
STARK EFFECT IN Cs AN D Rb D LI NES

from '~Rb signals. Qualitatively, the results are similar

to the cesium results. There are two features worth

pointing out. First, the polarizabilities are smaller.

Second, Eq. (12) is much better satisfied than in the
case of cesium. This corresponds to the fact that the
spin-orbit splitting in rubidium is much smaller than
in cesium. In Table lI the measured polarizabilities
are compared with calculations based on the Bates-
Damgaard method. Agreement here is also excellent.

The electric field was taken from the relationE= V/d.

TABLE II. Rubidium polarizabilities (10 ' cm').

~(5~I/2) ~(5PI/2) 0.(5P3/2&)) ~(5P3/2+ f)

Bates and Damgaard 46 116 108 151
Measured~ 40(5) 112(17) 102(15} 148(23)

'The measured value for a(SsI/3) is taken from Ref. 9.

Our plates are sufficiently narrow relative to the length
and height that this expression should hold to about
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Configuration interaction is applied to the I' helium continuum between the Grst- and second-quantum
thresholds. Discrete configurations are included which give rise to auto-ionization levels (resonances).
DifFerential oscillator strengths are presented for the nonresonant region, while positions, widths, and g
values are given for the six lowest-lying resonance levels.

I. INTRODUCTION
' 'N the present paper we apply configuration inter-

action to the calculation of 'I' continuum states of
helium in the energy range from 0 to 40 eV above the
first ionization threshold, which contains a number of
auto-ionizing levels. These levels give rise to resonant
structure in the photo-ionization cross section or,
alternatively, produce resonances in the elastic scatter-
ing cross section for electrons on He+. %bile auto-
ionization should be present in the continuous spectrum
of all elements, a considerable amount of experimental
and theoretical effort has been devoted to helium, as it
is the simplest system displaying the phenomenon.
Recent papers are listed' '; these may be consulted for
earlier works on the subject.

To find the positions and structure of the levels, the
projection operator formalism of Feshbach has been
applied with success."'These calculations neglect the
background continuum and thus provide no information
on the line widths; however, Burke and McVicar'
(hereafter called HMc) have treated the problem in the
close-coupling approximation and have obtained values

*This research was supported in part by the National Aeronau-
tics and Space Administration under Grant No. NGR-29-001-008.

' J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Letters 10,
518 (1963).' R. P. Madden and K. Codling, Astrophys. J. 141, 364 (1965).' T. F.O' Malley and S. Geltman, Phys. Rev. 137, A1344 (1965).

4 P. Altick and E. N. Moore, Phys. Rev. Letters 15, 100 (1965).' P. G. Burke and D. D. McVicar, Proc. Phys. Soc. {London)
86, 989 (1965).' L. Lipsky and A. Russek, Phys. Rev. 142, 59 (1966).

for the position, widths, and q values' of the low-lying
resonances.

The above authors have established that the auto-
ionizing levels are associated with doubly excited
configurations of helium. Thus we choose wave func-
tions consisting of doubly excited configurations in
addition to configurations for describing the Is-kp
continuum. The resulting states show resonant be-
havior; we compute the positions, widths, and q values
of the six lowest lying I' auto-ionizing levels, as well as
differential oscillator strengths over the entire energy
range. A six-parameter Hylleraas ground-state function
was used in these calculations. The results are in good
agreement with BMc; the relationship between our
method and the close-coupling approximation is
explored in Sec. lI.

Pano' has laid the groundwork for the use of con-
figuration interaction in the analysis of auto-ionization
but his treatment depends upon a prediagonalized con-
tinuum and does not immediately lend itself to a
numerical calculation. Fano and P rats' have also
formulated the problem avoiding the prediagonalized
basis, an approach which differs from ours primarily
in the suggested method of solution, where we follow a
previous paper by one of the present authors. "

' For a dehnition of q value, see Ref. 8.' U. Fano, Phys. Rev. 124, 1866 (1961).' U. Fano and F. Prats, Proc. Natl. Acad. Sci. India A33, 553
(1963)."P.Altick and A. E. Glassgold, Phys. Rev. 133, A632 (1964).
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II. THEORY

An excited state 4'~ is constructed from a linear com-
bination of determinantal functions representing dis-
crete and continuum con6gurations of helium. With
such a state, we attempt to satisfy the Schrodinger
equation

(2.1)

for any value of energy E above the is-kp threshold.
The usual helium Hamiltonian in atomic units is

will produce

s;(z—Bq)=x'sv;.+Jd 's. r;. , (2 6)

where the prime on the sum indicates that the term for
i= j is to be omitted.

