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Nuclear Magnetic Resonance Studies of Solidi6ed Hs-D& Mixtures.
II. Pulsed Tec»itiues*

D. S. METzozxf ~ J. R. G~sg
Department of Physics, Ohio SAzfe University, Coluosbus, Ohio

(Received 8 September 1965; revised manuscript received 24 March 1966}

Standard NMR pulse techniques are applied to the study of the H~ resonance at 9.3 Mc/sec in solid
nH2-nD2 mixtures at 4.2 and 1.1'K. At 4.2'K the Bloch decay for eH& exhibits an oscillatory behavior that
resembles the beat structure in CaF& observed by Lowe and Norberg. This beat structure is not observed for
eH2 concentration below 0.25. At 1.1'K the splitting of the resonance line associated with the X anomaly
is seen as a distinct beat pattern of the Bloch decay. In addition to these Bloch decays, spin echoes that
persist for times long compared to the time required for the Bloch decay to vanish are observed to follow a
90'-v-p pulse sequence, ~ being the time between pulses and P the rotation produced by the second pulse.
The decay of the echoes as a function of 2~ is very nearly exponential and the associated time constant Tz,
depends on the rotation P in such a way that Tz increases as P decreases. It is shown that as a result of the
latter effect the echoes have maximum amplitude for p= +when ~ is short but P ($~ when ~ is long. The
essential features of the Bloch decays and echoes are adequately accounted for by a single-particle model
similar to the one used by Solomon to explain the multiple quadrupole echoes in KI. The Hamiltonian
describing the energy-level spacing of a given ortho Hq molecule (in the rotating frame) is taken as

a'= —mhf, +aha, &,

where the protons of the molecule are considered to be constituents of a particle with spin unity. The param-
eters Lko and a represent, respectively, the static intermolecular line broadening and the secular intra-
molecular dipole-dipole interaction. The spin-lattice relaxation time T~ was measured using repetitive ~/2
pulses. It is shown that Tl decreases as a increases.
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FIG. 1. Block diagram of the electronics.
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I. INTRODUCTIOH

HE pulsed-magnetic-resonance data presented in
this paper represent an extension of the steady-

state results previously reported. ' The anomalous
saturation behavior of nH2 and the interpretation given
in Paper I in terms of the theory of Provotorov' indi-
cated that direct measurements of T2, the spin-spin
relaxation time and T~, the spin-lattice relaxation time
would be of considerable interest. Furthermore it would
be possible to obtain the shape of the steady-state line
for Hq (the magnitude of the rotating rf Geld) exactly

equal to zero by taking the Fourier transform of the
free induction decay observed in a pulsed experiment.
Measurements of the relaxation times in solid Hg had
been reported previously by Bloom' but only down to
the motional line shape transition near 10'K. In the
vicinity of this temperature the linewidth increases
rapidly from a fraction of a gauss to about six gauss
giving rise to a short T2, so short in fact that a con-
siderable amount of the signal can be lost in the ampli-
6er "blocking time" following an intense rf pulse.

Several interesting features were observed during the
course of the above investigations, namely:

(i) The Bloch decay in nH2 at 4.2'K is not a simple
monotonically decreasing function of time describable
by a Gaussian or exponential function but an oscilla-
tory function similar to the Bloch decay in CaF2 ob-
served by Lowe and Norberg. ~

(ii) Spin echoes were obtained in solid nHs and in
H2-D~ mixtures at 4.2 and 1.1'K. These "solid echoes"
persisted for times considerably longer than the time
taken for the Bloch decay to go to zero. The pulse se-
quence used to obtain these echoes was not the usual
90'-v-180' sequence but one employing a second pulse
rotation of less than 90'.

A simple but physically realistic model is presented in
this paper that combined with a mathematical develop-
ment used by Solomon' (to explain the unusual sequence
of "quadrupole echoes" he observed in KI) explains the
essential features of (i) and (ii) and many features of
other experiments on seemingly different solid sys-

' M. Bloom, Physica 23, 767 (1957}.
4 I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).' I. Solomon, Phys. Rev. 110, 61 (1958).
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tems~' in which echoes have been observed, In fact
the echoes (and their behavior) predicted by the model

presented below can be considered as the more general
ease with the classical 90 -180 echoes as one particular
limit.

K EXPERIMEHTAL ARRA1%GEMENT

Except for the electronics used for production, de-

tection, and display of the NMR signal, the equipment
used was the same as that described previously. ' A
block diagram of the electronics used is given in Fig. 1.
The pulsed oscillator was produced by the Arenberg
Ultrasonic Lab (Model PG650 C). Since the oscilla-
tions are produced by shock exciting an RLC circuit,
there is no delnite phase relationship between two suc-
cessive radio-frequency pulses. This wiD be seen to be
an important consideration in the foDowing sections.
A radio-frequency bridge similar to the one used by

(c)

C&)

~b) Fro. 3. Bloch decays for nH2, 1.1'K&T&4.2'K. (a} X=20
psec/division, F= 1 V/division, T=2 K. (b) X=20 psec/division,
F= 1 U/division, T=1.5'K. (c) X=10 p,sec/division, F= 1
V/division, T= 1.1 K. (d}X= 10psec/division, F=0.5 V/division,
T=1.1'K.

Lowe and Barnaal' satisfactorily protected the ampli-
fier (L.E.L. IF 30 modified so that the center frequency
was 9.3 Mc/sec) so that the blocking time was approxi-
mately 10 psec. The gain of the ampli6er was varied
from 54 to 89 dB by adjusting the B+ voltage while
holding the bias voltage constant.

(c)

FIG. 2. Bloch decay for NH& at 4.2'K, X=20 psec/division.
(a) F=2 V/division. (b) F=1 V/division. (c) F=0.1 V/division.

E. L. Hahn, Phys. Rev. 80, 580 (1950).
~ J. G. Powles and P. Mansfield, Phys. Letters 2, 58 (1962);

P. Mansfield, Phys. Rev. 13T, A961 (1965).
8 J. G. Povrles and J.H. Strange, Proc. Phys. Soc. (London) 82,

6 (1963).

GI. RESULTS

The data to be presented in this paper were obtained
from the Bloch decay or free induction decay (i.e., the
signal following a 90' pulse), from measurements of the
spin-lattice relaxation time (T~), and from spin echoes
stimulated by a two-pulse sequence 90' r Pwith c--
being the time between pulses and P the rotation pro-
duced by the second pulse. A range of eH2-NDg mixtures
from 100%%uo Hm to I%%uo H2 (all mixtures will be referred

~ I.J. Loire and D. E. Barnaal, Rev. Sci. Instr. 34, 143 (1963).



