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The coupling between plasmons and polar phonons in a degenerate semiconductor is studied starting
from an electron-phonon Hamiltonian which is valid in the long-wavelength limit. A truncated form of the
Hamiltonian proves to be a good approximation near the crossover point of the uncoupled modes; and
expressions for the phonon strengths and the sum rules are very simply derived from it. Plasmon damping
is introduced phenomenologically and its effect on the behavior of the coupled modes is investigated. Model
calculations of the effect of damping on the dispersion curves and reflectivity are made for the case of the

degenerate semiconductor GaSb.

INTRODUCTION

HE interaction between the electric dipole moment
associated with a longitudinal optical phonon and
the electric field associated with a plasmon in a polar
semiconductor implies a coupling between the two
modes. Such a coupling has been studied by Gurevich
et al! and by Varga? for the case in which the carrier
electrons form a degenerate gas. These treatments rest
on the assumption that the polarizability of the elec-
trons, in the random-phase approximation (RPA), and
the polarizability of the ions contribute additively to the
dielectric response function of the coupled system.

In the first section of this paper we give a Hamiltonian
formulation of this problem in the long-wavelength
limit. This formulation, in contrast to the earlier treat-
ments, has the advantage of displaying explicitly the
structure of the coupling term. The secular equation for
the normal modes of the system, which are strong
admixtures of phonons and plasmons, is, as expected,
identical to that derived from the dielectric formulation
based on the RPA.

An especially interesting case is the one in which the
plasmon frequency is nearly equal to the phonon
frequency, in which circumstance the effect of the
coupling is most pronounced, leading to a marked
change in the character of both modes. In Sec. IT we
show that a truncated form of the Hamiltonian is a
good approximation in the vicinity of the resonance
point. From this approximate Hamiltonian follow
simply the mode splitting, the phonon strengths of the
coupled modes, and the sum rules.

The treatment given in Secs. I and II, as well as the
earlier treatments, have neglected the effects of short-
range collisions, which should be taken into account
when comparing the theoretical results with experi-
mental observations. In the absence of a microscopic

* Based on work performed under the auspices of the U. S.
Atomic Energy Commission. A preliminary report of this work
was presented at the A.P.S. meeting in Chicago [Bull. Am. Phys.
Soc. 10, 1085 (1565)].

t Also, Physics Department, Northwestern University, Evan-
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theory, we have resorted to a phenomenological treat-
ment which allows numerical estimates of these effects
to be made. This is done in Sec. I11, where the effect of a
damping of the plasmons on the coupled modes is
evaluated as a function of carrier concentration and of
(small) wave number, for values of the parameters
corresponding to the case of GaSb. The mode splitting
near the point of resonance is affected very little by a
small amount of damping but decreases fairly rapidly as
damping increases, until at a critical value of the
plasmon lifetime it vanishes and the modes again cross;
thus apparently violating the “no-crossing” theorem of
von Neumann and Wigner.? The value of the critical
damping is approximately four times the coupling
constant. A similar effect in another context was also
noticed by Lamb* in his study of the fine structure of
the hydrogen atom.

We also calculate the reflectivity of GaSb for a given
carrier concentration, for various values of the damping
parameter. Even a small amount of damping produces
a marked change in the reflectivity versus frequency
curve.®

I. PLASMON-PHONON HAMILTONIAN

The classical interaction Hamiltonian in the electro-
static approximation between a longitudinal optical
vibration in a polar crystal with two ions per unit cell
and a system of electrons, as given by Born and
Huang,b is

171 1\
Hint= —w;[—(———)] /wl'Evac dr. (1)
47\ew €0

w; is the longitudinal optical frequency, e, and ¢ are,
respectively, the high-frequency and static dielectric

3 J. von Neumann and E. P. Wigner, Physik Z. 30, 467 (1929).

4 W. E. Lamb, Jr., Phys. Rev. 85, 259 (1952).

8 After the completion of this work, A. S. Barker brought to our
attention his recent measurements of the reflectivity of reduced
SrTiO;s. The observed behavior of the reflectivity curve in the
frequency region of the highest phonon mode is what one would
expect from the calculations reported in Fig. 3. A quantitative
analysis of the data by Barker indicates a sizable plasmon
damping.