Notice that a, has a singularity for e= E; to obviate
this difFiculty, we make the substitution

b.—=a.(E—e) .
Equations (2.5) and (2.6) become

The function 4'~ is then a superposition:

(2 2)

and

b, =g u, V„+
de'b, V„

(E—e')
(2.8)

4'~=+ ay/, + d~'a, f;, (2.3)
a;(E—E;)=P' a~V;;+

deb, V;,

(E—~')
(2 9)

dr ggf;*Pf;=E;, —

drying, *HQ;=V.;, —

(~&j),
(2.4)

drys, *BP;= e'b (e e')+ V„,— —

where the summation covers the discrete con6gurations
and the integration runs over the is-kp continuum.
(The method of calculation presented here is not limited.
to a single continuum, however. ) The subscript i de-
notes all the quantum numbers necessary to specify a
particular con6guration. For the continuum function
P, the subscript ~' refers to the sum of the free-electron
asymptotic kinetic energy and the 1s electron bound
energy. For convenience of notation, we have suppressed
the E dependence of the a coeKcients.

Among the bound states chosen, as will be discussed
later, are those corresponding to the con6gurations
1s-np as well as a number of doubly excited levels. The
inclusion of the latter is necessary in order to observe
resonances in the phase shifts or photo-ionization cross
sections.

Adopting the notation,

Equations (2.8) and (2.9) still possess a singularity in
the integrands for e'=E, but one which can now be
treated formally with the aid of the relation

1 1
= I' +P(E)b(E—e') . (2.10)

(E e') E—

The expression (2.10) is meaningful only in an inte-
grand, where the P indicates a principal part integration
is to be performed. The second term contains an un-
known eigenvalue P(E); it is an eigenvalue in that,
once E is selected, there is a unique value of P (E) which
will allow the equations below to have a solution. D ater
it will be shown that P(E) is closely related to the phase
shift of O'E.j

Insertion of Eq. (2.10) in (2.8) and (2.9) produces

d&'b, .V„.
+P (E)b~V, g, (2.11)

(E—~')
and

A'b, .V,„
&~ (E—E~.)=2' &'V~'+~

(E—~')

+P(E)b g V)s. (2.12)

Equations (2.11) and (2.12) are the basic relationships
of the configuration interaction; the method of obtain-
ing a solution for them is discussed in Sec. III. After a
solution to the set of equations is found, we apply
the normalization condition

for matrix elements, substituting Eq. (2.3) into (2.1),
multiplying by f,* and integrating yield

dr)2+x kg. 8(E E'), —— —(2.13)

a, (E e) =P a;V,~+ d—e'e, V„. (2.5)
which determines the eigenvectors completely, giving

On the other hand, multiplication by P; and integration

deb, f,
+P(E)44 ~ (2 14)

(E—~)
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The calculations of photo-ionization cross sections or
differential oscillator strengths require a ground-state
function, +0, for helium in addition to +E. For this
purpose, a six-parameter Hylleraas function was em-

ployed in most of the work. The oscillator strength in
atomic units (a.u.) may be found from the dipole-length
expression

as a function of E in the neighborhood of a resonance,
where T is the length or velocity operator, and O'E' is
the excited-state function with resonance configurations
excluded (Hartree-Fock). According to Fano, ' Eq.
(2.20) should have the form

(v+ &)'/(1+ h") (2.21)

df hF. +& 2

2 I&+sl 2 r'I+o&l'
g M=1 4~1

or alternatively from the velocity expression

(2.15)

with h=—(E—E,)/(-,'I'); thus g may be found by a
least-squares fit.

It is of interest to compare our procedure with that
of the more elaborate close-coupling approximation
which has been applied by BMc to He+. The close
coupling wave function for a I' state has the basic form

(2.16) A [P&,(r&)F&(r2)+F2, (r&)F2(r2)+P,„(rg)F8(r2)], (2.22)

where 3E is the excitation energy and the M sum refers
to the 'I' substates.

For the calculation of the phase shift g, we follow a
procedure essentially the same as that of Fano, '
leading to

g= —tan '[s/P(E)]. (2.17)

The phase shift has two contributions arising from the
screening of the is electron and from the interaction of
the resonance levels with the continuum. The former
effect is not included in Fano's phase shift as a result
of his continuum prediagonalization.

