the cranking and the pairing-plus-quadrupole force models, a description of the centrifugal
stretching and the Coriolis-force antipairing effects is derived by using the number-conserved wave function
in treating the pairing correlations. Detailed numerical calculations are performed to obtain the lowest
order nonadiabatic parameter. The observed deviations of the rotational spectra from the 7 (I41) formula
are approximately accounted for in terms of the centrifugal stretching and the Coriolis-force antipairing
(CAP) effects. In general, the CAP effects are more important than the centrifugal stretching effects except
for nuclei in the beginning of the deformed region. There centrifugal stretching effects become comparable
with the CAP effects. The dependence of both of these effects on the parametric values involved in the

theory is discussed.

1. INTRODUCTION

T is well established that heavy nuclei in the mass
region 150<A4 <190, 4>224, have stable axial-
symmetric spheroidal deformations and exhibit rota-
tional sequences of levels in their excitation spectra.
In recent experimental studies of a number of even-even
rare-earth nuclei, rather high-lying members of the
ground-state rotational bands have been success-
fully observed.!? In particular, Stephens, Lark, and
Diamond? have accurately determined the energies of
these rotational levels, in some cases, up to states with
spin 16 or 18. The energy systematics of these rotational
levels clearly demonstrate that the excitation energy
L1 of high-spin states becomes increasingly smaller than
that predicted from the 7(/+41) formula. This indicates
that as the frequency @ of the rotation increases, non-
adiabatic effects of the nuclear rotation (such as
changes of the nuclear shape due to the centrifugal
forces and disturbance of the intrinsic structure due to
the Coriolis forces) become more important.
The deviations of the rotational spectra from the

* Supported in part by the U. S. Atomic Energy Commission.

7 On leave of absence from Tokyo Institute of Technology,
Tokyo, Japan.

! H. Morinaga and P. C. Gugelot, Nucl. Phys. 46, 210 (1963);
K. Kotajima and D. Vinciguerra, Phys. Letters 8, 68 (1964);
G. B. Hansen, B. Elbek, K. A. Hagemann, and W. F. Hornyak,
Nucl. Phys. 47, 529 (1963).

?F. S. Stephens, N. Lark, and R. M. Diamond, Phys. Rev.
Letters 12, 225 (1964) ; Nucl. Phys. 63, 82 (1965).
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simple 7(/+1) formula have usually been described by
the higher order terms in the expansion

Er=EyO+(1/25)I(I+1)
+BI2(I4+1)24-CI3I+1)3+---. (1)

Ey©® and , are the intrinsic energy and the moment of
inertia, respectively. The coefficients B and C, etc., are
parameters characterizing the nonadiabaticity of the
nuclear rotation. In cases where only relatively low
spin states are involved, expansion (1) terminated at
the quadratic or cubic terms can reproduce fairly well
the experimental energies. However, when the high-
spin data are utilized, such a simple analysis usually
does not fit experiment satisfactorily.?

An alternative approach to describe the rotational
spectrum has been considered by Harris.? This is based
on the following two sets of equations:

Er=EO4+30Fo+2- 2n+1)4,2*"]  (2a)
n=1

and
[I(I+1) ]2 =0 Fo+ 2 (n+1)4.2],  (2b)

where Q is the frequency of the rotation. Retaining only
the lowest order nonadiabatic term and thus assuming

Er=E,O+30%(5o+34,2?) (32)

8 S. M. Harris, Phys. Rev. Letters 13, 663 (1964); Phys. Rev.
138, B509 (1965).
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and
LI+ 1)]Ve=Q(Fo+24.127). (3b)

Harris has analyzed the data of Ref. 2 and found that
all the rotational energies can be reproduced strikingly
well when the two parameters §, and 4 are determined
by an empirical least-squares fit to the experimental
energies. A more extended analysis, including one higher
order term, has very recently been carried out by the
same author® and reliable values of A; have been
determined.

The aim of the present work is to calculate this non-
adiabatic parameter 4, based on the cranking model of
Inglis* and on the pairing-plus-quadrupole force model.
Two important nonadiabatic effects are taken into
account; one is the centrifugal stretching effect and the
other is the Coriolis force antipairing (CAP) effect
originally suggested by Mottelson and Valatin.® Al-
though a number of studies® investigating the above
effects have been reported, a quantitative under-
standing of these effects has not yet been obtained.
This is mainly due to the fact that previous investiga-
tions introduced somewhat rough approximations, par-
ticularly in obtaining numerical estimates of these
effects. (See Note added in proof, Ref. 11.) We have
attempted in this paper to perform more realistic nu-
merical calculations in order to make the quantitative
aspect of these effects more completely clear.

In this calculation, we essentially follow the method
given in our previous note,” in which an approach for
describing the CAP effect was devised within the frame-
work of the cranking model. In the present paper we
have taken into account the conservation of the number
of particles in dealing with the pairing correlation by
following the method given by Dietrich, Mang, and
Pradal.® We have also treated the centrifugal stretching
effect.

It should be noted here that the essential idea of the
method described in the present paper is quite analogous
to that in the Hartree-Fock-Bogoliukov (HFB) ap-
proach of Marshalek.? In our treatment, however, the
conservation of the number of particles is taken into
account explicitly although to do this we have neglected
for the sake of simplicity the effect of the centrifugal
stretching of the v deformation as well as the Coriolis-
force effect on the independent quasiparticle motions.
The consideration of the conservation of the particle

4 D. R. Inglis, Phys. Rev. 96, 1059 (1954).

a ;6%) R. Mottelson and P. G. Valatin, Phys. Rev. Letters 5, 511
¢ A systematic review on the previous research has been given
in Ref. 9. This paper should be consulted for further references.

7T. Udagawa and R. K. Sheline, Phys. Letters 15, 172 (1965).

8 K. Dietrich, H. J. Mang, and J. H. Pradal, Phys. Rev. 135,
B22 (1964). This paper will be referred to here as DMP.

9 E. R. Marshalek, Phys. Rev. 139, B770 (1965). In this work,
in addition to the centrifugal stretching of the 8 deformation and
the CAP effects, Coriolis-force effects on the quasiparticle motion
as well as the centrifugal stretching effect of the v deformation
have been included. See also Ref. 11.
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number, however, may be important when studying the
behavior of the rotational spectra in the region of the
very high spin states.’® Although in the present work
we have not tried to deal with this problem, our method
should be applicable.