¢ M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954), 1st ed., Sec. 8.
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constants, w; is proportional to the longitudinal com-
ponent of the relative displacement of the two ions in the
cell, and E,, is the electric field produced by the
electrons in vacuum. The derivation of Hi, involves
two assumptions: (a) only the lattice polarization con-
tributes to the Lorentz field correction for the effective
field at the ions, and (b) the electrons feel only the
macroscopic field. It can be shown that the use of the
above two assumptions in the classical equations of
motion for the ions and the electrons, together with the
classical equations for the polarization, leads to the
result that the polarizabilities of the ion system and the
electron system are additive. The theory of Gurevich
et al.! and of Varga? is based on this assumption.

We evaluate the field E,,, from the Poisson equation,
where the charge density fluctuation associated with a
long-wavelength plasmon is taken to be proportional
to the local dilation in the electron gas. Expressing the
dilation in terms of the displacement in the gas (see, e.g.,
Kittel?), we find

1/2 k
Evac(r)=47l'e< z ) Ek:kil;—ez—Qk exp(ik-r). 2)

m*V

Here, m* is the electron effective mass, # is the electron
concentration, V is the volume of the system, e is the
longitudinal polarization vector and Qy is the usual
plasmon normal coordinate. On the other hand, the
relative displacement w; can be written as

1
wi(r)= \—/; % exgx exp(ik-r), 3)

where ¢x is the phonon normal coordinate. The inter-
action Hamiltonian (1) then becomes

€oo 1/2
Hin= '_wl‘*’p[l__] E qu—k7 (4)
k

€0

where w, is the plasmon frequency in the dielectric,
defined by

wpr=4mne?/m*e,,. (5)

Expressing the normal coordinates in terms of crea-
tion and annihilation operators as

qe= (#/2u0)'* (axt+a_ih) (6)
Qu= (#/ 20,)"*(bit-bs") O]

we have the following expression for the total Hamil-
tonian (except for the zero-point energy terms):

H=tu Z actar+ hwp Z bxtby
k x

—hC 3 (axb_xtaxdi’+ai' bt axd "), (8)
x

7 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963), p. 35.
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where the coupling constant C is given by

C=3lwwp(1—e,/e0) J'2. )
The diagonalization of the Hamiltonian (8) yields the
following equation for the coupled mode frequencies
w; (1=1,2):
wi=3(witw?) £ i[ (wP—w?)?*+16Cww, 2. (10)
Equation (10) is equivalent to Eq. (19) of Varga,? which
was derived by equating the total dielectric function to
zero. At resonance, where w,=w;, we have

wi=w[1£2C/w/ ]2, (11)

As a side remark, we may point out that the coupling
constant of our problem, given by Eq. (9), goes over to
the standard polaron coupling constant® if we replace
fwy/2 by 4dme?/ k..

II. TRUNCATED HAMILTONIAN

We shall now study the following truncated form of
the Hamiltonian (8):

H',r= hw, Z dkfdk-l‘ hw,, Z kabk
k k

—#C 3 (anbi'+aibi). (12)
k

Let us introduce two new operators A, and By de-
fined by®

ax= Ay cosf+ By sinf ,
bk=Bk COS@—Ak sinf.

(13a)
(13b)

The choice of the transformation coefficients ensures
that the new operators Ay and By satisfy the same
commutation relations as the old ones. The transformed
Hamiltonian is diagonal if

tan(260)=2C/(wi—w,) (14)

and the normal-mode frequencies are given by
1= (w;—w, tan%)/ (1— tan%f) , (15)
we= (wp—w; tan?d)/(1—tan26). (16)

At the resonance point w,=w;, and therefore 6=7/4. In
this case the normal-mode frequencies become

w1=wi+C,

we=w;—C,

(17)
(18)

and their separation is 2C. By comparison with Eq. (11),
it can be seen that Eqs. (17) and (18) are correct to
order C/w;, and the mode splitting is correct to order
(C/wr).

It is easy to see that the coupled-mode frequencies

8T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953).