D. S. METZGER AND J. R. GAINES

(b)

(c)

Fourier transforms of the line shapes presented in Paper
I also revealed this beat structure. This however is only
an internal consistency check.

The beat structure in eH2 is temperature-dependent
as is evident in Fig. 3 which shows the beat pattern at
about 2'K (slightly above the X temperature of solid

nH&) in trace (a), the beat pattern momentarily after

(a) in trace (b) just at the X temperature, and traces

(c) and (d) at 1.1'K well below the X temperature. It
should be noted that the beat frequency at 1.1'K is con-

siderably higher than that at 4.2'K.
At 4.2'K beat patterns similar to those for nH2 are

observed for xH, ~0.4. For these patterns, however, the
relative beat amplitude decreases with decreasing H2
concentration while the null spacing increases slightly
(see Fig. 4). The Bloch decay for the 25% mixture is a
simple monotonically decreasing function of time as are
the lower concentration mixtures not shown here.

(d)

(a)

(e}

FIG. 4. Bloch decays for mixtures at 4.2'K, Y=1 V/division.
(a) 75% Hg, X=10 ~ec/division. (b) 75% Hg, X=20 p,sec/
division, gain&(10.4 over (a). (c) 40% Hq, X=10@sec/division.
(d) 40% H2, X=20 @sec/division, gain)&22. 4 over (c). (e) 25%
H2, X=10@sec/division.

to in terms of their H2 concentration) has been studied
and pertinent examples of typical data will be given
below.

(c)

(a) The Free Induction Decays

Photographs of oscilloscope traces are shown in the
next few figures. The short trace in the left-hand portion
of the photographs shows that the cathode-ray oscillo-
graph (CRO) sweep starts a few microseconds before
the initiation of the 90' pulse. Several of the photographs
show in addition to the free induction decay, a second
trace that illustrates the amplifier response when no
signal is present (i.e., when the magnetic field is turned
off). In Fig. 2, the Bloch decay in nH2 at 4.2'K is given
for diferent scope amplifications. The beat structure is
very striking. Rotation of the sample produced no
changes in the beat pattern for eH2 as it did for CaF2.

(d)

Fxo. 5. Low-gain Bloch decays for mixtures at 1.1'K, X=10
ysec/division, Y=1 V/division. (a) 75% H2. (b} 40% H2. (c) 25%
H2. (d) 5% H2.
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TABLE I. T1 for nH2 from beats on Bloch decay at 1.1'K.

Beat

2nd
3rd
4th
5th
6th
7th

Ti(msec)

180
318
300
515
495
568

Figure 5 shows the Bloch decays for a few selected
mixtures where the ampli6er gain has been reduced so
as to avoid saturation (of the ampliier) near the be-
ginning of the Bloch decay. Further, the maximum ob-
servable signal near the beginning of the Bloch decay is
adjusted to be about the same height, resulting in a se-
quence of signals effectively normalized to a single initial
decay amplitude. Two features of these signals are im-
mediately apparent: (1) As the H2 concentration is de-
creased, a broad tail of the decay becomes more evident.
(2) The widths of the narrow portion of the signals do
not change appreciably. These two distinct portions of
the Bloch decay at 1.1'K have diBerent longitudinal
relaxation times and these times diBer from those ob-
tained at 4.2'K.

(b)

(b) Longitudinai Relaxation (T&)

The longitudinal relaxation times reported here were
measured by two techniques: (1) A 180' r 90' se-qu-ence
was used (curve A, Fig. 6) and (2) A 90' r 90' r 90-'---
sequence. The second sequence is quite useful for solids
where T2&(T~ since one need only measure the signal
height as a function of the pulse repetition rate. The
values obtained differ by about 15% although each

8 a mIIIiIIIII.".al'"..sI Al, , J

FIG. 7. Spin echoes for nH2 at 4.2'K and 1.1'K. (a) T=4.2'K
X=50 psec/division, Y=1 V/division. (b) T=4.2'K X=50
@sec/division, I'=0.1 V/division. (c) T= 1.1'K, X=50 psec/
division, F'=0.2 V/division. (d) T=1.1 K, expanded view of an
echo (superposition of two photos). X=10 psec/division F=Q.S
V/division and 0.05 V/division.

8 o
vj

0.6
V)

Q4

individual determination is accurate to about 2%. 'Un

less otherwise stated, the values of Tj reported here were
obtained using the second method. The values of the

TABLE II. Ti(msec) for nH2-nD2 mixtures.

0.2

D.I 200 400
'Vpsec)

Fro. 6. Ti data for nH2 at 4.2'K, 9.3 Mc/sec. A: ~-r-m/2
pulse sequence, T& ——2S2 msec. B:Repetitive m/2 pulse sequence,
T~ ——230 msec.

/qHg

100
75
50
45
40
35
25
10
5
1

4.2'K
Beat Bloch Decay

275 215
295 265
270 305

235
240
280
250
235
275
610

11K
Narrow Broad

See Table I
95 105
95 145

125 135
135 130
180
140 160
195 315
230 325
~ ~ ~ 1540
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H~ concentration mixtures, certain echoes are maxi-
mized for P=90' and P=180'.

(b)

(1) Genera/ DescriPtion

Figure 7 shows examples of echoes obtained from
eH2 at 4.2 and 1.1'K. In each case there is a beat struc-
ture on the tail of the echo that resembles the beats on
the Bloch decay. This leads to the supposition, to be
veri6ed later, that in certain cases the echo may be an
attenuated image of the Bloch decay. Also, the echo at
1.1'K is seen to be more narrow than those at 4.2'K.
The occurrence of more narrow echoes at lower tempera-
tures is typical of all the mixtures and is illustrated
particularly well in Fig. 8.

The character of the echoes begins to change apprecia-
bly for the concentrations of 10%%uo or lower. These
changes are illustrated in Figs. 8 and 9 for the S%%uo and

(c)

FIG. 8. Spin echoes for 5% mixture at 4.2'K and 1.1'K. (a)
T=4.2'K, X=100 @sec/division, F=1 V/division, 60'&P &90'.
(b) T=4.2'K, expanded view of echo, X=20 psec/division.
(c) T=1.1'K, X=100 psec/division, F=i V/division 60 &P
&90'. idl T= 1.1'K, expanded view of echo, X=20 ~ec/division,
F= 1 V/division.

longitudinal relaxation time for various beats on the
free induction decay of mH2 at 1.1 K are given in Table I.