Our approach is based on the variational method. Fol-
lowing Ref. 7, we introduce two parameters in order to
describe the CAP effect, the amounts A\p and Ay of the
reduction of the coupling strength of the pairing force
of the proton and the neutron. In the present investiga-
tion we introduce an additional parameter to describe
the centrifugal stretching effect; the deviation Q of
the mass quadrupole distribution of nucleons in a
nucleus from the equilibrium value Q in the absence of
the rotation. Treating them as variational parameters,
we first construct a trial wave function describing the
state of a rotating nucleus in the rotating frame of refer-
ence. Then, we require that the total energy in the
rotating system must have a minimum value. From this
requirement, we obtain a set of equations which de-
termine Q and A7 (=P and N) as functions of Q
(Sec. 2). The total energy E; can then be written as a
simple sum of the intrinsic energy E, and the kinetic
energy of the rotation, although E, and the moment of
inertia § both become functions of . The functional
dependence of Er and & is then identical with that given
in Egs. (2a) and (2b).

In Sec. 3, equations for Q and \r are solved and the
formula for calculating the lowest nonadiabatic param-
eter A is derived. In addition to the contributions from
the centrifugal stretching and the CAP effects, an
interference term between these effects also results. The
contribution from the centrifugal stretching effect is ex-
pressed in terms of a parameter characterizing the re-
storing force with respect to the change of the mass
quadrupole moment and the first derivative of the
moment of inertia § with respect to Q. The restoring-
force parameter is given in terms of the second deriva-
tive of the intrinsic energy E, with respect to Q. The
contribution from the CAP effect is given by similar
quantities, but in this case the derivatives must be
taken with respect to A7. In our treatment, the inter-
ference effect is characterized by the change of the mass
quadrupole moment induced by the CAP effect.

For each of these quantities defining A4,, formulas
suitable for numerical evaluation are derived.

In Sec. 4, some details of our numerical calculations
are discussed. The actual calculations were performed
for nuclei for which the empirical values of A, are

10 This is suggested by results of the work of Rho and
Rasmussen. They showed that, although the BCS approximation
is reasonably good for the case where the strength of the pairing
force is relatively large, it becomes inaccurate as the pairing force
strength decreases; M. Rho and J. O. Rasmussen, Phys. Rev. 135,
B1285 (1964). It has also been argued that the rather abrupt
phase transition between superfluid and normal states predicted
from the BCS theory may be a spurious result for the nuclear
problem. See Ref. 9 and A. Faessler, W. Greiner, and R. K.
Sheline, Nucl. Phys. 62, 241 (1965).
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available.® These results are presented in Sec. 5 to-
gether with the discussion.™

2. FORMULATION OF THE METHOD

2.1. Hamiltonian

The Hamiltonian of the pairing-plus-quadrupole
force model!? consists of three parts:

Se=H,+H,+H,. @)

The first part is the spherical single-particle energy. In
the second quantization formalism it is

Ha = Za eaca*ca . (5)

C,t and C, are the creation and annihilation operators
for the spherical single-particle state |), and e, is the
single-particle energy. The second part represents the
pairing force

H,=-3%.,G,9V,, (6a)
where

Ve=%23as CalCratCrsCs, (6b)

Ta denotes the time-reversed state of @ and G, are the
strengths of the pairing force for the proton (r=P) and
the neutron (7= XN). The third part of 3C is a quadrupole
force that is responsible for the deformation of nuclei:

Ho=—3%k 3= 2 {(a|4Gm)V2Y ] v)*

afyd u
X(Bl4ET) V22V 4,| 8)CatCstCsC,, (7)

where % is the coupling constant.

The deformation caused by this quadrupole force is
in general twofold; one is the axial symmetric 8 de-
formation and the other is the unsymmetric v deforma-
tion. In the present work, we will not consider any
effect of the y deformation. Furthermore, throughout
this work we assume that the quadrupole force can be
treated in the deformed Hartree approximation. Then,
when =0, the internal excitation of our system is de-

1 Note added in proof. After submitting this manuscript for
publication, the results of the numerical calculations on the B
value which is related with our 4, value through the equation
B=—A4,/25¢ (in units of 2=1) were reported by E. R. Marshalek
and J. B. Milazzo, Phys. Rev. Letters 16, 190 (1966). They have
calculated the effects of the vy deformation and the Coriolis-force
effects on the independent quasiparticle motions in addition to
the effects considered in this paper. As their calculations do not
consider the nuclei treated in the present work, it is somewhat
difficult to compare their numerical results with ours. The general
trend of the results for the centrifugal stretching and the CAP
effect seems to be very similar. An important consequence implied
in their calculation, however, is that the Coriolis-force effects on
the quasiparticle motion give rise to effects on the B values which
are as large or larger than the CAP effect. In spite of the fact that
this paper does not include the Coriolis-force effects on the quasi-
particle motion (or perhaps because of it) the calculated results
agree much more closely with experiment than those of Marshalek
and Milazzo. For this reason, we hope to include these effects in
future calculations. See also M. Richard and J. J. Griffin, Bull.
Am. Phys. Soc. 11, 103 (1966).

2 L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 32, No. 9 (1960).
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scribed by the following Hartree Hamiltonian Ho:
Ho=H,+H,+H,. (8)
H,, the Hartree potential of the quadrupole force, is
given by .
Ha=—kQoQ, ©)
where R
Q=2 gasCalCs (10a)
af
and
Gap=43m) V|2V %|B). (10b)

In (9) Q,, the strength parameter of the quadrupole
field, must be determined self-consistently; it must coin-
cide with the mass quadrupole distribution of the
nucleons in the nucleus:

Qo=<q’o(°)lol¢o(°)>- (11)

Here |®,©®) is the ground-state wave function of the
system and is obtained in turn as the lowest eigen-
solution (#=0) of the Hamiltonian H,:

Ho|®n(°))=en(°)l¢'n(0)). (12)
2.2. Treatment of the Centrifugal Stretching
and the CAP Effects

Consider a rotating nucleus with a constant angular
frequency © about an axis chosen perpendicular to the
symmetric axis. Then, if this nucleus were in the lowest
intrinsic state |®,) in the absence of the rotation, the
time-dependent perturbations due to the rotation will
distort the wave function and admix with it states of
higher energy. In the rotating frame of reference, the
effects of these perturbations can be described by the
well-known static Coriolis force —QJ,. In the usual
cranking model calculations, in which the rotation is
assumed to be slow as compared to the internal motion,
the effects of this Coriolis force are estimated by the
lowest order perturbation method. The disturbed wave
function is then given by

| ()
(®,©® ljzl O

€, — ¢,

1
=_V_<[¢,0(o)>+9; l@n“’))) , (13)

where N, is the normalization constant. This corre-
sponds to the adiabatic approximation. However, we
may include the centrifugal stretching and the CAP
effects by changing the intrinsic wave functions |®,©)
and the energies €, in the following way.