¢ In the more general case, where the frequencies and the coupling
parameter depend on wave number, the transformation (13) would
still be valid except that the angle 8 would be k-dependent.
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Fi16. 1. The real (x;) and imaginary (x;) parts of the normal-
mode frequencies w/w; in the long-wavelength limit, as functions
of £=wy/w? for various values of the damping parameter
B=(rwf)™). eo/en=1.1. Note the change in the ordinate scale at
x;=0. .

given by Eqgs. (15) and (16) satisfy the following sum
rules:

w1 €os?0+w; sin?0=w;, (19)

(20)

Clearly, the quantities cos?¢ and sin®§ play the role of
phonon strengths for the first and the second mode,
respectively. The expression for cos?§ in terms of the
coupling constant is

cos?0=3+3[1—4C* (4C+ (wi—wp)?) 2. (21)

At the point of resonance the phonon strength is equally
divided between the two modes.

It remains to discuss under which conditions the
truncated Hamiltonian (12) provides a good description
of the problem. The terms neglected in arriving at (12)

w1 sin?6+ws cos?=w,.
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can be expressed through the new operators 4 and By
as follows:

H—H=—nC(cos?0—sin?0)Y_ (A xB_x+ Ak B_y)
x
—#C cosf sinf Y (BxB_x+ By'B_y!
k

—Ad_—AALY). (22)

At resonance the first term vanishes, and the second
term can be expected to be small since it involves terms
approximately equal in magnitude and opposite in sign.
For the case of GaSb, to be discussed in the next section,
Eq. (11) gives frequency changes of +14 and —169,
whereas Eqgs. (17) and (18) give changes of +15%,.
Thus we may safely conclude that the truncated
Hamiltonian is a rather good approximation in the
vicinity of the resonance point. On the other hand, it is
a poor approximation far away from the resonance
point. For instance, in the limit w,>w;, the frequency
of the lower mode should tend to the frequency wo
of the transverse optical phonons, whereas Eq. (15)
gives wy=[1—%(1—e,/€0) Jw:. For the case of PbTe con-
sidered by Cowley and Dolling,'® where w,=7w;, the
frequencies of the lower mode as computed from Eq.
(10) and from Eq. (15) are 0.99wo and 2.5wo, respec-
tively. Similar considerations apply to the phonon
strengths.

III. EFFECTS OF DAMPING

We shall first consider the effect of a finite plasmon
lifetime on the character of the coupled modes in the
limit of infinite wavelength. We determine the coupled-
mode frequencies, which are now complex, from the
zeros of the dielectric response function; that is,

3 W2 0.
1— (0/wo)? w(w+i/7)

Here, 7 is the plasmon lifetime, which has been intro-
duced phenomenologically in the electron dielectric
function.” In the following model calculations, we take
T as inversely proportional to the electron concentra-
tion. Such an assumption is justifiable if the damping of
the plasmons is governed by the amount of doping. We
wish to point out, however, that this assumption will
not materially affect the behavior of the coupled-mode
frequencies given in Fig. 1 near the crossover point.
Phonon damping is neglected in this calculation.
Equation (23) may be rewritten in reduced units as

+ a—1 £ _
1—ax? x(x+iB%)
where a=eo/€,, E=w?/w?, B=(rwi)™, and x=w/w;
=x1+1ix,. In Fig. 1 we plot the values of x; and «; as
R. A. Cowley and G. Dolling, Phys. Rev. Letters 14, 549
(1965).

1 D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963), p. 208.

€0 €x
€ (w) =ext

(23)

0, (24)
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Fi1c. 2. The dispersion of the normal
modes of the coupled system, for
various values of the damping param-

eter B. eo/ex=1.1, w/w?2=0.96, and
Er=2hwo. The broken lines represent
the modes of the uncoupled system.
The hyphenated line gives the bound-
ary of the particle-hole excitation
continuum for 8=0.

0.8

functions of £ for various values of the damping param-
eter 3, for a value of a=1.1, corresponding to the case of
GaSb.”? It is apparent that for small values of 8 the
effect on the real part of the mode frequencies is small,
but as B increases the splitting of the modes decreases
fairly rapidly and the two curves cross again for
B=0.58 at a value of ¢ of about 1.1. The critical value
of 8 is about 4C/w;. Before the critical value of 8 is
reached, at small (large) values of £, the lower (upper)
branch of x; corresponds to essentially pure plasmon
motion and the pertinent value of . is correspondingly
large, whereas the upper (lower) branch of x; corre-
sponds to essentially pure phonon motion with a small
x2. Above the critical value of 3, the two normal modes
maintain their respective character for all values of ¢;
in other words they are essentially independent, except
right in the vicinity of the crossover point where some
remnant of the coupling is still present, as indicated by
the curvature of x, for the two branches.