The phase shifts and oscillator strengths are all the
physical information that we can obtain, but when a
resonance is being described these quantities are usually
replaced by positions, widths, and line profile indices

(q values). To find the width I' and position E„of a
particular resonance, two approaches are used. First,
we fit the phase-shift-versus-energy curve in the
vicinity of a peak by an expression

I/2
go+gIE+tan '

jV
(2.18)

const

(I /2)'+ (Z—Z,)'
(2.19)

given essentially in Eq. (13) of Ref. 8. The g values are
found by plotting

I
&+~12'I +o) I'/I &+~'I 2"

I +0& I' (2 2o)

which is used by BMc to describe an isolated resonance.
[The first two terms in Eq. (2.18) account for the
slowly varying background. ] In the other method we
obtain eigenvectors of the resonant states neglecting
all is configurations, an approach described in Ref. 4.
The square of the projection of this vector upon the
full eigenvector is then plotted versus energy. The
result is a Breit-signer resonance shape, from which
the width and resonance position may be found by
fitting to the form

where P&, (r~) is the 1s orbital for He+, etc., the F's are
arbitrary functions of the proper symmetry, and 3 is
the antisynunetrizing operator. To determine the F's
between the 1s-kp and 2s-kp thresholds, Fq is given the
form of a free state asymptotically while Ii2 and Ii3
vanish exponentially for large r. Determining these
functions by the application of Schrodinger's equation
yields an expression which implicitly includes all
configurations of the proper asymptotic form in which
one electron is in either the is, 2s, or 2p states of He+.
Some of these configurations give rise to resonances,
which are observed by a sudden increase in the phase
shift by x over a narrow energy range.

The wave function used in the present paper can also
be written in the form given by Eq. (2.22), but now the
F's are sums of selected orbitals. As more and more
orbitals are included in these sums, our wave function
approaches the close coupling function. However, with
little trouble other configurations could be added which
are not present in Eq. (2.22), e.g., 3s-3p, making the
method quite flexible.

On the other hand, if the second and third terms in
Eq. (2.22) are omitted, one has the Hartree-Fock
approximation. Inasmuch as our wave function con-
tains all possible configurations with one electron in
the 1s state, the solution of Eqs. (2.11) and (2.12) with
all resonant configurations missing should yield the
Hartree-Fock results, which is shown to be the case
in Sec. IV.

III. NUMERICAL METHODS

The numerical problem has three main parts: (a) the
reduction of the linear integral equations to algebraic
equations which may then be solved by standard
techniques; (2) the choice of a basis set and the com-
putation of the Coulomb matrix elements which appear
in the basic equations; (3) the calculation of oscillator
strengths and resonance parameters. These are
discussed in turn.

Ke wish to express the principal-part integral
appearing in Eq. (2.11) or (2.12) as a finite sum. In
order to accomplish this, a high-energy cutoff is chosen,
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and the resulting energy range is divided into a mesh.
We want to find the values of b, at the mesh points. For
a well-behaved integrand, all that remains is to employ
a numerical integration scheme, a procedure not ade-
quate here because the integrand is rapidly varying near
the point at which the energy denominator vanishes.
Thus we apply a modified Simpson's rule: (1) by
breaking the total integral into a sum of integrals, each
one over three mesh points; (2) in each integral, by
expressing the slowly varying factors in the integrand
(b„V„)as a power series in energy, retaining linear and
quadratic terms; (3) by evaluating the remaining
integrals exactly. For example, consider

eN+2D e

eN

V-.b.
de

(E—a)
(3.1)

~N+2h e

t de
&N

(3.3)

which are done exactly. The net effect is to replace the
original integral by a series of terms involving b. at the
mesh points. This approach is limited by how well the
functions b, and V„can be represented by a power
series over the intervals used; in practice such an
approximation proved excellent as these functions are
slowly varying with energy.

The continuum is thus replaced by a 6nite sum, but
we must still treat the 1s-np infinite sum which occurs
in the bound state terms. We include explicitly the
terms up to n=9 and replace the remaining terms by
an integral, i.e.,

(3.4)

where j runs over the states 1s-10p to 1s-~p and ET is
the threshold energy. We have now extended the range
of the continuum below threshold. Treating the integral
as described above will lead to the appearance of b~„,~
in the equations. In order to avoid enlarging the size of
the matrix, we make the replacement

b~„,„=27ag, g~(E—Eg, 9~). (3.5)

Equations (3.4) and (3.5) are justified in the Appendix. "
The set of integral equations is now reduced to a set