First we assume that the mass quadrupole distribu-
tion of nucleons in the nucleus is stretched out by the
Q due to the centrifugal stretching effect and that due
to the CAP effect, the effective strengths of the pairing
force of the proton and the neutron are reduced’ by
amounts A7 (r=P for the protons and r=N for the
neutrons). With this change in the intrinsic structure of
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the nucleus, the intrinsic wave functions and the
energies will be disturbed from the original |$,’) and
€., The disturbed wave functions and energies,
| ®,) and €., may be given as solutions of a Hamiltonian
H, whose deformed potential is stretched out by (0+4),
and whose pairing force strengths are reduced by Ap
and Ay:

H|®y)=en| Pn) (14

H=H0_kQQ+Zr }\‘rV‘r_ﬁQA- (15)

The Lagrangian multiplier g, introduced in the above
equation, is then fixed by the following self-consistency

condition: .
0=0Q0+0= (2| Q| ), (16)

where | ®,) denotes the ground-state solution (z=0) of
Eq. (14).

Now, replacing |®,©@) and €, in Eq. (13) by the
disturbed wave functions |®,) and energies e, we get

1 (B,] J2| ®0)
¥ (@)=—1 )+ L ——

No € — €

and

[ @, . (A7)

This wave function may be used to describe our rotating
nucleus influenced by the centrifugal stretching and the
CAP effects. It contains, however, three unknown
parameters Q, A\p, and Ay. In order to fix these, we
minimize the total energy &, in the rotating system,

]
—& ( 7)\7; Q)=07
a0 ¢
5 (18)
—&(Q,\,; 2)=0. (r=Pand N).
O\,
&, is given by
60(Q7>‘1; Q)

=(¥(Q)|3c—QJ .| ¥(Q))

=(W(Q)| H+5kQ?

+X MV 40— QT W(Q). (19)

In calculating this energy expectation value, neglecting

a small correction term proportional to A\7Q%!3 we can
write & as a sum of two terms:

E(QNr; D) =Eo(Q A7) —2F(QN)Q. (20)

The intrinsic energy Eo(Q,\,) and the moment of
inertia F(Q,\,) are, respectively, given by

Eo(Q\)=(®o| H+3kQ*+ X, NV, +0Q|B) (21)

and
FOA)=20 [(®a] | ®0)[¥/ (er—e0).  (22)

13 This term contributes the moment of inertia . If it is re-
tained, the first-order dependence on A ; of § will be modified from
that given by Eq. (22). However, this term consists of a sum of
terms with random sign, while the term proportional to A, in
Eq. (22) is given by a coherent sum.

T. UDAGAWA AND R. K.

SHELINE 147

Equations (18) and (20) with (21) and (22) are a basic
set of equations which determine Q and Ar. The solu-
tions will be given as functions of Q. Then, both £, and &
become functions of 2 only.

2.3. Total Energy in the Laboratory System

The total energy of the state with spin / in a ground-
state rotational band is given by

Er=6+2(¥(2)| T, ¥(2)). (23)
In order to relate Q to 7, we impose the usual condition,
II+0]e=(w(@] L] w@).  (24)

The right-hand side of the above equation can be re-
written as

(T(Q)|J:] ¥(2))=05(). (25)
Then, inserting this into (23) and (24), we obtain
Er= Ey(2)+32°5(Q) (26a)
and
I+D]7=a3%(Q), (26b)

where we used the notations Ey(®) and F(2) instead of
Ey(Q,\7) and F(Q,\7) in order to express explicitly the
fact that both quantities are functions of 2. When @ is
eliminated from the second equation (26b), we obtain
the total energy Er as a function of spin /. £ has a form
similar to that obtained in the usual cranking-model
calculations; it is given as a sum of the intrinsic energy
and the kinetic energy of the rotation. It should be re-
membered, however, that in the present case, both E,
and & are functions of Q.

In the rest of this section, we shall briefly show that if
we expand E, and § as power series in Q, Eqgs. (26a)
and (26b) reduce to Eqgs. (2a) and (2b). For this pur-
pose, we should notice that the 4,’s in Egs. (2a) and
(2b) are quite arbitrary, and we may expand as follows:

F(Q)=Fo+ 2 a(n+1)4,0%". (27)

Then, Eq. (26b) becomes (2b). Using Eq. (18), we can
easily obtain a power series expansion of £, From Eq.

(18), we obtain
8E,/ 69— 10255/50=0. (28)

Using Eqs. (27) and (28), one can fix the coefficients in
the expansion of E, except for the constant term. De-
noting this constant term by E¢(©, the resulting ex-
pansion is

Ey=E,O+10%F+>", nd,0). (29)

Then, if (27) and (29) are substituted into (26a), we
immediately obtain (2a).

3. NONADIABATIC PARAMETER 4,

Having discussed the general problem, we will in this
section concentrate our attention on the lowest order
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nonadiabatic parameter 4; and present an explicit
technique for performing the numerical calculations.

In Sec. 3.1, we will first give a brief description of the
solution of the Hartree and pairing force problem de-
fined by Egs. (14), (15), and (16). In order to treat the
pairing force, the DMP method will be introduced.
Then, in Secs. 3.2 and 3.3, we will calculate Ey and §
as functions of Q and A7 using a power series expansion.
It is, however, only necessary to calculate the power
series up to the lowest order terms in Q and Ar, the
second-order terms for E, and the first-order terms for
¥, because these terms completely determine ;.
Finally, in Sec. 3.4, we give the final formula for
calculating 4.

3.1. Perturbation Solutions of the Deformed Hartree
Equation and Ground-State Wave Function
of the Intrinsic System

The single-particle part of the Hamiltonian (15)
consists of two parts; the spherical part and the de-
formed part. The deformed part of the potential is the
Hartree potential of the quadrupole force, which is not
necessarily diagonalized in the starting spherical repre-
sentation. In order to diagonalize both parts at the same
time, we introduce the following Hartree transformation
from the spherical to the deformed representation:

d,“ = Za I'VaiCaT ) (308)
@ = o Wo*C,, (30b)

where the transformation amplitudes W, satisfy the
condition

Xa WailV =55,
X Wil g = 8,5.

(31a)
(31b)

We will define the amplitudes W, and the single
energy e; of the state ¢ in the new representation by the
following equation:

eWoi= eV oi— (RQo+u)2 5 qusW s,

where u is defined as

(32)

u=kQ+0.

u describes the change of the deformation of the po-
tential caused essentially by the centrifugal stretching
effect. It reduces to zero in the absence of rotation. Now
we introduce the solutions of Eq. (32) for the case of
u=0. The solutions corresponding to W,i and e; are
designated X,’ and ¢, and are defined as

ei(O)Xai= eq‘Yai~kQO 25 (],,,sX,gi.