A semiclassical treatment of the dielectric response
function of an electron gas for finite wave number,
based on the Boltzmann equation, has been given by
Warren and Ferrell.!* Their expression, when expanded
in powers of the wave number, is

[Py )
w(ti/nL (5T3w1/<w+i/r>2

W plen

a(kw)=1—

1 \ o'kt

3 2
o +--- |, (25
+<7+5wr 9w"’1'2/(w+i/r)4 ] 25)

12 The numerical values of the relevant physical quantities for
this system, as given by Varga (Ref. 2), are e,=218, fw; =29 meV,
and m*=0.052m..

18 J, L. Warren and R. A. Ferrell, Phys. Rev. 117, 1252 (1960).

0.1 0.2 0.3
k/ko

where v is the Fermi velocity and 7 is the relaxation
time for the distribution function. For the case 7=,
the above semiclassical expression agrees with the
Lindhard formula' only to order %%, the coefficient of the
k4 term for the latter expression being (3/7)+ (w/2vok0)?,
where 7k, is the Fermi momentum.

To investigate the effect of damping on the dispersion
curves for the coupled modes, we have adopted the
expression (25), retaining only terms of order %2. The
equation which determines the modes is then the
following:

a—1 £ r 3 iﬂf\ ‘1)02k2/w12
1+ 1+( ; ]=o. (26)
1—az2 x(@+iBOL  \5 3z/(x+ige)?

In Fig. 2 we plot x, as a function of k/kq for a range of
values of B, having chosen a=1.1, £=0.96, and
Ep=2hw,. It is apparent that the effect of damping on
the dispersion curves is analogous to the effect discussed
previously for the case £=0. The value of the critical
damping is again about 4C/w;. We may remark that the
truncated semiclassical expression for the electron re-
sponse function becomes unreliable with increasing
k/ko, as is evident from the fact that the dispersion
curve of the plasmon-like mode for 3=0 crosses the
boundary of the continuum of particle-hole excitations
instead of being tangential to it. On the other hand, for
k/k050.2, the dispersion curves at zero damping com-
puted from Eq. (26) agree well with those reported by
Varga.

14 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, 8 (1954).
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F16. 3. Reflectivity R as a
function of w/2wo, for various
values of the damping param-
eter 8. The parameters are
e0/€x=1.1, €,=18, and wy?/w?
=0.96.
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Direct information on mode splitting can be obtained
from optical-reflectivity measurements. It is, therefore,
of some interest to investigate the effect of damping on
the reflection coefficient. The optical reflectivity R at
normal incidence is given by the familiar expression

R=|er—1]/|dr41]2, 27

where e is the dielectric function of the system at zero
wave number, which we have used previously in
Eq. (23). We plot in Fig. 3 the coefficient R as a function
of w/2w, for various values of the damping parameter 3,
for the values of the constants used for the calculations
illustrated in Fig. 2. It is at once clear that even a small
amount of damping produces marked changes in the
reflectivity curve. Specifically, we note that the two
transmission windows fill up rather rapidly, the low-
frequency one filling up at a much faster rate, and that
the high-frequency peak narrows rapidly. Above the
critical damping the only outstanding feature of the
reflectivity curve is the narrow peak at w=wj.

IV. GENERAL REMARKS

In principle it is possible to observe the coupled
plasmon and phonon modes through inelastic-neutron-
scattering experiments, but in actual practice it is
difficult since the wave numbers of interest are very

small. Nevertheless, there are strong indications from
the experiments of Cowley and Dolling'® in PbTe that
there is a shift in the phonon frequency in the range of
small wave numbers, which is consistent with the theory
of plasmon-phonon coupling. In the special case when
the plasmon and the phonon frequencies are nearly the
same, it is a straightforward matter to evaluate the
differential scattering cross section using the simple
expressions for the coupled-mode frequencies and the
phonon strengths derived in Sec. II. It must, however,
be borne in mind that these formulas are strictly valid
only in the limit of zero wave number. Inelastic scatter-
ing of light could, in principle, also give information on
the coupled plasmon-phonon modes. The formula for
the differential scattering cross section can be derived
analogous to that for inelastic neutron scattering.

It would be highly desirable to have optical reflec-
tivity measurements available for polar degenerate
semiconductors in the frequency range of interest, since
both the effects of coupling and damping are very
marked in this physical property.
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