The values of T~ measured for various mixtures are
coOected in Table II. %here possible, Tj was measured
from the beat at 4.2'K as well as near the beginning of
the Bloch decay. At 1.1'K, Tj was measured for the
broad and narrow portions of the Bloch decay at times
near 45 @sec and 20 @sec, respectively, from the begin-
ning of the trace.

(c)

(c) Spin Echoes

A two-pulse sequence, 90' r P, in general prod-uc-es a
spin echo at t=2r. Unlike classical spin echoes, which
have maximum amplitude for P=180', most of the
echoes observed in Hg-D~ mixtures exhibit maximum
height for P less than 90'. The optimum value fdr P is
between 40' and 60'; however, as will be noted for low

FIG. 9. Spin echoes for 1 Pp mixture at 4.2'K and 1.1'K, X 100
psec/division. {a) T=4.2'K, P =180', F=O.S V/division. {b)T=4.2'K, P=90', F=Q.S V/division. (c) T=1.i'K, P=180',F=i V/division. (d) T=i.i'K, P=90', F=i V/division.
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TABLE III. Echo full widths at half-maximum.

FoH~

100
75
50
45
40
35
25
10
5
1

4.2'K

39
39

52
50
52
54
55
58
75

140

lV1,If'(@sec)
1.1'K

6
28
28
26
26
26
26
24
22
22

180

..""+%,x iw-pe-e~ 4a!r~.'.ass!"a~

1% mixtures, respectively. Figure 8 shows the echoes
for the s%%uo mixture at 4.2 and 1.1'K. Both echoes are a
maximum for p nearly equal to 90', however, the 1 1'K
echo exhibits a tail that is maximum for 90&P&180'.

For the 1% mixture an interesting situation arises as
is illustrated in Fig. 9. Two distinct echoes are observed
at 4.2'K as well as at 1.1'K. At 4.2'K it is evident that
a broader echo is produced for P = 180' than for P=90'.
Likewise, at 1.1'K the broad part of the echo is a maxi-
mum for P= 180' and the narrow part peaks for P =90'.
Actually the width of the broad decay for this con-
centration is determined by magnetic-6eld inhomo-
geneities. In Table III the echo full widths at half-
maximum are given for each of the mixtures at 4.2 and
1.1'K. For the 1%%uo mixture, the widths of both the broad
and narrow echoes are given.

iI I .
s! '

!3!:/,.tg:AIL!i ~.

I I I

.. L!~~,, ~ s, ~, ~4 i.%4~~~&'is:.~24, ~.~ 4&edh ~li.~ II

(c)

TAmz. IV. Echo-decay-time constants for 40 &p &60 .

%H

100
75
50
45
40
35
25
10

4.2'K

25
40
50

105
90

137
150
150

1.1'K

60
60
80

~ \ ~

110
140
240
390

(2) Echo Decays

Since the echoes reported here persist for times long
compared to the time required for the Bloch decay sig-
nal to disappear, it is possible to obtain a decay envelope
for the echoes. Examples of echo decays are shown in
Fig. 10 where multiple exposure photographs illustrate
the change in echo amplitude as the time r between the
pulses is increased.

Semilog plots of the echo height versus 2r show that
the echo decay envelope can be represented by the func-
tion h(2r) =h(0) exp( —2r/Tx). It must be pointed out
that in many cases (for instance the 10%%uo mixture and
lower concentrations) the decay data can be represented
equally weO by a Gaussian curve. Echo-decay-time con-

FIG. 10. Echo-decay envelopes at 4.2'K and 1.1'K, F=i
V/division. (a) 75 jo Hg, T=4.2'K, X=50 jMsec/divIsion. (b) 75%
H2, T=1.1'K, X=50 @sec/division. (c) 25/o H2, T=4.2'K, X=50
psec/division. (d) 2S% H2, T= 1.1'K, X= 100 psec/division.

stants for several of the mixtures are presented in Table
IV. The values are accurate to about &20%%uo due to
inability to determine P accurately and an observed de-
pendence of Ta on P.

Examination of the echoes for times v shorter than
those displayed in Fig. 10 revealed the variations in
echo height that are common in phase incoherent
experiments and that the 90'-v-90' sequence produced
a potentially larger echo than the 90'-r-P sequence
where P(90'. This behavior is just the reverse of the be-
havior for larger r suggesting that Ts may depend on P
in such a manner that Tz decreases as P increases.
Figure 11 illustrates two cases where the greater rota-
tion P results in a shorter time constant Ta. The values
of Ta obtained for various values of P are listed in
Table V where the width of the second pulse is given
rather than P.
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IV. THEORY

(a)

The calculation presented in this section will form the
basis for interpreting the data, especially the spin
echoes, presented in the previous section. A single-par-
ticle model similar to the one used by Solomon' is em-

ployed with the statistical variations of the parameters
characterizing the model being taken into account by
appropriate distribution functions. Because the Bloch
decays and spin echoes we wish to describe take place
on a time scale much shorter than T~, spin-lattice re-
laxation is legitimately ignored. Although the calcula-
tion will deal explicitly with two spin-~ particles, it can
be extended to more complex situations as shown in
Appendix A.

gR

8

- a ia

TABLE V. Comparison of TE for diferent values of t ~.

T'K

typal

p,sec

4.2

4.2

4.2

4.2

1,4
2.4
1.8
2.4
1.8
2.0
1.9
2.4
1.8
2.4
1.8
2.1
2.4
4.0

65+5
30~5

104~4
76~3
98~4
72&2

112~6
68~10

205~15
100~3
445+45
376~35
500~50
246~25

F&G. 11.Echo decays for different values of P at 1.1'K. (a) 25%
H, , 40'&p&60', X=50 psec/division, Y=1 V/division. (b) 25%
H2, p=90, X=50 psec/division, Y=1 V/division. (c) 75% H2,
40'&p &60, X=20 @sec/division, V=0.5 V/division. (d) 75%
H&, p=90', X=20 psec/division, Y=1 V/division.