This equation is quite analogous to that of the Nilsson
Model.'* Thus, we may call the state 7 defined by this

(33)

*S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955).
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equation the Nilsson state and X,* and ¢;© the Nilsson
amplitude and single-particle energy, respectively.
Starting from these solutions, one can write down the
perturbation solutions of W,* and ¢;. They are given to
first order for W,* and to second order for ¢; by

Wai=Xo'+u 2(q:0/ (6P — &)+ -+ (34a)
and
€= 6,0 —ugi O —u%qu V4 - -, (34b)
where
Qij(o) = Zaﬁ Xai*QaﬁXﬁj (35)
and
gV =21(1gii V¥ (e —&®)). (36)

Now rewriting the Hamiltonian (15) in terms of the
new operators a;! and a;, we obtain

H=%;eaila;i~3, G, V,, 37

where
G,=G,O—)\,, (38)
V.=13 aitaritar;a;. (39)

ij

Ti is the degenerate time-reversed state corresponding
to state 7. We follow the DMP method? to obtain the
ground-state wave function including the correlation
due to the pair interaction. In this approximation it is
assumed that

[ ®0)=(1/No) Py I[I(1+ fiaitars?) |0), (40)

where N, is the normalization constant and P, is an

operator that projects out from the BCS-type wave

function only those components containing the correct

numbers of particles, #. |0) denotes the vacuum state.
Defining the wave function |m) by

[m)=(1/m)(X; fiaitar:)™|0), (41)
| o) can be expressed in a more compact way as
[®0)=(1/No)|n). (40a)

For the sake of convenience, we introduce the following
symbolism:

B = (m|m), w2)
Bijiyeeip™ = (m| a;tar,!
Xaiytar, - aiptar,t|m—P).  (43)

The pair correlation amplitudes f; in the ground-state
wave function are determined from the requirement

8(®o| H| ®p)=0. (44)
From this, one obtains

F,‘f,‘— A,=0 (45)
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The quantities T'; and A; are defined by
B‘.(n)
I'i=(e;—3Gx)
B®™
) Bi].(n) B;™
+2(6—3GA) f —3€or , (45a)
i B B

A;=2G ki, (45b)
€0r=22"(e—3G)pi—2 i G ki, (46)
pi={Do| aita:| ®o)=f:B:"/B™, (47)
and

k=13 ;OB (D /B (48)

The symbol 3~ ,(”) in the above equations means that the
sum should be taken only over the proton or the neutron
orbitals 4, according to whether r=P or N. Also €,
given by Eq. (46) is the proton or the neutron part of
the ground-state energy €. Then, ¢ will be given by

e0={(Do| H|Bo)=2_+ €or. 49)

Using the explicit form of |®,), we can rewrite the
self-consistent condition (16) as follows:

Q=2 Z.- Pidii,

Gii=2_ap Wa'*qasWe'.

(50)
where
(51)

3.2. Calculation of the Intrinsic Energy E,

Inserting |®,) given by Eq. (37) into (21), one can
rewrite the intrinsic energy E, as follows:

E(QA) =2, [T (e~ 36, ®)pi—G,® Ti7k;]
RO (u—Q)Q. (52)

In this section, we seek a power-series expansion of E,
in Q and A,. For this purpose, we first expand p; and «;
as power series in u and A,

pi=pi Pt upi D+ Npin M
F1u20; 0 D+ IN20; M @+ Aupin @+ -+ (53a)
and

PR RONEPARORE PRNC
225 s P I\ 0 O Maki D -+, (53b)

where we simply denote A, by A. The various coefficients
in the expansions will be defined by the partial deriva-
tives of p; and «; with respect to u and . Before inserting
the above expansion into E,, we must notice that there
exist relations between the coefficients in the expansion
of p; and «;, stemming from the fact that the ground-
state energy e is minimized in f;. From this fact, it can
be shown that

(r) ops (1) OK;
Z(fi— %G,) -G, Z = (543)
i O\, i O\,

T. UDAGAWA AND R. K.

SHELINE 147
and
(€2} op:i (r) OKk;
> (ei—3G)——G. X —=0. (54b)
i ou i Ou

These equations in turn lead to relations between the
coefficients in the expansions of p; and «;. Now, using
the relations thus obtained and inserting the expansions
of p; and «; into E,, we obtain

Eo= Eo®+}(2u0— Bu—kQ?)
+% Zr Dr)\12+ . (55)

Here E,©, the intrinsic energy in the absence of the
rotation, is given by

E@=°3 [T (&®—1G,©)p;®

—G, O Y @]4+120.2 (56)

and the quantities B and D, are defined by
B=23 (s ©p: sV +2¢::Vp: ), (87
D,=—=23:kin®. (58)

In order to express E, in terms of Q and X, only, it is
still necessary to obtain u as a function of Q and A,.
For this purpose, we solve the self-consistent equation
(50). Using again the expansion of p; and g;; given by

qii=qii O+ 2pqis V4 - -,

one obtains to first order in Q and A,

a=—kQ+(1/B)(Q—2: D:'\r). (59)
From this, we obtain
w=(1/B)(Q—2+ D:'\r), (60)
where
D/ =234 @pin®. (61)

Substituting (60) into (55), we have to second order in
Q and A\,

Eo=E,©+(1/2B)(1—kB)Q*
+% Zr DT)\rZ_(l/ZB)<ZT D",)\T)z' (62)

The physical significance of each term in the above
expression is clear. The first term, as already noted, is
the intrinsic energy in the absence of rotation. The
second and third terms represent the increase in the
intrinsic energy due to the centrifugal stretching and
the CAP effects, respectively. The fourth term describes
the energy gain coming from the change in the potential
energy versus deformation surface caused by the CAP-
induced reduction in the pairing correlations. Thus,
although this term depends only on A, we may call it the
interference effect between the centrifugal stretching
and the CAP effects.

Equation (62) can then be rewritten in a more com-
pact form:

Ey=E ©+3CoQ*+3 Z: C:\*—CpyAphy, (63)
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where
Co=(1/B)(1—£B), (64a)
CT=DT_(1/B)D712’ (64b)
and
Cen=(1/B)Dp'Dy’. (64¢c)

B, D,, and D,’ in the above equations are defined by
Egs. (57), (58), and (61). They are essentially given in
terms of the partial derivatives p;,®, p;2®, and
kin D of p; and «; with respect to u and X at their zero
point. In the actual numerical calculation in Sec. 5, we
will evaluate D, and D,” by calculating p; " and
ki D numerically, but in obtaining the values of B,
we use the following expression:

piu = (gt /G Ok ) [y (— 1p;®) 2,

which is derived by solving the equation for the pair
amplitude f; approximately. The detailed derivation of
this expression is presented in the Appendix.

So far, we have neglected any effect arising from the
Coulomb interaction between protons. It is, however,
important to take this effect into account when cal-
culating the restoring force parameter Cq. The dis-
cussion of this point, however, will be delayed until
Sec. 4.4.

