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Interaction of Plasmons and Optical Phonons in Degenerate Semiconductors*
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The coupling between plasmons and polar phonons in a degenerate semiconductor is studied starting
from an electron-phonon Hamiltonian which is valid in the long-wavelength limit. A truncated form of the
Hamiltonian proves to be a good approximation near the crossover point of the uncoupled modes; and
expressions for the phonon strengths and the sum rules are very simply derived from it. Plasmon damping
is introduced phenomenologically and its effect on the behavior of the coupled modes is investigated. Model
calculations of the effect of damping on the dispersion curves and reactivity are made for the case of the
degenerate semiconductor GaSb.

INTRODUCTION

HE interaction between the electric dipole moment
associated with a longitudinal optical phonon and

the electric field associated with a plasmon in a polar
semiconductor implies a coupling between the two
modes. Such a coupling has been studied by Gurevich
et al. ' and by Varga' for the case in which the carrier
electrons form a degenerate gas. These treatments rest
on the assumption that the polarizability of the elec-
trons, in the random-phase approximation (RPA), and
the polarizability of the ions contribute additively to the
dielectric response function of the coupled system.

In the 6rst section of this paper we give a Hamiltonian
formulation of this problem in the long-wavelength
limit. This formulation, in contrast to the earlier treat-
ments, has the advantage of displaying explicitly the
structure of the coupling term. The secular equation for
the normal modes of the system, which are strong
admixtures of phonons and plasmons, is, as expected,
identical to that derived from the dielectric formulation
based on the RPA.

An especially interesting case is the one in which the
plasmon frequency is nearly equal to the phonon
frequency, in which circumstance the effect of the
coupling is most pronounced, leading to a marked
change in the character of both modes. In Sec. II we
show that a truncated form of the Hamiltonian is a
good approximation in the vicinity of the resonance
point. From this approximate Hamiltonian follow
simply the mode splitting, the phonon strengths of the
coupled modes, and the sum rules.

The treatment given in Secs. I and II, as well as the
earlier treatments, have neglected the eA'ects of short-
range collisions, which should be taken into account
when comparing the theoretical results with experi-
mental observations. In the absence of a microscopic

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission. A preliminary report of this work
was presented at the A.P.S. meeting in Chicago I Bull. Am. Phys.
S~. 10, j085 (1965)j.

f Also, Physics Department, Northwestern University, Evan-
ston, Illinois.' V. L. Gurevich, A. I. Larkin, and Yu. A. Firsov, Fiz. Tverd.
Tela 4, 185 (1962)L English transl. : Soviet Phys. —Solid State 4,
131 (1962)j.

~ B.B. Varga, Phys. Rev. 137, A1896 (1965).

theory, we have resorted to a phenomenological treat-
ment which allows numerical estimates of these e6ects
to be made. This is done in Sec. III, where the e6ect of a
damping of the plasmons on the coupled modes is
evaluated as a function of carrier concentration and of
(small) wave number, for values of the parameters
corresponding to the case of GaSb. The mode splitting
near the point of resonance is aGected very little by a
small amount of damping but decreases fairly rapidly as
damping increases, until at a critical value of the
plasmon lifetime it vanishes and the modes again cross;
thus apparently violating the "no-crossing" theorem of
von Neumann and signer. ' The value of the critical
damping is approximately four times the coupling
constant. A similar eEect in another context was also
noticed by Lamb4 in his study of the fine structure of
the hydrogen atom.

%e also calculate the reAectivity of GaSb for a given
carrier concentration, for various values of the damping
parameter. Even a small amount of damping produces
a marked change in the reflectivity versus frequency
curve. '

I. PLASMON-PHONON HAMILTONIAN

The classical interaction Hamiltonian in the electro-
static approximation between a longitudinal optical
vibration in a polar crystal with two ions per unit cell
and a system of electrons, as given by Born and
Huang, ' is

W) Evao dr e

co& is the longitudinal optical frequency, e„and eo are,
respectively, the high-frequency and static dielectric