(a) The Hamiitonian

The Hamiltonian of a pair of protons in an external
magnetic field IIO coo/y is ——written as

y'A' - (I, r)(I, r)-
8= &0(I~,+—I2,)+ Ig I~—3

r3 r2

%hen viewed from a frame of reference rotating about
the applied field (s axis) with angular frequency co, the
Hamiltonian can be approximated by

A(~0 &)(~—1@+~2—s)+ '(v'A'/r')-
X (1—3 cos'8) L3I&.I~.—I~ I2j, (2)

where the time-dependent terms in the dipolar inter-
action have been omitted leaving only the part that com-
mutes with the Zeeman term. In terms of the usual
triplet (I=i, m=&1, 0) states of the Zeeman Hamil-
tonian, one obtains for the energy levels of 8'

E ~ ——A(coo —a&)+ (y'A'/4r') (1—3 cos'8)
Eo= —(y'A'/2r') (1—3 cos'8)

&+a= —A(~0—a&)+ (y'A'/4r') (1—3 cos'8) .
The same set of energy levels are obtained by consider-
ing the two spin-~ particles to be constituents of a spin-
1 particle whose Hamiltonian is given by

II~'= —A(h(o)I. +aAI.'—-,'aA, (3)

where ha&=a&0 —
&o and u= (3/4)(y'A/r')(1 —3 cos'8).

The singlet state (I=O, m=0) does not enter into
the calculation, because the singlet and triplet states
are not coupled through the Hamiltonian of Eq. (2).The
coupling of a, particle with its identical neighbor (e.g. ,
the proton-proton coupling in the ortho-hydrogen
molecule) is taken into account in the second term of
Eq. (3); the first describes the static variations of the
local field from molecule to molecule (i.e., between vari-
ous spin-1 sites). The nonstatic variations in the local
6eld eBect spin-spin relaxation involving "spin-Rip"
terms that cannot be incorporated easily, but we will
assume that in 6rst order such terms will simply damp
the transverse magnetization in time.
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(b) Density Matrix in the Rotating Reference
Frame and the Free Induction Decay

ately before the pulse, P(r), by the expression

P (r) =RP(r)~'.
Before application of an rf pulse, the spin system is in

thermal equilibrium and can be described by a density
matrix given in the high-temperature approximation by

pp e &P'*s'Pr 1—(y—AI,H/AT) .

The signal following the second pulse (t)r) is then
obtained from

S(t)=Tr{exp) —(i/A)8'(t —r)]R expL —(i/A)8'r]I,
XexpL(i/A)II'r]P ' exp'(i/A)&'(t r)]~+}~ (9)

A straightforward calculation from Eq. (9), using for 8'
the Hamiltonian of Eq. (3), yields

The effect of an intense rf pulse, with amplitude H1
larger compared to the interaction between the parti-
cles, is to rotate the equilibrium magnetization through
the angle P=yH&t about an axis 0„,say, of the rotating
frame. If we assume that the pulse width t„is short com-

pared to the spin-spin relaxation time, then the density
matrix after a 90' pulse can be written at time zero as

pp(0) =1—yAI, H/k T . (4)

S(t)= P { P (m~A~m'+1)
m=0, 1 te'=0, —1

X(m'~A '~m+1) expLids&(t —2r)]

Xexp{in[(2m+1)(t—r) —(2m'+1) r]}
+ P (m ~8

~

m' —1)(m' ~R '~ m/1)exp(in')t)A pick-up coil in the XI' plane of the stationary frame
in the laboratory will see an induced signal proportional
to the average value of the complex transverse mag-
netization (f+ I,+if„).T——his signal may be calculated
from

m'=1, 0

Xexp{inL(2m+1) (t r)+—(2m' —1)r]}}. (10)

S(t)=TrPP(t)I,],
The matrix elements of the rotation operator A' are the

(5) Wigner coeKcients

where p(t), the density matrix in the rotating frame, can
be obtained from the initial value given in Kq. (4) by the
usual time-evolution expression

p(t) = exp( —(i/A)H't)P(0) exp((i/A)H't), (6)

with H' given by Eq. (3).Then the signal following a 90'
pulse (Bloch decay) is obtained from

S(t) =Tr{expL—i(h(aI. +nI, ')t]I,
X expr i(Ape, +nI, ') t]I+}

(7)= 2 cosa.t expiAaot.

The result given in Eq. (7) must be integrated over ap-
propriate distribution functions f(n) and g(ha&) to yield
the response of the entire sample to a 90' pulse. If these
distribution functions are assumed to be even functions
of u and Ace, respectively, the signal following a 90'
pulse is proportional to

S(t) = 2 f(n) cosntdn g(App) cosDcotdhu&

=2F(t)G(t),

which is simply the product of the Fourier transforms of
the two distribution functions.

(c) Syin Echoes

The e6ect on the density matrix produced by a second
pulse of negligible width, applied r seconds after the
6rst, can be described by a unitary rotation operator R
that operates on the spin coordinates in the rotating
reference frame. The density matrix immediately after
the second pulse, p'(r), is related to the value immedi-

which are given in various reference works. ' The par-
ticular elements of interest here are those for a=0. The
angle g then represents the rotation of the second pulse;
while p represents some arbitrary phase angle between
the axis of rotation for the first pulse (O„axis)and that
for the second pulse. The angle y is included to corre-
spond to the phase-incoherent apparatus used in the
present study. The operations described by these ele-
ments are, in order: (1) a rotation of the spin eigenstates
through the arbitrary angle y about the 0, axis and
(2) rotation about the O„axis through the angle P.

After integration over the distribution functions for
o. and Dco, the signal following the second pulse can be
put in the form

S(t) =A(t)e '&+B(t)e'&, (11)

with A (t) =G(t—2r) Lcosp(1 —cosp)F(t) —sin'pF(t —2r)]
and B(t)=G(t) Lcosp(1+cosp) F(t)+ sin'pF(t —2r)],
where F(t) and G(t) are the Fourier transforms of the
distribution functions as indicated in Kq. (g).

The actual signal observed in the NMR experiment is
proportional to the modulus of Eq. (11).The terms that
are responsible for spin echoes contain factors that are
functions of t—27. such that at t=27. the term in ques-
tion becomes independent of 0. or Ace or both. Factors
that do not have this time dependence are damped since

~
F(t)

~
&F(0)= 1 and similarly for G(t)

It should be noted that by relaxing the assumption
that the 6rst pulse produces only a rigid rotation of the
spins through 90', one obtains terms in the density

' M. E. Rose, E/emeetary Theory of A rlgular Momentum (John
Wiley R Sons, Inc. , New York, 1957).