(65)

3.3. Calculation of the Moment of Inertia

The moment of inertia is defined by Eq. (22). Within
the DMP approximation, the wave functions |®,) of
the excited states #» that couple to the ground state
through the operator .7, will be expressed by

[ <I>n>E i ‘I’ij>= (1/N,-,~)a,-’far,~P,. IkI(l-f—fkakfaTk*) [0) B

The pair amplitude f; is then determined from the
condition

&(®y;| H| ®,;)=0.

It is evident that, if we follow this procedure, we must
solve fy for each state »=(4,7). This is practically im-
possible to carry out. Thus, in the present calculation,
we introduce the following approximation:

| @)= (1/N:)aitar,| ®0), (66)
where V; is the normalization constant. This approxi-
mation, as is obvious, corresponds to assuming that
even if the orbits 7 and j are occupied by unpaired par-
ticles, the pair amplitudes of the other orbits are un-
changed as compared to those in the ground state. The
energy e, is then given by

€= €;;=(Py;| H| Dy;)
=€t €642 2 A1 (ex—3Gs) fiBiji "D

—G, Zkz(’) Bz‘jkl("+2)}/Bij("+l) . (67)
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Using (66), one can rewrite § as follows:
sgy 111D G 1)
i (ej—e) (fitfi)
where (7| 7.|7) is the single-particle matrix element of
the angular momentum operator j, taken between the
deformed orbits ¢ and j. Expanding § in a power series

in u and \, and inserting u given by Eq. (60), one ob-
tains to lowest order,

(pi—ps),  (68)

F= 50+ G«QQ",‘Z T a‘r)\f ) (69)
where &, Qq, and Q. are defined by
Fo=[F Ju=0,r=0, (70a)
11o%
aq=_[_] , (70b)
BL g ymo,1=0

oF D, 195
P A o
MNrdymoneo  BLlopd,—orme

In the actual numerical calculation, both partial
derivatives [0F/du Ju=o,1=0 and [8F /0N, Ju=o,r=0 Will be
evaluated numerically. This point will be discussed in
additional detail in the next section and the matrix ele-
ment (7| j.|) calculated.

3.4. Formula for Calculating the Nonadiabatic
Parameter A;

In the lowest order approximation (63) and (69), it is
straightforward to solve (18). Only the results are
quoted:

Q=AQQ2 (71a)
and
A=A,02 (r=P and N), (71b)
where Aqg and A, are defined by
Ag=Qq/2Cq (72a)
and
A=(@,/2C,)s, (r=P and N), (72b)
with

U,—_—(1+CPN/@PCN)/(l—CPNz/CPCN) for r=P
=(1+CPN/QNCP)/(1—CPNZ/CPCN) for r=N. (73)
If we now use (71a) and (71b) in (69), and examine the

coefficient of 4, we obtain the desired expression for the
nonadiabatic parameter A;:

A1=AQ+Z1'AT: (74)
with

A= @q%/4Cyq, (75a)

A4,=(@,%/4C,)o, (r=P and N). (75b)

Clearly, Aq describes the contribution from the cen-
trifugal stretching effect while A4, describes the con-
tributions from the CAP and the interference effect
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TasLE I. u values and shifts of the single-particle energy levels.

Additional shifts
I (in units of Ado)

Protons

—0.23

—0.20

R H
0.45 {““ 017

others:

+0.17

Neutrons

—0.37

713/2:  unchanged
others:

+0.21

BT O NBRNRO PI Nl BRNRO | =
o
'S
wun

discussed in Sec. 3. As this interference effect is char-
acterized by the quantity D,’, we can obtain the con-
tribution from the CAP effect only by setting D,”=0in
the expression (75b). If we take the difference between
A, and the contribution from the CAP effect, we can
also extract the contribution from the interference
effect. As will be shown in Sec. 5, however, this effect
is in general very small. Thus, in what follows, we will
call 4, the CAP effect unless otherwise noted.

4. DETAILS OF CALCULATION
4.1. Single-Particle Energies and Wave Functions

The single particle energies ;) and the wave func-
tions X are basic quantities required in our calcula-
tions. The problem of obtaining these quantities from
the set of equations already given in Secs. 2 and 3,
however, is very complicated. It involves solving a
self-consistency problem. The mass quadrupole mo-
ment Q, in the deformed potential that defines ¢;( and
X' must be chosen so that it coincides with the cor-
responding quantity obtained from the wave function
which also is determined by the same potential and
pairing forces. Thus, in the present calculation, to avoid
solving such a self-consistency problem, we simply take
these values from the Nilsson model. However, as will
be discussed in detail in the next subsection, we will
take into account the self-consistency requirement by
suitably choosing the strength of the quadrupole force.
In doing this, we have carefully included the effect
arising from the ad koc assumption of the volume con-
servation introduced in the Nilsson model.

Furthermore, for the purpose of our calculations, it is
important to include the interaction between the spheri-
cal harmonic oscillator shells V and ¥+2 in diagonaliz-
ing the Nilsson Hamiltonian. For this reason, we use the
alternative representation described in Appendix A of
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Nilsson’s paper.!* However, we have neglected effects
arising from the difference between [ and I, in diagonaliz-
ing the Nilsson Hamiltonian.

There are many parameters in the Nilsson model.
We have, however, fixed the values of these parameters
following the suggestion of Bes and Szymanski!®:

(1) The frequency @, of the harmonic oscillator po-
tential is fixed as hay=414"1/3 MeV.

(2) The strength « of the spin-orbit potential is
chosen to be 0.05.

(3) In the actual calculation, we will take into ac-
count all the levels belonging to the oscillator shells up
to N=6 for both protons and neutrons. In the case
when ¢;;V defined by Eq. (58) is evaluated, however,
we have included the effects of the levels belonging to
the N=7 and 8 shells.

(4) The values of the strength of the 2 term are the
same values used by Bes and Szymanski.

(5) Following Bes and Szymanski, we introduce the
additional level shift which is necessary in order to re-
produce the empirical level ordering in odd-mass nuclei.
In Ref. 14, three sets of shifts have been proposed for
each proton and neutron orbital. We have chosen set
IV for protons and set VI for neutrons as recommended
by the authors. All the parametric values defining the
single-particle level spectrum employed in this calcula-
tion are listed in Table I except the deformation
parameter.

4.2. Deformation Parameter and Strength
of Quadrupole Force

For the sake of self-consistency, the equilibrium de-
formation € should be determined for a given value of
the strength % of the quadrupole force. In the present
calculation, however, € is treated as a given parameter
and the strength of the quadrupole force is fixed so that
the self-consistency requirement (11) is satisfied. Such
a self-consistent determination of the strength of the
quadrupole force was first considered by Bes!® and Bes
and Szymanski.’® These authors however disregarded
the effect of the volume conservation imposed in the
Nilsson model in deriving the relation between e, and k.

