
PHVSICAL REVIEW VOLUME i47, NUMBER 2 i 5 JULY i 966
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A model is analyzed for the growth and propagation of electrostatic waves in a medium with an arbitrary
law of mobility. The equation of motion has been solved by the method of characteristics. Shock-wave
criteria are developed. Special emphasis is given to the anomalous case where the average carrier velocity
can decrease with 6eld, which, as pointed out by Kroemer, is pertinent to the Gunn effect.

is, of course, a direct consequence of current conserva-
tion and Poisson's equation, albeit in dimensionless
form.

To derive Eq. (1)we note that the time rate of change
of the total mobile charge density, N(x, T), obeys the
continuity relation

INTRODUCTION

ECENTI.Y, Gunn' observed an electronic front
propagating in gallium arsenide. Pritor to this,

Ridley' had shown that a bulk negative resistance leads
to the formation of domains which move with the
carriers. The intervaHey transfer mechanism of Ridley
and Watkinse and Hilsum4 provided the microscopic
basis of such an anomalous resistance. Kroemer'
suggested that these considerations of electrostatic
instabilities were pertinent to the Gunn effect. These
ideas were subjected to numerical analysis and favor-
able agreement found with observation. ~'

Our intention here is to formulate and analyze a
model for the evolution of an electrostatic pulse in any
medium where the average drift velocity is Geld-

dependent. In the fast relaxation limit of momentum
and between species (relative to dielectric relaxation)
our model is a precise description except for the effects
of diffusion. The inhuence of external circuitry is
manifested through the current delivered to the ends
of the diode. An equation for the electrostatic Geld has
been derived from Poisson's equation and a law for the
current. We have solved this nonlinear partial differen-
tial equation of motion exactly by utilizing the method
of characteristics. From the solution a criterion is
obtained for shock front formation.

NT(x T) = —Jx(x,T),

where J is the carrier Qux, while Poisson's equation
requires that

ExT= (4~e/x)NT= (4s.e/x) Jx—
which admits a first integral,

Er(X,T) =4'J e/K( J(x,T)+—F(T)). (4)

F(T), the function of integration, is the average of the
carrier Quxes across the ends of the sample. There are
two limiting cases which provide insight into Eq. (4):

Case (a) J(x,T) =0, the extreme case of an insulator;
then the diode behaves as a capacitor and sF(T) repre-
sents the time rate of change of the charge density
supplied to the capacitor plates by the external current
such that

FORM ULATIOÃ

The fundamental equation of this theory,

g (.,t) =-i(*,t)+f(t), (1)
ET= 4m.e/sF (T) .

Case (b) uniform current leakage J(x,T) =F(T).Then
there is no charge accumulation and ET=0. Thus under
conditions of charge neutrality the product of eF (T) and
the area is the current that follows in the external
circuit.

states that there are two sources of the displacement
current: (a) that in the motion of the mobile charges
themselves and (b) that due to the current f(l),
supplied to the ends of the diode by the external circuit.
Subscripts denote partial differentiation. This equation
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Units are now chosen such that charge density is
relative to Na, i.e., e(x,T)=—N(x, T)/No. Field strengths
are in terms of a characteristic intensity, E,

g= E/E
Time is measured on a scale of the dielectric relaxation
time

r = ((4me/a)p(E )No)-'
147 617

Ex(x,T) =4se/x(N(x, T)—¹), (3)

where x is the dielectric constant and Eo the fixed,
uniform, neutralizing background charge. (We use
capital letters to denote variables in dimensional form. )
Differentiating Kq. (3) with respect to time and
substituting from (2), we find
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such that t=—T/r ', p(E ) is the mobility for the character-
istic 6eld E . Finally, the natural length is the drift
distance in time r of a particle with velocity V(E ).
Italic x is the dimensionless spatial coordinate. Scaling
Eq. (4) in these units, Eq. (1) is derived; furthermore,
Eq. (6) below is a dimensionless form of Eq. (3).