' J. von Neumann and E. P. Wigner, Physik Z. 30, 467 (1929).
4 W. E. Lamb, Jr., Phys. Rev. 85, 259 (1952).' After the completion of this work, A. S. Barker brought to our

attention his recent measurements of the reQectivity of reduced
SrTiO3. The observed behavior of the reQectivity curve in the
frequency region of the highest phonon mode is what one would
expect from the calculations reported in Fig. 3. A quantitative
analysis of the data by Barker indicates a sizable plasmon
damping.

s M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954), 1st ed. , Sec. 8.
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constants, w~ is proportional to the longitudinal com-
ponent of the relative displacement of the two ions in the
cell, and E,. is the electric 6eld produced by the
electrons in vacuum. The derivation of H;„t involves
two assumptions: (a) only the lattice polarization con-
tributes to the Lorentz 6eld correction for the effective
field at the ions, and (b) the electrons feel only the
macroscopic 6eld. It can be shown that the use of the
above two assumptions in the classical equations of
motion for the ions and the electrons, together with the
classical equations for the polarization, leads to the
result that the polarizabilities of the ion system and the
electron system are additive. The theory of Gurevich
et al, ' and of Varga' is based on this assumption.

We evaluate the field E from the Poisson equation,
where the charge density fluctuation associated with a
long-wavelength plasmon is taken to be proportional
to the local dilation in the electron gas. Expressing the
dilation in terms of the displacement in the gas (see, e.g.,
KitteP), we find

rl '~2 eq'k
E...(r) =4se~ P k Qg exp(ik r).

km* V & k'

where the coupling constant C is given by

C=-,'[(o(ro„(1—e„/eo) Jl'. (9)

II. TRUNCATED HAMILTONIAN

We shall now study the following truncated form of
the Hamiltonian (8):

B&,= ha&q Q a~ta~+kru„g bqtb~

The diagonalization of the Hamiltonian (8) yields the
following equation for the coupled mode frequencies
(o, (i=1, 2):

co = (coP+co )&—[(cdP—co ) +16C (dido&] . (10)

Equation (10) is equivalent to Eq. (19) of Varga, ' which
was derived by equating the total dielectric function to
zero. At resonance, where a„=co~, we have

co;= (og[1&2C/cagj'~'.

As a side remark, we may point out that the coupling
constant of our problem, given by Eq. (9), goes over to
the standard polaron coupling constant' if we replace
Nn/2 by 4s e'/k'e„.

Here, m* is the electron effective mass, n is the electron
concentration, V is the volume of the system, a~ is the
longitudinal polarization vector and Qq is the usual
plasmon normal coordinate. On the other hand, the
relative displacement m~ can be written as

—kC P (a~b~'+ a~tb~) . (12)

Let us introduce two new operators Al, and B~ de-
fined by'

w((r) = Q egqg exp(ik r),
a~ ——A ~ cos8+B~ sin8,

b~=Bl, cos8—3 ~ sin8.

(i3a)

(13b)

where q~ is the phonon normal coordinate. The inter-
action Hamiltonian (1) then becomes

The choice of the transformation coeKcients ensures
that the new operators A& and B& satisfy the same
commutation relations as the old ones. The transformed
Hamiltonian is diagonal if

(4) tan(28) =2C/((o) —co,) (14)

where au„ is the plasmon frequency in the dielectric,
defined by

co p' =4s ne'/m~a„

Expressing the normal coordinates in terms of crea-
tion and annihilation operators as

qg ——(k/2(u()'12(ay+a gt), (6)

Q~= (&/2~&)"'(b~+b ~'), -(7)

we have the following expression for the total Hamil-
tonian (except for the zero-point energy terms):

H = ho&g Q agtag+ Aced~ Q bathe

kC P(a~b ~+a—b t+a~'b~+a tb ~t), (8)

and the normal-mode frequencies are given by

(og = (co(—~„tan'8)/(1 —tan'8), (15)

(u2 ——((u,—a) ( tan'8)/(1 —tan'8) . (16)

At the resonance point &u~= co~, and therefore 8= s/4. In
this case the normal-mode frequencies become

(17)

(i8)
and their separation is 2C. By comparison with Eq. (11),
it can be seen that Eqs. (17) and (18) are correct to
order C/cog, and the mode splitting is correct to order
(C/(a))'.