"The states which we are treating approximately here are only
important for E=Ez. For higher energies, they could be omitted
with negligible effect.

where e~ is a mesh point and he is the mesh spacing.
We write

b, =go(e~, h~)+gg(e~, he)e+g2(e~, he)e', (3.2)

where the g's are linear combinations of the b, 's evalu-
ated at the mesh points. A similar expression is used
for V„, and we are left with integrals of the form

of algebraic equations. The basis consists of (properly
symmetrized) two particle eigenfunctions of angular
momentum which are constructed from products of
hydrogenic functions. The configurations used are
1s np (e-=2, 9); 1s-kp (k=0, 3.0 a.u. in intervals of
0.2 a.u.); 2s-ep (n= 2, 5); 2p ns (e-=3, 5); 2P-gd
(n=3,5).u In the 1s configurations the choices Z=2
for the 1s orbital and Z= 1 for the p orbital were made,
a selection which makes the potential for the p orbitals
asymptotically correct. The remaining con6gurations
are included for the purpose of analyzing the resonances.
For this task, the choice Z=2 for all of these orbitals
gives good results. ' Note that the basis of two-particle
functions is still an orthogonal set.

The Coulomb matrix elements were found by evalu-
ating exact expressions for those integrals involving
no more than one continuum function, and were done
numerically otherwise.

The eigenvectors are obtained by diagonalizing a
34&(34 matrix. The problem is not a conventional
eigenvalue problem, however, because the eigenvalue

P(E) always appears as the coefficient of bJ, in Eqs.
(2.11) and (2.12).Thus the characteristic equation is of
order 1 instead of 34. We solve these equations using
procedures described in Ref. 10."

In order to evaluate the expression in Eqs. (2.14)
and (2.16) the dipole elements between the ground state
and each of the basis set were found. The remaining
integral over the energy was evaluated by the same
method as was used in reducing the set of integral
equations to algebraic equations.

IV. RESULTS AND CONCLUSIONS

We 6rst discuss the oscillator strengths in regions far
from the resonances. These were calculated initially by
omitting all resonant configurations from the matrix, an
approximation which corresponds to the Hartree —Fock
method for calculating continuum states. Since such
calculations have already been done" ", we were able
to check our numerical work. The comparison is given
in Table I, showing that our procedure can reproduce
the Hartree-Fock results. Stewart and Webb" used a
Hylleraas function different from the one employed
here, a fact which may account for the discrepancy at
threshold in the length values.

Values of the oscillator strength at various energies
are presented in Table II. We include the results of a

"The high-energy cutoff (k „=3.0 a.u.) was determined by
performing calculations with several values of k and insisting
that the results in the energy region of interest did not change
with successive values.

"In the neighborhood of a resonance, it was necessary to solve
Eqs. (2.11) and (2.12) for closely spaced values of E. The equa-
tions were solved on the average for ten different values of E per
resonance."A. L. Stewart and W. J.Wilkinson, Proc. Phys. Soc. (London)
75, /96 (2960).' A. L. Stewart, T. G. Webb, Proc. Phys. Soc. (London) 82,
532 (1963).
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TAszE I. Comparison of Hartree-Fock calculations. Column A
lists the work of Stewart and %'ilkinson (Ref. 14), column 3 the
work of Stewart and %'ebb (Ref. 15}.

Energy
above

threshold
{Ry)

0.0
0.2
0.5
1.Q
2.0

df/dE in length (L}and velocity (V) formulations

A 3 Present paper
L V L V L V

0.898 0.890 0.916 0.886 0.894 0.886
0.792 0.758 0.788 0.768

0.638
0.450 0.419
0.239 0.222

0.638
0.449 0.422 0.440 0.418

0.234 0.224

calculation performed with a three-parameter Hylleraas
function, the purpose of which was to observe the eGect
of ground-state modi6cation. Recall from Sec. II that
the close-coupling approximation implicitly includes all

resonant conhgurations in which one electron is in

either the 2s or 2p state of He+. Therefore, a comparison
of results with BMc indicates the importance of the

configurations which were omitted in the present paper,
although there may be also an e6ect from the ground
state since BMc use a 21-parameter function.

A study of Table II shows that the 6-parameter
velocity results come nearer to the close-coupling
values than the length results do, which seems to
indicate that the velocity formulation is to be favored.
On the other hand, this conclusion does not readily
follow from the 3-parameter values. Note also that the
difference between the length and velocity values is
smaller with the 3- than the 6-parameter function.