In order to clarify this point, consider first the part
of the Nilsson potential which is responsible for the
deformation energy of the system. Denoting this as
Vp™, it is given by

VoM~ —tMoReQ+3M (wi—ad)r?,  (76)
where ¢ is the deformation parameter and
wo=d[ 1+5e+0(e¥)]. (77)

It is clear that the second term of the right-hand side of
Eq. (76) comes from the volume conservation condi-
tion. As is known, this term plays an essential role in

15 D. R. Bes and Z. Szymanski, Nucl. Phys. 28, 42 (1961).

'* D. R. Bes, Kgl. Danske Videnskab Selskab, Medd. Fys. Mat.
33, No. 2 (1961).
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explaining the strong restoring force effect of the closed
shell core against the 8 deformation.

If this term is neglected, one can identify V™) with
the Hartree potential of the quadrupole force, Vp#),
as suggested by Bes and Szymanski,!5:16

Vo =—kQuQ, (78)
and obtain
Q=3 Muwo’e. (79)
Then
k~tMwi?e/ Qole). (80)

This is the relation used to determine the value of % in
Ref. (15) and (16).

However, it is important to include the effect of the
second term in calculating the 8-deformation energy or
the restoring force effect against 8 deformation. We have
taken into account the effect in the following way. Using
(77), we can write

LM (0 — o)t MaRer?. (81)
Taking the expectation value of the right-hand side of
this equation with respect to the ground state |®,©),
we get

(Bo©@ | 3 Mgt | Do )~ Mo2eQo, (82)
where we used the well-known relations
Q%4 R (82a)
and
(D@ | & ] @0(0))2%.4 R. (82b)

Then, it follows that the contribution of the second term
can effectively be written as

%(M (O)oz— &02)7221—12"]‘4@026@ . (83)
Adding this to the first term, we obtain
VpW~—1Mue). (84)

It is then straightforward to show that the relation be-
tween k and e becomes

EtMoite/ Qu(e), (83)
i.e., the effect of the correction term arising from the
volume conservation changes the value of % by a factor
of 4. It must be noted here, however, that the above rela-
tion should be used only in order to obtain the value of
k employed in calculating the 8-deformation energy.
Since the second term of Eq. (76) does not contribute,
for example, to the y-deformation energy, for the pur-
pose of the calculation of this energy we should use rela-
tion (80) instead of (85). This suggests that one should
use for the calculation of the y-deformation energy a
larger value of £ by about a factor of 1.3 compared to
the case of the 8-deformation energy. The values of &,
however, have already been extracted for both cases
from the experimental information on the 8 and v vibra-
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0.304

Parameter (€)

0.251

Deformation

0.20

90 92 94 96 98 100 102 (04 106 (08 110

Neutron Number (N)

Fi16. 1. Systematics of the equilibrium deformation parameter .
The points connected by a solid line refer to the experimental
values of €;. These experimental values are taken from B. Elbek,
Determination of Nuclear Transition Probabilities by Coulomb
Excitation (Ejnar Munksgaard, Copenhagen, 1963). The open
circles are extrapolated values used in the present calculations.

tions. Introducing the parameter %, defined by
k=ko(Mwo/ h)*hwed 413, (86)

it has been shown by Bes'” that the value of £ obtained
from the analysis of the 8 vibration is £¢>20.25 while the
v vibration gives k¢=>0.36. The ratio is 1.4, which is
quite consistent with our prediction.

If experimental values of the equilibrium deformation
€ were available, it would be desirable to use them.
Unfortunately, for nuclei with which we are concerned
in the present calculation, there are no available data.
Therefore it was necessary to fix these values in a rather
arbitrary way. We did, however, take into considera-
tion the systematics of the neutron-member dependence
of €, as shown in Fig. 1.

4.3. Coulomb Correction

So far, we have neglected any effect arising from the
Coulomb interaction between protons. In calculating
the restoring force parameter Cq, however, it is impor-
tant to include the effect. Assuming a uniformly charged
spheroid, the Coulomb energy of a nucleus is given by

Be=3[(Ze/ RiJ[1—¢/45+0()].  (87)

Z is the proton number of the nucleus and R, is the
nuclear radius. Then, the correction ACq for the restor-
ing force parameter arising from the above Coulomb
energy will be given by

ACo=—(8/75)[¢/ Qu(e) P(Ze)*/Ro.  (88)

In the actual numerical calculation in Sec. 5, we will
include the above correction by simply adding it to the

Cq calculated from Eq. (64a).

17D, R. Bes, Nucl. Phys. 49, 544 (1963).
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TasLE II. Experimental and theoretical values of the nonadiabatic parameter A, and the moments of inertia. The nuclides are
identified in column one. Column two shows the values of ¢y and column three gives the values of ko defined by Eq. (86) and determined
from Eq. (85). Columns eight and ten give the final theoretical values of the nonadiabatic parameter 4, and the moments of inertia.
The corresponding experimental values are listed in columns nine and eleven.

A Q Ap AN AA A Aexp Foth FoexP

Nucleus € ko (1078 keV—3) (MeVY)
70 Ybé 0.24 0.184 6.93 0.76 2.05 —0.46 9.80 8.22 22.86 23.72
Yhb1ee 0.25 0.184 3.26 0.93 2.81 —0.41 7.00 5.59 26.00 29.10
72 Hif1es 0.23 0.188 597 0.36 2.17 —0.14 8.49 8.35 20.32 17.62
Hf168 0.24 0.188 2.51 0.38 2.67 —0.14 5.56 8.95 22.94 23.37
Hf170 0.25 0.188 0.48 0.39 6.41 —0.05 7.28 7.26 27.45 29.54
172 0.25 0.188 0.61 0.40 3.22 —0.08 4.23 4.71 25.91 31.49
74 W2 0.23 0.191 1.05 0.24 7.19 —0.12 8.48 10.74 24.72 23.36
win 0.24 0.192 0.63 0.23 335 —0.04 421 7.82 24.00 26.18
Wire 0.24 0.192 1.77 0.26 5.16 —0.24 7.19 5.61 25.97 27.19

4.4. Evaluations of the Derivative of the Moment
of Inertia with Respect to u and the Single-
Particle Matrix Element of j,

In order to calculate the derivative of the moment of
inertia with respect to u in Egs. (70b) and (70c), we
must give a relation between u and the change of the
deformation parameter of the Nilsson model, de. It is,
however, somewhat difficult to derive rigorously such a
relation, because in the present investigation without
solving the Hartree problem exactly we have introduced
the Nilsson model.