D. S. METZGER AND J. R. GAINES

matrix that permit transitions such that d m =&2.These
transitions lead to an echo term at 3=3m that is damped

by G(t), the derivative of F(t r)—with respect to time,
and the ratio of the strength of the particle-particle
interaction to Hj. No such echo has been observed.

(d) Special Cases

The following special cases of the above calculation
are considered because they illustrate simple applica-
tions of the theory and throw considerable light on the
echoes observed by Powles and Mansfield~ for the pro-
tons in gypsum (Ca&SO4. 2H&O).

(i) Xo Attenuation Due to the n Distribution

F(t)=F(0)=f

In this case the signal is

S(t)= —2 sin'(P/2)e '«G(t —2r)
j2 cos'(P/2)e'«G(t). (12)

This result is identical to the classical-vector-model ex-
pression for the signal following the second pulse, pre-
dicting an echo at t= 2m that has a maximum height for
P = 180' (see Appendix 8).The second term in Eq. (12)
does not contribute to the echo but will beat" against
the echo (if no definite phase relationship, y, exists be-
tween the two pulses) until attenuation due to the dis-
tribution in ~ damps the term out.

(ii) Xo Attenuation Due to the Aoo Distribution

G(t) =G(0)=1.
In this case the signal takes the form

S(t)= 2 cosy cosPF(t)
+2i[siny sin'PF(t —2r)+cosy cos'PF(t) 1 (13).

This is the spin-1 counterpart of the problem solved by
Solomon. ' No echo is predicted by Eq. (13) for the case
where both rotations take place about the same axis
(i.e., y=0), a condition usually satisfied in an experi-
ment using coherent pulses. If, however, a phase shift
of 90' is introduced between the two pulses (i.e.,
y=-,'&), one has the experimental conditions used by
Powles and Mans6eld', and one has an echo.

(iii) Relation to the Results of Poroles and Mansfield

Looking more closely at the form of the signal for the
case where y=s/2, we see

S(t)= i(sin'PF(t —2r) [G(t—2r)+G(t) j
+cosP(1+cosP)F(t)G(t)

—cosP(1—cosP)F(t)G(t —2r) }. (14)
"Two terms are said to beat one against the other when their

sum is dependent on their relative phases. This is observed ex-
perimentaOy in a phase incoherent experiment as a random varia-
tion in the amplitude of two additive signals upon repeating the
pulse sequence that produces the signals.

The term that is independent of both o. and h~ at t= 2r
gives a maximum echo for P =90' in agreement with the
results of Powles and Mansfield.

These authors also observe that a 90'-r-180' pulse
sequence gives essentially no echo independent of the
phase shift and that a 90'-z-90' sequence with no phase
shift produces no echo. The latter observation is con-
sistent with Eq. (13) (i.e., little attenuation due to the
Aa& distribution); the former observation is expected
for a second pulse rotation of 180' where the signal,

S(t)= —2F(t)G(t —2r)e-'«,

will be small and independent of y if there is considera-
ble attenuation due to the 0. distribution.

Thus the experimental results of Powles and Mansfield
can be explained by this model if one assumes a narrow
distribution for her and a broad distribution for a.
Both assumptions are physically reasonable for gypsum
where, as shown by Pake, "the widths of the ha and a
distributions are about 3 G (for the powder) and 10 G,
respectively.

(e) Phase Incoherence and Echo Attenuation

Some 6nal remarks are appropriate regarding the ex-
periment in which no definite phase relationship exists
between the two pulses, and the effects of F and G on
the echo amplitude. If, as before, we call T~ the time
constant measured from the echo decay envelope, then
we predict that in general Trs will be a function of P,
the rotation angle of the second pulse. For example, the
signals at t=2r for three specific values of P(8=60',
90', 180') are as follows:

Soo'(2r)=oe '«[F(2r) —3j+4eo«[F(2r)+1jG(2r),
Soo (2r) = e'«+ e'«G(2r—), (15)

Siso'(2r) = 2e '«F(2—r) .
It is clear that F or G or both will aBect the echo ampli-
tude apart from the attenuation due to spin-Rip terms
not included in this calculation. The j.80' decay en-
velope will yield information regarding the attenuation
due to the 0. distribution whereas the 90' envelope is
attenuated by the ~co distribution in one term and by
spin-Rip processes only in the other. The 60' envelope is
more complicated, the four terms being attenuated by
F, G, FG, and spin-Qip processes.

In a phase incoherent experiment the magnitude of
the beating between the two terms that are out of phase
[in general the A and 8 terms of Eq. (11)j depends on
the relative magnitude of the two terms. When F(2r)
=G(2r) =0, attenuation of the echo is due entirely to
nonstatic (spin-fiip) contributions and no beating occurs.

V. DISCUSSION

A particularly interesting eGect observed in connec-
tion with the spin echoes for all the concentrations at

"G.E. Pake, J. Chem. Phys. 16, 327 (1948).



NMR STUDIES OF Hg —Dg MIXTURES. II

IOO

80—

60—
50-
40

30

f(t) =F(f) bf =e-"t./2
e Jl(bt)

IO

6
5

I

0 20 40 60 80 IOO l20 l40
t'(10' sec')

Fzt . 12. Semilog plot of F,»t(t) (bt/JI(bt)) versus t .
~3 A. Abragam, The I'riecip/es of Eudeur Magnetism (Oxford

University Press, New York, 1961),Chap. 4.

both temperatures is the dependence of TJ:, the echo
decay time, on P, the rotation produced by the second
pulse. %hen the time between pulses r is long, the
dephasing due to the e and Ace distributions is almost
complete implying F(2r) =G(2r) =0. In this case, the
signal is simply proportional to S(2r) = sin'P and has its
maximum value for P= 90'. An exponential decay of the
signal can be introduced by writing S(2r) = sin'P

Xexp( —2r/T&) where, however, the decay time con-
stant depends on P in such a way that TsP=c is ap-
proximately true. Then the value of P that produces a
maximum echo is obtained from tanP =c/r. Thus
when r is small compared to c (which is of order Ts),
P is approximately s/2, but when r is comparable to
Ts (and c) as in most of the echo decay data, P is
approximately s./4.