Our conclusions are as follows: (1) The resonant
states have a very small eGect on the continuum
oscillator strengths at nonresonant energies. The agree-
ment between the 6-parameter velocity values and BMc
then is due to the unimportance of the omitted con-
6gurations. (2) The velocity formulation is to be pre-
ferred over the length. The agreement between length
and velocity results is a necessary but not suQicient con-

TAaLz III. P-wave phase shifts in radians. "Full matrix" means
that the resonant conigurations are included.

Energy
above

threshold
{Ry)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

BMc

~ ~ ~

—0.0605—0.0631—0.0641—0.0636—0.0622—0.0600—0.0571—0.0536—0.0495—0.0447—0.0388—0.0302

Full matrix

—0.0667—0.0735—0.0769—0.0782—0.0782—0.0769—0.0750—0.0721—0.0688—0.0649—0.0605—0.0533—0.0479

Hartree-Fock

—0.0731—0.0772—0.0792—0.0798—0.0794—0.0779—0.0760—0.0735—0.0707—0.0674—0.0642—0.0608—0.05?2

400-

N

s
CL,
Ol ~I

500 .

200-

dition to guarantee accuracy. The 3-parameter results
provide us with an example of length and velocity in
good agreement with each other, but not agreeing with
more elaborate calculations.

It is interesting to compare our phase shifts with

TAsLz II. The differential oscillator strength (Ry ') at nonreso-
nant energies in the length {L)and velocity (V) formulations.

Energy
above

threshold
{Ry)

BMc
df/dE

6-parameter
L V

3-parameter
L V

l00-

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

~ ~ ~

0.7779
0.6678
0.5758
0.4990
0.4348
0.3812
0.3363
0.2984
0.2664
0.2395
0.2172
0.2003

~ ~ ~

0.7628
0.6532
0.5634
0.4870
0.4245
0.3722
0.3283
0.2915
0.2603
0.2338
0.2120
0.1956

0.890 0.879
0.790 0.762
0.684 0.650
0.593 0.559
0.514 0.483
0.449 0.421
0.391 0.368
0.345 0.324
0.303 0.286
0.271 0.255
0.242 0.228
0,217 0.2Q6
0.200 0.189

0.873 0.901
0.776 0.781
0.673 0.666
0.584 0.572
0.507 0.494
0.443 0.429
0.387 0.3?5
0.342 0.330
0.301 0.291
0.270 0.259
0.240 0.231
0.216 0.2Q9
0.198 0.191

EO Pp Pp Q) % 40

Electron Volta Above Ground Stote-

FIG. 1. The squared amplitude of the 2s —2p discrete state
{42, 2~) in the full wave function near the {2—2)+ resonance.
The width I', the position, E„, and the energy shift due to inter-
action with the continuum 6, are shown. The )('s are the com-
puted points; the solid curve is the Gt to a Breit-signer form.
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TAmE IV. 'P resonance parameters. The energy is measured from the ground state of helium in eV. Column C lists values of Madden
and Codling' which are points of maximum absorption, differing by a fraction of a width from E,. The notation a, —b indicates
a&(10 . b,„and r are given in eV.

(2 —2)+
(2—3)—
(2 —3)+
(2-3)—
M
(2—4)+

60.3403
62.7906
63.7068
64.1451
64.1734
64.5367

Present paper

—9.0, —3
0.7, —3—1.7, —3
0.4, —3
0.2, —3
142$ 3

3.65, —2
1.59, —4
6.97, —3
5.55, —5

&5.00, —6
5.06, —3

60.2687
62.7726
63.6905
64.1342
64.1716
64.4811

BMc

—9.472, —3
4.548, —4—1.800, —3
1.277, —4
1.249, —4—7.687, —4

438, —2
1.39, —4
8.72, —3
5.03, —5
1.54, —6
3.69, —3

C (expt)E„r
60,123 3.8, —2
62.755
63.651 8.0, —3
64.138

64.462

a Reference 2.

those calculated by BMc. These data are given in
Table III, where we see that the addition of the 10
resonant con6gurations accounts for about one-third
to one-tenth of the discrepancy between BMc and
Hartree —Fock values.

The method of finding the position and. width of the
resonances is described in Sec. III. As an illustration,
in Fig. 1, a plot of the square of the amplitude of the
eigenvector for the (2—2)+ resonance is shown. "Also
shown is the position of the resonance before it is
coupled to the continuum. The shape closely approxi-
mates a Breit—Wigner single-level resonance form, a
characteristic of all the resonances treated here.