Thus, in the following, we assume

Q> Qo(e0)/eo]e.

Then, one may calculate the derivative from the follow-
ing expression:

(1/B)(3F/ ) == eo/ Qo(€0) ](0F/d€)r=0.

When the Nilsson model is used, the moment of inertia
is obtained as a function of e. Then, it is easy to evalu-
ate the derivative in the above equation numerically.
In obtaining the moment of inertia &, however, it is
necessary to calculate the single-particle matrix element
of the operator 7. by using the single-particle wave func-
tions in the representation described in the Appendix of

(89)

(90)

S
°

Ag or Ap+Ay (108 kev3)

168 170 172
Mass Number (A)

Fi1G. 2. The calculated values of Ag and Ap+Ax
in units of 1078 keV—3.

Ref. 14. A simple procedure to calculate the matrix
element, however, has already been derived by Nilsson
and Prior.?® We follow this procedure in the present
calculation. The moment of inertia is then obtained

\ —-— E:E, + 00l
10.0 4
w
;
>
L
K4
@©
;
=
= 5.0
[}
<
T T T T T T M
164 166 168 170 172 (74 176
MASS NUMBER (A)
(@)
P xa-322,60xA265
\}
------- 6PxA=202,60xA245 \
7 10.01
5
L3
x
@©
1
e
<
T so-
a
<

168 170 172 IT4 176

MASS NUMBER (A)
(b)
F16. 3. The dependence of the calculated values
(a) of Ag on ¢; and (b) of Ap+Ay on G,©,

18S. G. Nilsson and O. Prior, Kgl. Danske Videnskab Selskab,
Mat. Fys. Medd. 32, No. 16 (1961).
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from the following expression:
F=FP(1+1e)+ 15, (91)

where 3 is the moment of inertia obtained when using
the single-particle wave functions in the ordinary repre-
sentation and i, is the rigid value of the moment of
inertia.

4.5, Strength Parameters of Pairing Force

It has been shown that the pairing force strength
G.© is inversely proportional to the mass number 4.
The proportionality factor has also been determined by
many authors from the analysis of the experimental
even-odd mass difference and other experimental data.

15.0
——— EXPERIMENTAL
\ — - — THEORETICAL , £ *E,+00!
\ THEORETICAL, E=€,
\ e THEORETICAL , €%€o-00!
__ 10,01
"
>
@
x
b
=
_ 5.0
x . . - . T T
164 166 168 170 172 174 176
MASS NUMBER (A)
(a)
OJ ——e—— EXPERIMENTAL
1S. (0) {0)
———THEORETICAL; Gy'x A=322,65'x Ar26.5
------ THEORETICAL ; G'x A=292,60x Ax24.5
—~ 1007
e
3
x
©
[
°
5.0
<

164 166 168 170 172 I74 176
MASS NUMBER (A)
(b)

F1G. 4. The dependence of the calculated values
of 4, (a) on € and (b) on G,®,
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Fi6. 5. The calculated values (a) of C, and (b) of .

The actual value, however, depends on the number of
single-particle states into which the nucleons pairs are
allowed to scatter.

In the present calculation, we allow the pairing force
to scatter only among the 24 single-particle states
nearest to the Fermi surface. This choice is the same as
that of Bes and Szymanski.!* Thus, we use the same
value of G,©® determined by them, namely,

Gp©®=32.2/4 MeV,

Gy ©=26.5/4 MeV. ©2)

5. RESULTS AND DISCUSSIONS

The calculated values of the nonadiabatic parameter
A3, including contributions from the centrifugal stretch-
ing, the CAP and the interference effects are listed in
Table II and compared with the appropriate experi-
mental values. The values of the deformation parameter
and the strength of the quadrupole force used in the
calculations are also presented. Both the calculated and
experimental values of the moments of inertia are also
tabulated for the purpose of reference. As noted in Sec. 3,
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F16. 6. The squared amplitudes of
the free state admixed in the ground
state as a function of A,.

5.0 10.0 15.0

REDUCTION OF PAIRING FORCE STRENGTH

the interference effects A4 given in column seven of this
table are obtained by taking the difference between
Ap+Ay and the corresponding value calculated by
assuming D,’=0. It is seen that the values of A4 are, in
general, very small.

To show the relative importance of the centrifugal
stretching and the CAP effect, we have plotted both the
values of 4 ¢ and A p+ Ay as functions of the mass num-
ber in Fig. 2.

Figures 3(a) and 3(b) show the dependence of the
values of 4¢ on the deformation parameter ¢ and of
Ap+ Ay on the pairing force strengths Gp® and Gy ©.
In addition to that dependence, we have also investi-
gated the dependence of A¢ on Gp® and Gy ® and of
Ap+Ay on e. It is found that such dependence is, in
general, small. To show the effects of ¢, Gp, and Gy ©
on A1, we have also plotted in Fig. 4(a) and 4(b) the
values of 4, for various parametric values employed in
Fig. 3(a) and 3(b).

From the results presented above, it is obvious that
the centrifugal stretching effect is important for nuclei
close to the beginning of the deformed region and is
rather sensitive to the deformation parameter. In the
cases of Yb'6* and Hf'6%, which have the least number of
neutrons—94—of any nuclei considered here, the effect
exceeds the CAP effect and accounts for more than half
of the experimental value. In the next nuclei, with 96
neutrons, Yb'% and Hf'$%) the effect decreases but still

20.0 (Mev)

(AxA)

gives an appreciable amount of the total contribution.
For nuclei with more neutrons (N>98), the contribu-
tion is in general very small.

The large contribution from the centrifugal stretching
effect for 94- and 96-neutron nuclei results from the fact
that the restoring force parameters Cq are small and the
derivatives of the moment of inertia with respect to e
are large for these nuclei as compared with other nuclei.
To see this, we have plotted in Fig. 5(a) and 5(b) the
calculated values of C. and » defined by

Ce=[Qo(e0)/ 0 Cq,
n=(eo/Fo) (8F/ 9€) eme, A=0,

(93a)
(93b)

respectively. The three different choices of € considered
in Fig. 3(a) have been used in evaluating C, and # in
Fig. 5(a) and 5(b).

If the experimental values of C. were available, we
could make an independent test of the present calcula-
tion by comparing them with the calculated ones. Un-
fortunately, however, there are no such data available
for nuclei considered here. We have data for other nuclei,
such as Sm*'%2, Sm'#, Gd!'*4, and Gd'*. 1t is very difficult
to test the theory with these data, because the calculated
values of C. are extremely sensitive to the value of the
quadrupole force strength ko, while the expression (85)
that determines the value of %o is an approximate one, as
discussed in Sec. 4.2. This sensitivity might be due to
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the fact that, as these nuclei are just at the beginning of
the deformed region, the deformations are not so stable.
Thus, it would be desirable to measure the values of C.
for nuclei where the deformations become more stable.