The dependence of Trr on P is much more noticeable
in the low H~ concentration mixtures, since in the high
concentration mixtures the value of c/r does not vary
appreciably from unity over the range of v available
(i.e., r&TR=Ts). Thus since the tangent function
varies slowly when its argument is near unity, only a
very slight dependence of T@on P can be observed in the
higher concentration mixtures. When the P dependence
of T~ is taken into account, the agreement of the ex-
perimental spin echo data with the theory of Sec. IV
is excellent.

(a) Pure nH2

The oscillatory Bloch decay of nHs at 4.2'K (see
Fig. 2) was similar to the decay observed in CaF2'
which could be described by the analytic function"

I.O

0.8—
~THEORETICAL CURVE

S(f) - Ji(bt)e-a~t~/2

a = 2.56 xlO+ sec '

b =8.66xlO+ sec '

c - EXPERIMENTAL
POINTS

-0.2-

I I I t

0 20 40 60 80 IOO !20 l40
t(psec)

Fro. 13. Fit of line-shape function to experimental data.

S(t)= exp( —a'tm/2) (sinbt)/bt. However, in nHs the nulls
of the Bloch decay are not evenly spaced; hence the
function Ji(bt)/bt appears more suitable than sinbt/bt.
In Fig. 12 the experimental data points have been multi-
plied by [Ji(bt)/btj i (where b was determined from the
nulls of the Bloch decay) and plotted as a function of t2

This permits determination of the parameter c. In Fig.
13 the experimental points are plotted along with the
analytic 6t; the agreement is excellent. It is usually
more convenient to work analytically with the function
containing sinbt/bt even though the fit it not as good.

The cw line shape corresponding to the function
exp( —a' t'/2)(sinbt)/bt is a superposition of Gaussian
curves of rms half-width a under a rectangular envelope
of width 2b; the Bessel function implies a superposition
of Gaussians under a semicircle of radius b. The Fourier
transforms and moments corresponding to these two
curves are given in Appendix C. The parameters de-
termined from the pulse data (fitted to both functions)
are given in Table VI and compared to the recent experi-
mental data of Dickson and Meyer" (D and M). As can
be seen from the table, the cw data of Dickson and
Meyer give higher values of the second and fourth
moments (3f2 and M4, respectively) than the pulse data;
however, the ratios of the various parameters are in good
agreement. Further, it is important to note that the
values of M&, particularly for the pulse data, are in good
agreement with the value of 63.1 (kc/sec)s calculated
by Reif and Purcell" using the Van Vleck method.

The line-shape function implied by the oscillatory
Bloch decay suggests a superposition of unresolved"S. A. Dickson and H. Meyer, Phys. Rev. 138, A1293 (1596)."F.Reif and E. M. PurceH, Phys. Rev. 91, 631 {1953).
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TAnz.z VI. Parameters of the cw line shape at 4.2'K.

Rectangle
Semicircle
D and M

kc/sec

4.08

b

kc /sec

11.6
13.8

~H.
kc/sec

23.2~0.1
&27.6a0.1

25.6~0.8

M2
(kc/sec) '

62~ 7
64~ 7
75+1

M4X10 4

(kc/sec)'

0.92+0.2
1.03m 0.2

1.35

2.98+0.15
&3.46+0.15

2.95W0.15

M4

(m, )2

2.40&0.04
2.52~0.08

2.39

a gH is defined to be the linemidth as measured from the maximum and minimum on the derivative curve.

doublets that one is tempted to attribute to the "crys-
talline 6eld splitting. " The term crystalline 6eld split-
ting refers to the perturbation of the Zeeman levels as a
result of the intramolecular dipole-dipole interaction in
accord with the discussion of Sec. IV. As described by
Reif and Purcell" the magnitude of this eBect depends
on the degree to which the rotational degeneracy of the
ortho-molecules is removed by internal electric 6elds.
However, the agreement of the experimental and cal-
culated second moments indicates that the line shape is
primarily due to intermolecular dipole interactions.
This suggestion is supported by the relatively short
time persistence of the spin echoes and the similarity of
the Bloch decay for nH2 to that for CaF2. Thus at 4.2'K
we consider the line shape to be governed by inter-
molecular interactions, the crystalline 6eld splitting
contribution being small and undetermined. The situa-
tion is much diferent at 1.1'K.

The absorption line shape observed near 1.1'K by
Reif and Purcell" can be described roughly in the fol-
lowing way. There exists a central Gaussian peak of rms
half-width ap flanked on each side by a Gaussian peak of
rms half-width a~. The side peaks are centered at fre-
quencies &8/2 from the central peak. The Bloch decay
that is represented by the Fourier transform of such a
line configuration is

S(t) =ho exp( —ao't'/2)+2hq exp( —aPt'/2) c st 2/t,

where ho and h~ are the heights of the central and side
peaks, respectively. The central line merely causes the
second term to oscillate about a decreasing base line
rather than a horizontal line. From the observation (see
Fig. 3) that the oscillations disappear at about the same
time that the base line decays to zero, it is estimated
that the central and side peaks have about the same
half-width. This width is estimated from the decay of the
base line to be about 14 kc/sec. Further, the splitting 6
is calculated from the beat frequency to be 167~3
kc/sec in excellent agreement with Reif and Purcell.

The Bloch decay at 4.2'K is indicative of a narrow 0.
distribution while that at 1.1'K shows an n distribution
that is broad and double-peaked. The transition from
the narrow to the broad Of distribution is seen in the
sequence of photographs in Figs. 2 and 3. The longer
echo decay time constant Tz at 1.1'K is associated with
the relative improbability of spin-Qip processes that

conserve Zeeman energy. Explanation of the fact that
the relaxation time TE remains much smaller than the
spin-lattice relaxation time can be found in the work of
Bloembergen, Shapiro, Pershan, and Artman. " The
large residual central line that results from molecules in
regions of high field symmetry may provide a medium
for spin-spin relaxation in this sense.

The spin-lattice relaxation times reported here are
more accurate than the ones obtained from steady-state
saturation experiments (such as reported in Paper I)
due to the difhculty in obtaining low enough modulation
frequencies. The T&'s obtained in steady-state experi-
ments can be brought into agreement with our pulse
measurements by applying the modulation corrections
described by Portis" for an inhomogeneously broadened
line. The fact that different portions of the free induction
decay relax toward the lattice temperature with diGerent
rates (see Tables I and II) is not understood. Sugawara"
assumed that T~ depended upon the location of a given
isochromat relative to the center of the line in an e6ort
to explain the anomalous saturation data in nH2. Our
observed dependence, however, does not agree with his
assumption that T&~ (Aced)'. Most fea.tures of the spin-
lattice relaxation can be accounted for by postulating
that the dominant interaction is of the quadrupole-
quadrupole type that is governed by the parameter n
and is, therefore, very sensitive to the rotational
motion.