In Table IV the positions E„,shifts due to interaction
with the continuum 6„, and widths I' are listed along
with those from BMc and the experimental results of
Madden and Codling. ' The width of the 3d state was
not found because too few signi6cant figures were
carriedfor accuracy. A study of Table IV shows that
we are in good agreement with BMc.

All of the resonances are well described by Fano's
line-shape formula, Eq. (2.21). In Fig. 2, we plot the

line pro&le of the (2—3)+ and (2—3)—resonances
superimposed. The six-parameter velocity q values are
used. Since the observation of the shape of the (2—3)+
resonance is just possible, the 6gure illustrates that a
sizable improvement in resolution will be necessary in
order to study the shape of the (2—3)—.In Table V,"
we list our q values along with BMc and those of
Madden and Co@ing. The greatest diGerence between
the six-parameter results and BMc is less than 10% in
the velocity formulation and more than 20% in the
length formulation, a feature which is also present in
the three-parameter values, again emphasizing that the
velocity formulation is preferable.

Our results, taken as a whole, serve as an independent
check on BMc, inasmuch as many of the quantities
calculated there have not yet been measured.

%'e have shown that configuration interaction is
capable of giving reliable results for the continuum
differential oscillator strength as well as providing a
natural way to describe resonances. The procedure has
several advantages, such as: (1) the interaction matrix
elements need be computed only once. Thus the

IS.O-

Al
CU

'4l Lu+ + IO.O-
( q = —3.86
(p= i.se~io 'ev)

FIG. 2. A comparison of the (2—3)+
and (2 —3)—line profiles. Energy is
measured from E, for both curves.

5.0- (p= i ~ o'). -

—I6.0 —I2.0 -8.0 - 4.0 0 40 80
Energy (lO eV)

I2.0
l

I6.0

"The notation we use to designate the resonances is now well stablished. See Ref. 1 for an explanation.
'7 Note that the data in Table V are not consistent with the oscillator strengths in Ref. 4. An error in some of the dipole matrix

elements was recently discovered, so that the values of oscillator strengths in that paper are incorrect,
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TABLE V. Line pro6le indices for the 'I resonances. Column C lists the experimental results of Madden and Codling. '

Present paper
6-parameter
L V

3-parameter
L V

BMc C (expt)

(2 —2)+(2-3}-
(2 —3)+
(2—4)—
3d
(2 —4)+

—2.97—3.70—2.89—4.17

—2.81

—2.86—3.86—2.75—4.16

—2.39—3.83—2.21—3.53

—2.81—3.81—2.59—3.79

—2.17 —2.55

—2.59—3.02—2.44—3.30—0.10—2.42

—2.65—3.72—2.51—3.95
0.92—2.49

—2.80 (~0.25)

—2.0 (+1.0)

a Reference 2.

solutions at different energies involve only diagonaliza-
tion of a known matrix, a process which does not
involve much computer time; (2) the flexibility of
adding or subtracting con6gurations as their efI'ect is
understood; and (3) complete freedom as to choice of
basis. We hope that these points will allow application
to more complex atoms in the future.

APPENDIX

To arrive at Eq. (3.4), we assume that the energies
of the states 1s-10p to is-~ p are so closely spaced that
we may replace the sum over these states by an integral,

threshold, but we assume the validity of Eqs. (A2) in
the range from E1, 1o„ to Eg.

With the substitution given by Eq. (2.7) we have

(A4)

In order to arrive at Kq. (3.5), we observe that for
n&&1

const
hie —ay

n3/2

1.e.)

d~ —V. 'a '. const
V18—1L+,4

n3/2

The function V;,' is a continuous function of t., found
from V;, by any interpolation scheme; similar remarks
apply to a, '. We apply the equations

LEq. (AS) was checked with actual solutions for b» @,
and b~, o~ and was satisfied to 0.1%j. Applying
Kq. (AS), we have

This expression follows from Eq. (2.12) and the fact
that

(A1)

V =V'— b» goo= (9-/10)"b» o„, (A6)

to arrive at

(A2)

and using Kq. (A2)

b.= b» oo, (dm/do)'Io

Finally,

Z I'ma~ =
Er (dn

V;,'a, '=
Bla 10y E do

b~„„,= b» roo(10 /Z')'"= b» io&X 181', (A8)

doV;,a, . (A3) for our case in which Z= i. Combining Eqs. (A6) and
Bls-10)o (A8), the result is

The quantities V;. and a, are only defined above ig 27b1e 9p (A9)