If we assume, following the hydrodynamical model,
that

Fa e,

then the value of #» defined by Eq. (93b) becomes 2. As
is seen from Fig. 5(b), however, our calculated values of
n are, in most cases, smaller than this value. However,
in the cases of the two Yb isotopes, the values of # are
nearly equal to 2.

In contrast to Ag, the total contribution Ap+Ax
from the CAP effect is important for all nuclei. Taking,
as examples, the cases of Hf'0 and Hf'"?, it accounts for
more than 909, of the total experimental values. The
main contribution from the CAP effect, however, comes
from the neutron configuration. The contribution from
the protons is generally small and accounts for only
about 10-309 of the total contribution.

It is interesting to note that the CAP effect has a
pronounced peak at the point where the nucleus has 98
neutrons.

In order to obtain a deeper physical understanding of
the nature of the CAP effect, we have calculated the
component of the free state admixed into our lowest
intrinsic wave function |®¢(0,\7)) obtained by setting
Q=0 as a function of \,. The calculations have been
made for each proton and neutron part of the wave
function separately. Denoting the separated parts of
the wave function separately. Denoting the separated
parts of the wave function by |®o.()\,;)), we can define
the above component of the free state as

Tf()\-,—)= <¢‘01-()\r) l(I)_,-,) ’

where |®;,) is the free state having no pair correlation
and is given by

(94)

|¢ff>= I‘I’OT(GT(O)» )

since \,=G,© corresponds to zero pairing force
strength.

In Fig. 6, we have plotted the squared amplitude
| Ty(\;)|% as a function of X\, X A4 for three cases; for the
proton part of the wave function of Hf'* and the neu-
tron parts of Hf'" and Hf!". One finds that even in the
original ground state (i.e. A\=0) there is about 209,-359,
of the free state. Furthermore, this initial mixing of the
free state is, in general, larger for the case where the
CAP effect is more important. A more remarkable
feature, however, is the fact that the wave function
approaches the free state more rapidly in the case where
the values of Ap+A4y is larger.

Finally, in order to give a measure of the changes of
the values of de and \, as functions of the value of spin
I, we have plotted in Fig. 7(a) e for Hf'66, H6% and
Hf'"0 and in Fig. 7(b) the ApXX A4 for Hf'"* and Ay X A4 for
Hf'" and Hf'" as functions of 7(/+1). In calculating e

(95)
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F16. 7. (a) The changes of the deformation parameter and (b) the
reduction of the pairing force strength as a function of 7(7+41).

we used the relation:

de=[eo/ Qole:) JAQR2. (96)

We have used the values of Q obtained from Eq. (3b)
and also the experimental values of A4 determined in
Ref. 3 in calculating these quantities.

6. CONCLUDING REMARKS

Based on the cranking model and the pairing-plus-
quadrupole force model, a description of the centrifugal



684

stretching and the CAP effects is derived by using the
number-conserved wave function in treating the pairing
correlations. Detailed numerical calculations were per-
formed on the lowest order nonadiabatic parameter 4.
The results indicate that the experimental values of A
can be almost accounted for if both the centrifugal
stretching and the CAP effects are taken into account.?
However, we have found that the centrifugal stretching
effect plays an important role only for nuclei near the
beginning of the deformed region. On the other hand,
for nuclei in the middle of the deformed region, the CAP
effect is in general considerably more important than
the centrifugal stretching effect.

The calculated values of 4, are rather sensitive to the
parameters involved in the present theory. In particular,
it has been shown that the centrifugal stretching effects
are sensitive to the deformation parameter while the
CAP effects depend strongly on the pairing force
strength. Furthermore, it may be of value to note here
that according to the preliminary results of our calcula-
tion, both effects depend rather sensitively on the posi-
tion of the single-particle orbitals. For a more detailed
fit with experiments than that obtained here, it would
be necessary to perform a more systematic calculation,
including nuclei which are not considered here. Such a
systematic calculation is now underway.

APPENDIX

The density p; of the orbit ¢ is defined by Eq. (47) in
the text:

pi=f,‘B,;(")/B("). (Al)

The partial derivative of this density with respect to u is

fi.p(l)
P AR 2 E 1

i ]
B;™ PROPRO)
X { [ ] B ’
B™J,ore0  [iQF;©@

19 In the present work, the effect of the v deformation on the
A; value has not been considered. It has, however, been shown
that the effect is in general very small, amounting to only 5-10%,
of the total experimental 4. See O. B. Nielsen, Rutherford Jubilee
International Conference, Manchester, 1961 (Heywood and
Company, Ltd., London, 1961) p. 317 and O. Nathan and S. G.
Nilsson, Alpha-, Beta-, and Gamma-Ray Speciroscopy, edited by

K. Siegbahn (North-Holland Publishing Company, Amsterdam,
1965), p. 676.

pi =2

T

(A2)
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where f;©@ and f;,® are defined by
fi= fiO4ufi, 04,

while p;@ is [p; Jr=0,u=0-
If we take the BCS limit of the quantities p, and
fifiBij™/B™,

and

(A3)

pi=(n|aiai|n) (Ada)

fifiBi;™/B™=(n|alawa;ta;|n), (i#j7); (Adb)

by replacing the number-conserved wave function |n)
by the BCS wave function, we obtain

pi—> 1),2 s (ASa)
and

1By /B — v, (ASb)

In this BCS limit, it is obvious that the second term in
the right-hand side of Eq. (A2) vanishes. Neglecting
this as a small correction, we obtain

PiuO2(f1, D/ £,0)p,0(1—p,®) (A6)

In order to solve f;,,, we expand I'; and A, as power
series in p and A,

Di=TO4uly O AT\ O - - (A7a)
and
Ai=AOFpA; ,OFNALOF - - (A7b)
Then, from Eq. (45) which defines f; we gét
JEQEY WO, JO) (A8a)
and
f«;,,.(l) = (Ai,;‘(l)_ f,-<°)l‘,-,,,(1))/1‘,(°) . (A8b)

Here, again neglecting the terms which tend to zero
when taking the BCS limit, we can easily show that

A;,, V>0 (A9a)
and
T, O — (g, @/ f,0)p,® (1—p,®) | (A9b)
from which we obtain
r; ,m ,©
(D~ (0) = L (0).(0) (1 — p.(0)
Jim r;® /s Ai(mq" pi(1=ps®)
JAQO)
= 0(]—p.(0)
G,(o)xi(o)pz (1 Pi ) (AIO)
Inserting this into Eq. (A6), we get
pin®= (g ®/G, Ok, [p,O(1—p, M. (A11)