(1) nH2 nD~ Mix-tures

In general the width of the resonance line will con-
tain contributions from both intermolecular interactions
and the crystalline held splitting. Although the latter
e6ect is very small in nH2 at 4.2'K, the widths of the
spectral distributions in the mixtures change as a func-
tion of both concentration and temperature in a manner
indicative of appreciable crystalline field eGects.

The width of the spectral lines for the various mix-
tures were obtained from the inverse echo widths at
half maximum, and the data so obtained are shown in
Table VII. The apparent validity of this procedure for

"N. Bloembergen, S. Shapiro, P. S. Pershan, and J.0. Artman,
Phys. Rev. 114, 445 (1959)."A. M. Portis, Phys. Rev. 91, 1071 (1953)."T. Sugawara, Sci. Rept. Res. Inst. Tohoku Univ. Ser. A 8, 95
(1956).
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widely different line shapes is illustrated for the par-
ticular case of nH2 where the widths in Table VII
agree very well with those obtained earlier by other
methods.

The behavior of the linewidth or root second moment
as a function of concentration in the mixtures can be cal-
culated readily considering only intermolecular inter-
actions. This has been cone in Paper I and yields,

lV g'~'(x) =Mm'"(x= 1)LX+k(1+ x)j'",
where x is the nH2 concentration, and the value of k

averaged over all D2 spin states is 0.021.
At 4.2 K the linewidths obviously do not decrease as

rapidly as predicted by the above equation. For ex-

ample, according to the calculations, the width for the
lowest concentration mixture should be 17%of the value
obtained for NH2 rather than the observed 52%. The
discrepancy is attributed to the crystalline field split-
ting. Perhaps it should be pointed out that the data in
Table VII are weighted toward the broad tails of the
spectral distribution whereas the similar data in Paper
I are weighted toward the central component of the
line shape.

At 1.1'K the effect is even more striking as the line-
widths show a slight increase as the concentration is de-
creased. There is, of course, the exception for nH2 where
the molecular rotation is quenched. This behavior is
very interesting, because one might expect the crystal-
line field splitting to decrease as the number of spheri-
cally symmetric molecules (ortho D&) in the mixture is
increased. However, it appears that the primary e6ect
of the increased number of ortho-D~ molecules is to in-
crease the number of ortho-H2 molecules that are rela-
tively unperturbed by crystalline fields and contribute
to the broad tails of the echoes (see Figs. 8 and 9). As
might be expected for these isolated spins, the broad
echo tails appear to behave classically with regard to
the echo phenomenon. That the crystalline field e6ect is
not completely washed out at the low concentrations is
attributed to the fact that many ortho-hydrogen mole-
cules may find themselves at sites of strong crystalline
fields even at low concentration. For example, for any
lattice site the most probable number of nearest neigh-
bors having the rotational quantum number J=1
(ortho H2 or para D2) is four in the case of the 1%
mixture.

TAsLE VII. Linewidths for the mixtures as obtained from
the echo widths at half maximum.

4.2'K
~H (kc/sec)

1.1'K

100
75
50
45
40
35
25
10
5
1

25.6&0.6
25.6~0.6
20.8+0.5
19.2+0.3
20.0+0.4
19.2~0.3
18.5&0.4
18.2+0.2
17.2+0.3
13.3+0.3

167~5
35.8~1.0
35.8~1.0
38.4~1.6
38.4&1.6
38.4~1.6
38.4~1.6
41.6&1.6
45.4+2.0
45.4~2.0

the line. As a result the cross relaxation time represented
by the echo decay time constant is comparable to the
time required for the Bloch decay to vanish. At the
lower temperatures (below 2'K) for nH2, the crystalline
field splitting becomes dominant. The cross relaxation
time is longer in this case because the splitting repre-
sented by the e distribution is larger than that repre-
sented by the bee distribution as is apparent from the
nearly resolved lines. The mixtures provide intermediate
examples of unresolved doublets where the crystalline
field e6ect is nevertheless appreciable.

The single-particle model used in Sec. IV is similar to
the model used to derive the Curie-Weiss law in that the
many-particle spin-spin interactions are replaced by a
term containing the interaction of a single spin with an
effective field. The crucial term is the one proportional
to I,' since it is this term that leads to such distinctive
features as: the echoes need not resemble the Bloch
decay, the optimum rotation angle for the second pulse
is spin-dependent, and pulse separations can be used
that are greater than the time required for the Bloch
decay to vanish. This particularly simple model ex-
plains many of the features (in particular the importance
of an rf phase shift between pulses in some instances and
not in others) observed in previous experiments con-
cerned with echoes in solids. The experimental echo
data in H2-D2 mixtures are in good agreement with the
predictions of the theoretical model provided one takes
into account the observed dependence of the echo decay
time constant on the rotation produced by the second
pulse.

VI. SUMMARY

The pulsed nuclear magnetic resonance data on nH2
and eH2-eD2 mixtures lead to a clear interpretation of
the resonance line shapes obtained in the solid hydro-
gens. The magnetic sublevels are split by unequal
amounts due to the intramolecular interaction between
the protons in a given ortho molecule. At 4.2'K the
splitting of the sublevels is small compared to the per-
turbation by intermolecular interactions that result in
both homogeneous and inhomogeneous broadening of
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APPENDIX A: EXTENSION OF THEORY
TO OTHER SYSTEMS

and

const = 43nA.

The model calculation presented in Sec. IV can be ex-

tended to other, more complicated systems. The only
requisite for the formalism of Sec. IV to apply is that
the system be described by a Hamiltonian of the form

8'= Ac»AI, +aha, o+constant.

Deuterium Molecule

For deuterium there are five symmetric spin-2 states
and three antisym~netric spin-1 states to be considered.
Also, deuterium differs from hydrogen in that there
exists a quadrupolar coupling between the nuclei in
addition to the dipolar coupling.

The main problem in this case is separating the di-
polar and quadrupolar contributions to the Zeeman-
level splitting. However, if one assumes that the quad-
rupole coupling dominates, one has for the quadrupole
coupling

(A1)

Two such systems that may be of interest are (1) three
spin-2 particles (protons) located at the vertices of an
equilateral triangle and (2) the deuterium molecule.