It is easy to see that the coupled-mode frequencies

' T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953).' In the more general case, where the frequencies and the coupling
7 C. Kittel, Quantum Theory of SoNds (John Wiley R Sons, Inc. , parameter depend on wave number, the transformation (13) would

New York, 1963), p. 35. still be valid except that the angle 8 would be k-dependent.
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can be expressed through the new operators A» and B»
as follows:

I.2 H —H~, = —AC(cos'8 —sin'8)g(A~B ~+A~"B k )

AC cos8sin8+(B~B ~+B~tB g

—A~A g—AgtA g~). (22)
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FiG. 1. The real (xj) and imay'nary (x2) parts of the normal-
mode frequencies eo/a I in the long-wavelength limit, as functions
of g =co„'/coP for various values of the damping parameter
p = (T4)I)) ~ t'p/e„= 1.1. Note the change in the ordinate scale at
X1=0.7.

given by Eqs. (15) and (16) satisfy the following sum
rules:

&oi cos'8+&o2 sm'8= rai, (19)

coy sin 8++2 cos 8=+„.
Clearly, the quantities cos'8 and sin'8 play the role of
phonon strengths for the first and the second mode,
respectively. The expression for cos'8 in terms of the
coupling constant is

cos'8= -'+-', L1—4C'/(4C'+ ((a(—co )')Jl'. (21)

At the point of resonance the phonon strength is equally
divided between the two modes.

It remains to discuss under which conditions the
truncated Hamiltonian (12) provides a good description
of the problem. The terms neglected in arriving at (12)

&0 &e) ~y &x
2

e(~)=e + — =0.
1—(&o/a&0)' a&((a+i/r)

(23)

Here, 7. is the plasmon lifetime, which has been intro-
duced phenomenologically in the electron dielectric
function. "In the following model calculations, we take
~ as inversely proportional to the electron concentra-
tion. Such an assumption is justifiable if the damping of
the plasmons is governed by the amount of doping. We
wish to point out, however, that this assumption will
not materially aGect the behavior of the coupled-mode
frequencies given in Fig. 1 near the crossover point.
Phonon damping is neglected in this calculation.

Equation (23) may be rewritten in reduced units as

a—1
=0

1—nx' x(x+iPg)
where ~=&0/a„, $=s&~'/&aP, P= (rco~g) ', and x=co/cu~
=x&+ix2. In Fig. 1 we plot the values of x~ and x2 as

'0 R. A. Cowley and G. Dolling, Phys. Rev. Letters 14, 549
(1965)."D.Pines, Elementary Excitatioes ie Soleil' (%'. A. Benjamin,
Inc. , New York, 1963), p. 208.

At resonance the first term vanishes, and the second
term can be expected to be small since it involves terms
approximately equal in magnitude and opposite in sign.
For the case of GaSb, to be discussed in the next section,
Eq. (11) gives frequency changes of +14 and —

16%%ug,

whereas Eqs. (17) and (18) give changes of &15%.
Thus we may safely conclude that the truncated
Hamiltonian is a rather good approximation in the
vicinity of the resonance point. On the other hand, it is
a poor approximation far away from the resonance
point. For instance, in the limit &oQ)co&, the frequency
of the lower mode should tend to the frequency coo

of the transverse optical phonons, whereas Eq. (15)
gives a&~

——L1—~ (1—e„/eo) jr'~. For the case of PbTe con-
sidered by Cowley and Dolling, "where ~„=7~~, the
frequencies of the lower mode as computed from Eq.
(10) and. from Eq. (15) are 0.99coo and 2.5coo, respec-
tively. Similar considerations apply to the phonon
strengths.

III. EFFECTS OF DAMPING

We shall first consider the effect of a finite plasmon
lifetime on the character of the coupled modes in the
limit of infinite wavelength. We determine the coupled-
mode frequencies, which are now complex, from the
zeros of the dielectric response function; that is,
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