Features speci6c to the model appear when in turn
we write

j(x,t) =n(x, t)v(8), (5)

where v(8) is the average field-dependent drift
velocity. v is assumed to be an instantaneous and local
function of 8 alone. From Poisson's equation we
further relate the space charge to the 6eld gradient,

n(x, t) = 8.(x,t)+1. (6)

Substituting into Eq. (1) the expression for the current
(5), we derive the equa, tion of motion of the space-
charge wave,

8 +v(8) 8*= v(8)+—f(t) (7)

It is this nonlinear partial differential equation which
is central to all further discussion.

v(8) will simply be taken to be a known functional
form. For example, with a two-valley mechanism
operative,

v(8) = 8L(ng+an2)/nj,

and we can expect behavior as depicted in Fig. 1., since
the fraction of carriers in the lower valley depletes
with increasing 8. Here, a is the ratio of the two
mobilities.

METHOD OF SOLUTION

The solution of Eq. (7) may be reduced to straight-
forward procedures, and the process of reduction lends
some insight into the physical consequences of the
equation, The general approach is by the method of
characteristics. 7

If a line x=X(t) is chosen on the (x,t) plane, then
along that line

d 8/dt= 8,+8&X/dt (g)

If 8 satisfies Eq. (7), then demanding that

dX/dt =v(8) (9)

gives, by use of (7) and (8), the ordinary ditferential
equation

(10)d 8/«= v(8)+f(t), —

8= 8(t 8p)

which is the equation that 8 satisfies along a "character-
istic line" specified by (9). Notice that once 8(t) has
been obtained from Eq. (10), Eq. (9) may be used to
determine the path of the characteristic line. If the
solution of (10) initiates at 8= 8p when t=0, then
the solution

may be re-expressed implicitly as

8,=y(8, t) (12)

v(E)= f

which will be the convenient form for subsequent use.
Since 8= 80 when t=o,

y(8,0)= 8.
Several interesting features of the solution of (7)

may be anticipated by considering the case of fixed
external current (f=const. ). Equation (10) for 8 along
a characteristic line then becomes

d 8/dt = v(8)—+fp,

and the tendency of 8 wi)l be determined by the
signature of the right-hand side. The result will ev-
idently be as shown in Fig. 1:
Thus On a characteristic line 8 will tend toward a value
where

v(8)= fp,

and where v(8) has positive slope Not. ice at the three
intersection points Eq. (10) integrates trivially to

8= constant,

whereupon Eq. (9) integrates to

X(t) =X,Pf,t.
If for example the initial condition 8p(x) is as shown in
Fig. 2, then the values 8~ and 82 will have loci on the
(x,t) plane as shown in Fig. 3. Also shown in Fig 3are.
the curved characteristic lines originating from other
initial values of x. The tendencies of these characteristic
curves may be straightforwardly deduced by working
between Fig. 1 and Eq. (9). In the range of 8(8,
that is for characteristics not originating between x
and x

dX/dt~ fp,

but in the inner (or "anomalous" ) region the character
istic stopes diverge from that of X(t) =Xp+fpt.

It is further to be noted that the x~' and x2 character-
istic lines have the interesting property that their near
neighbors converge toward them. In the case of x~' a
collision seems possible; in the case of x2 it seems
inevitable. Where two characteristics touch there will
be a discontinuity in 8(x,t). This is the condition for

' F. B. Hildebrand, Advanced Calculus for Engineers (Prentice-
Hall Publishers, Inc. , New York, 1949), p. 868. FIG. 1. V(8) arith anomalous region.
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the formation of a shock front. Equation (7) will now

be solved, and the criteria for shock formation will be
explored quantitatively.

In the special case of 8 space-independent, Eq. (7)
reduces to the ordinary differential Eq. (10) whose
solution is (11).A second evident solution to (7) is

8= —x+ f(t')dt' (14)

From these two particular solutions a solution satisfying
any specified initial conditions may be constructed in
the following manner: A solution of (7) may be written
implicitly as

e(,xt, 8)=0.

X, X X X XQ X

Fn. 3. Characteristic curves, f=constant.

Using the implicit differentiation identities

6*=-(~*/~.), h =-(~/~ ),
Eq. (7) becomes

+ +v(&)p*+ ( v(h)+—f(t))ps= o (15)

~0 (X)

!
X1 X Xq

I

I I

! I

QX X)p

Fzo. 2. Typical initial pulse h0(x).

that if +~ and +2 are both solutions, then

O'= G('ky, 4o)

is also a solution for any diRerentiable function G. This
property is easily checked by direct substitition back
into Eq. (15).