Three Spin-~ Particles

The dipolar Ha~i&tonian for three spin--,' particles
at the vertices of an equilateral triangle is e V„

8'q —— [3I '—I(I+1)]
4I(2I 1)— (A4)

3(I; r;„)(Ior,o)h'y'
I"Io-

j(k rs

tc(c»o c»)(~lv+~2o+~ov) H'= A~AI, +nAI, 2+const.

(A2)
r keeping only the secular terms. In Eq. (A4), V„repre-

sents the electric Geld gradient in the direction of the
Keeping only the secular terms, we have in the rotating external 6eld, and g the nuclear quadrupole moment.
frame Thus, the Hamiltonian corresponding to (A1) in this

case is

+(A'y'/ro) P (1—3 cos'8;o)

X[I Io —)-(I+,I a+I,I+a)], (A3)

with

ah =3eQ V„/4I(2I—1) .

where 8;~ is the angle between r;k and the external
magnetic Geld.

The eigenstates for the three-particle system can be
written as a group of four spin-+~ states and two groups of
two spin-~ states. Only the quartet of states,

(+++),
(I/&)[(++-)+(+-+)+(-++)],
(I/&) [(--+)+(-+-)+(+--)7,
(———)

is of interest here. The splitting of the spin-~ states is
unaBected by the dipolar Hamiltonian and there is no
coupling between the three groups of states. Thus, the
doublet states give rise to classical behavior as regards
the spin echoes.

The energy levels associated with the four spin-~3

states are:

E o)o
——I}A(c»o—c»)+xo(y'Io'/ro) (1—cos'8),

E its ——xh(c»o —c»)+$(y'tc'/r') (1—cos'8),

E ) = —-', A( o
—)+,(y'ic'/r')(1 —cos'8),

Eo)o=—o
tc(c»o—c»)+ s (y'tc'/ro) (1—coso8),

where cos'8= cos'8io+cos'8)o+cos'8oo. These energy
levels can be generated by the Hamiltonian in Eq. (A1)
with

a= (y'it/4ro) (1—cos'8)

8'= AA(»I, . — (Bl)

Following Eq. (9) the signal after a 90'-r-P sequence can
be written as

S(t)=Tr{exp[—(i/tt)8'(t r)]R exp[——(i/A)8'r]I,
&& exp[(i/A)8'r]A ' exp[(i/k)8'(t r)]I+}. —(B2)

Because of the simple form of II", one can conveniently
take the rotation operator in the form

R(O,P,y) = exp( —iPI„)exp( iyI,)—
where the angles P and y have the same meaning as in
Sec. IV. Then using the fact that the trace is invariant
to cyclic permutation, one has

c) (t)=Tr{e c()&vs c(vvl r)&vf~—c(vv+1 )-&sec()&v

Xec(» vo)&vf s-c(o-vo)EI} (B3)

APPENDIX B: QUANTUM-MECHANICAL
DEMVATION OF CLASSICAL

SPIN ECHOES

The distinction between classical spin echoes and the
echoes discussed in Sec. IV is that the optimum rotation
angle P of the second pulse is independent of nuclear
spin for the classical echoes. The relation Eq. (12) is
derived below on a quantum-mechanical basis similar
to that used in Sec. IV.

In the rotating frame the Hamiltonian is
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where y=h~t and qo=Aeor. Then using the general
relationships"

ec//II f e 141t——f ec4+ = +

e "'I e"4=5,cos8+I„sin8,
e "241,e"24=5, cos8 I,—sin8,

one obtains

S(t) = 22LCOSp COS(c/12+y)+i Sin(cpe+y))
Xe'c & Tr(IW, ). (I!4)

Upon collecting like terms, one obtains

S(t)= ,'I(I+1-)(2I+1)$Ae '&+I3ec&), (35)

where A= —e' "c' "sin'(P/2)

I3=e'~"' cos'(p/2).

APPENDIX C: FOURIER TRANSFORMS AND
MOMENTS

It can be shown in a straightforward manner that the
expression

has as its Fourier transform

1/2 2 —
n) 2- 1/2

«-1=+) -(;-,»

XexpL —(cd n—)'/2a')dn. (C4)

This line-shape function corresponds to a superposition
of Gaussian curves under a semicircular envelope of
radius b. Thus

f( ) = (2/ b)L1 —(n/b)')"' for b&—n&b

If one defmes T2——2rg(0), then in the limit a/b «1 one
can write for the function (C2) that T2=2r/2b and for
the line-shape function (C4) that T2 4/2b——In the. same
approximation, a/b«1, the steady-state linewidths
measured from the derivative curve are approxi-
mately Zb.

The moments of these curves can be found easily
from the coefficients of time in the power-series ex-
pansion of S(t).

S(t)= Lexp( —a' t'/2))(sinbt)/bt
=1 ,'t'(a'—+—',b')+(-t'/4!)(3a'+2a'b'+'b')+

S(t) = exp( ', a' t—') (-sinbt/bt) (C1)

has as its Fourier transform

g(cd) = expL —(cd n)'/—2a2)dn, (C2)
2ab&m

where g(cd) represents the steady-state line-shape func-
tion and is equivalent to a superposition of Gaussians
under a rectangle of width 2b. Thus for this line-shape
function

f(n) = (1/2b) for b&n~b. —
The expression

S(t) = exp( (a2t2/2))—(J1(bt)/bl) (C3)
'9 C. P. Slichter, Principles of Magnetic Resonance (Harper and

Row, New York, 1963), Chap. 2.

S(t)= Lexp( —a' t'/2)) J1(bt)/bt
=1 2t'(a'+ 4—b'—)+(t'/4!)(3a'+a2a2b'+/tb')+

Since in general S(t) =1—(t'/2!)M2+(t'/4!)M4+
one has M2 a'+b'/3 a——nd M4 3a4+2a'b—'—+ (b4/5)
for the rectangular envelope and also M2= a'+b'/4 and
M4 3a4+(3——a2b2/2)+(b4/8) for the circular envelope.

To show that the width of the rectangular distribu-
tion is approximately 2b, one can set the second deriva-
tive of g(ce) equal to zero and solve the resulting trans-
cendental equation

(x—1/x+ 1)= exp( —2(b'/a') x)

where =x/ cebFor a'/b'&0. 2 then x=~1 is a good
approximation.




