From Eq. (12)
+ =4(@)

This equation is not only linear; it has the property

y(s, t)= Bo~ x+8— f(t')dt' y(8, t)—
~
. (16)

When t=0, by Eq. (13) the above expression becomes

8= Sp(x).

Thus Eq. (16) is a solution satisfying the initial condi-
tions of the problem.

SHOCK-WAVE CRITERIA

In this section the solution is analyzed for the
appearance of discontinuities. On physical grounds
there are three regimes in which such shocks are
anticipated:

(1) The anomalous region vo(0. The lower ampli-
tudes in the wave are running faster and we look for
undercutting on the trailing edge of a pulse as, for
example, in Fig. 2.

(2) The Ohmic region v p) 0. The situation is
reversed and consequently cresting is a possibility on
the front of the wave since higher fields are now moving
with greater velocity.

(3) When hp(x) contains So. The wave form "tears";
i.e., on the high-field side it grows towards 83 while
below it relaxes back to S~.

To derive the criterion both sides of Eq. (16) are
difterentiated with respect to x,

is a solution; from Eq. (14)
or

4o@.= (—4o@.+h.+1)bo. ,

e,= 6+x— f(t')dt'
4 p(1+1/ho*) —1

(17)

is also a solution. Suppose the initial value of 8(x,t)
is hp(x). Now let

G(+i,+p) =+i—bo(+p —+i)

which is also a solution to Eq. (15).An implicit solution
to Eq. (7) will thus be given by

G=O,

A singularity sets in whenever the denominator
vanishes, i.e., when

@p.=4.(t)/L1 —pt. (t)j. (Ig)

This is interpreted to mean that along a characteristic
line a given initial slope 80, will turn into a shock when
p, (t) has unfolded to the point of satisfying the condi-
tion expressed by (18). (Physically, P, measures the
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degree of steepening of the 6eld gradient: it is the
ratio of the initial gradient Q/8x to that at time t,
b8/Sx. )

Proceeding further, an expression can be obtained for
Since 8 obeys Eq. (10) and is continuous in p,

differentiation of Eq. (10) by P gives

which vanishes at t~ ~ since v, (8&) is intrinsically
negative. Thus by (18) any positive initial gradient
starting at 6eld 8~ will eventually develop into a
trailing-edge shock.

The behavior of the electric field along the corre-
sponding 8= 8v characteristic line on the front side of
the wave is radically diBerent. This may be seen by
solving Eq. (17) for the condition that

Equation (13) furnishes the initial condition 8q(0) =1.
Solving directly for 8&, The result is

8,—

whence

8q =expl — vgCt' l,i
t

Q&
=exp eel'

0

(19)

Specializing to f(t) = fo, Pz can be expressed in closed
form by explicitly carrying out the integration and
we find

0 (t)=
L
—v(0)+foj/[ —v(8)+foj (2o)

Two cases exist depending on the initial value, p:

(1) 8 ($(8s. the anomalous or "negative slope"
region. From Fig. 1 it is observed that the denominator
of (20) erst increases and then decreases. Therefore P,
starts at unity, takes a m&»mal value and then increases
without bound. Moreover the minimal value of p~ is

(4.)-=L
—v(4)+fvj/[ —v +f0&

where v is the extremum value,

=v(8 ) or v(8s).

Referring to the criterion Eq. (18), since for t small
qh~&1, for all initial 6eld gradients such that

whence either

or
8p, ———1.

or equivalently for
rt(x, t) &~0,

8.(x,t) & —1.

(21)

Equality implies complete carrier depletion. In the
paragraph above we have shown that if this physical
limitation is not exceeded initially in our model, then
it will never be exceeded, but will be approached
asymptotically on the leading edge 8= 8~ characteristic
line. Also it should be noted that the limitation (21)
prevents the occurrence of shock-fronts in ordinary
Ohmic materials.

Thus if 8 does not start at —1, the only way for it to
achieve that value is p~-+0. This happens only on
the characteristic line 8= 82. If the slope initially is
never less than —j., this slope will never be exceeded
during the development of the wave, but will be
approached asymptotically along the 8= 82 character-
istic line.

It should be pointed out here that Eq. (6) is physically
reasonable only for

a shock is inevitable. Furthermore since 8p is positive,
when this shock appears it is located on the back side
of the wave.

(2) 8(8 or 8&8s. the "positive slope" region. p,
monotonically increases. The criterion Eq. (18) implies
that in order for a shock to develop 8p must be sui%-
ciently negative:

Equality is the criterion at f ~ . Since 8p is negative,
the shock is on the foreward side of the wave.

Finally it must be remarked that for /=82 any
initial form eventually develops a discontinuity on the
trailing edge no matter how gentle the initial slope. This
is the tearing phenomenon mentioned earlier. It follows
directly from Eq. (19) that since 82 is a point of equilib-
rium, 8(t) = 82, a constant. Consequently,

y, = exp[v, (8,)tg,

FURTHER REMARKS

A relationship exists between the f const solutions
of Eq. (7) and the problem of Gunn oscillations. With
f constant, any characteristic of 6eld 8& or 8, will
maintain that Geld, and propagate at velocity f Any.
characteristic at another 8 value will approach either
8~ or 83 asymptotically. To within the approximations
of Eq. (7), a wave form such as that shown in Fig. 2 will
tend to a final con6guration as shown in Fig. 4.
Since

J= (8 +1)v(8)

v(8g) = v(8,)
the current j will assume a constant value except where
8 is changing. The current Qowing into and out of the
ends of the diode subsequently will be constant until
the pulse arrives at the end. The condition of constant
current is equivalent to f=const in the formulation
of Eq. (7).
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as shown in the figure. The situation is evidently one of
two advancing walls of opposite charge. Thus asymptot-
ically the system tends to the form of an advancing
dipole layer.

It should be remarked that the streaming velocity
of the pulse may in fact depart somewhat from the
velocity f used in Eq. (22). This is because Eq. (10)
permits 8 to change along a characteristic line. Assum-
ing a streaming velocity c, and a streaming form

8(x,t) = 8(x ct—),
Eq. (7) becomes

(-c+w(8))8,= s(8)—+f,

Once the pulse has arrived at the end of the Gunn
diode, the subsequent history of f(t) will be determined

by external considerations (in particular the impedance
characteristics of the voltage supply and the boundary
condition at the input terminal of the diode) until the
asymptotic pulse form is again established.

In regions of abruptly changing 8, as shown at a and
b in Pig. 4, diffusion type processes may be expected to
dominate, and the description furnished by Eq. (7)
becomes inadequate. However, the general form of the
charge and current profiles accompanying the pulse
may be deternxned by using only conservation of
charge. Given the traveling wave form

n(8) —c

s(8) f—
In the vicinity of V (8~)= f, the integral behaves as

*—*,=[(c—f)/;]h ( 8—8,),
or

8= 8,+exp[s, /(c —f)](x—x,), (25)

in accordance with the previously known behavior in
the vicinity of field strengths 8&, 82, 83. In the vicinity
of V(8s) =c the integral behaves as

x—xg —[e,/(c —f)]-,' (8—8()',

8= 8&~{2[(c—f)/s&](x&—x))'". (26)
8(x,t) = 8(x ft), —

the charge density,

N(x, t) = 8,(x,t)+1,
is similarly

e(x,t) =N(x ft), —

whereupon the continuity equation

(22) or

As x —+ x~, 8~ 8~, but the slope of 8 becomes infinite,
and the solution Eq. (26) ceases to exist for [(c f) /sa]—
X (x—x~))0. Thus Eq. (26) furnishes the asymptotic
condition for attachment between a slowly varying
solution and a shock front. The details of attachment
are beyond the scope of Eq. (7), and will be discussed in
a subsequent paper.

eg+j,=0,
gives

I'zo. 4. (a} Steady propagating pulse; (b} associated current, j.
which has the immediate integral

Or
fm.+j.=0—,

j(x,t) =fn(x, t)+ const
=f(8,(x,t)+1)+const,
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