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The weak-field effective-mass-approximation calculations of the absorption coefficient in the presence of an
electric field for direct and indirect transitions at a normal (M) threshold are extended to an arbitrary
orientation of the electric field in an anisotropic solid. To do this, a systematic method of evaluating density-
of-states integrals arising in the electroabsorption or Franz-Keldysh effect is presented. Certain integrals
obtained in prior calculations at the M threshold which have not been previously evaluated are given in
closed form. This method is also used to derive the change in absorption coefficient, A« (E), occuring at the
saddle-point edges M and M, as well as the edge M3, for an arbitrary field direction in an anisotropic solid.
It is shown that there is a direct correlation between Aa (&) for the M, and M; edges, and also for the M,
and M, thresholds. Reduced masses of opposite signs, as in the M; and M, edges, give rise to two branches in

Aa(8).

INTRODUCTION

INCE the initial calculations of Franz! and Keldysh,?
there has been much experimental and theoretical
interest in the effect of an electric field on the absorption
of light in a semiconductor or insulator in the vicinity
of normal (M,) absorption edges. Tharmalingam? and
Callaway* have given the field-dependent optical ab-
sorption for direct transitions, and the theory for the
field-dependent absorption via indirect transitions has
been done by Penchina,® Chester and Fritsche,® and
Yacoby.” These calculations have been tested by direct
measurement of the change in optical absorption Aa
resulting from the application of an electric field®* and
by measurement of the field-induced change in re-
flectivity,’®=2 which can be related to Aa through the
Kramers-Kronig relations.!’® Used as a tool, the electro-
absorption effect has resulted in a much greater under-
standing of the optical properties and band structure of
germanium- and zinc-blende-type structures at energies
above the fundamental edge.**
In the weak-field approximations of Tharmalingam?
and Penchina® for the direct- and indirect-transition
optical absorption at an M, edge, solution of the equa-
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tion of an electron-hole pair in the presence of a uniform
electric field is required. This solution is the Airy func-
tion.!® As Elliott shows, the evaluation of the absorption
coefficient reduces to the problem of evaluating sums
over initial and final states of a matrix element weighted
by the probability of finding the electron and hole at
the same point of space,'® which in turn reduces to the
evaluation of integrals involving Airy functions. We
will present a systematic method of evaluating these
integrals and will apply this method in extending the
solutions in the weak-field approximation at the M,
edge to an arbitrary orientation of the electric field in
an anisotropic solid.

Optical absorption increases markedly not only at
M edges, but also for photon energies near any critical
point of the band structure, defined by Vi (E¢—Ey)=0,
which results in a singularity in the joint density of
states.” Band-structure calculations show that higher
lying critical points may be saddle points of type M,
and M, where one or two of the three reduced masses
are negative, or the point M; where all three are
negative.!® There is experimental evidence of saddle-
point transitions in electroreflectance measurements.!0!1
The electroabsorption theory for the edges M;, Mo,
and M3 will be derived in this paper by an application
of the method of evaluating Airy function integrals.
The change in absorption coefficient associated with
each of these critical points will be given as a function
of the direction of the electric field. We first define the
problem, then derive the necessary mathematical rela-
tions which are applied to obtain the electro-absorp-
tion results.

A. ELECTRO-ABSORPTION AT CRITICAL
POINTS

In the effective-mass approximation, the constant-
energy surfaces near the energy minima of the con-
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duction band can be approximated as quadratic
surfaces having three axes of symmetry, each with an
effective mass which can be designated as m.., m.,,
and m,,. For the normal M, edge, these masses are
usually all positive, and the corresponding quadratic
surface of positive curvatures is an ellipsoid. We con-
sider the hole masses in the valence band along these
symmetry axes to be ms, My, and my., respectively.
In relative coordinates of an electron-hole pair, the
reduced masses

m*=mempi/ (Meit-myi) (A1)

for each coordinate r;=x, y, or z, enter. The applied
electric field & is broken up into components &;, &,,
and &, along these three major axes.

To be consistent with Brust,'® we describe the edges
by the following sign conventions for the reduced
masses:

My: mg*, my*, m* positive,
Mi: mg* m,* positive, m.* negative,
M,: m.* positive, m;*, m,* negative,
My ms*, m* m.* negative.

Throughout the calculations, we will consider the
quantities uz, py, and p, to represent the magnitudes of
the reduced masses m.*, m,*, and m.*, and will explicitly
introduce the negative signs of the negative reduced
masses into the integrals which represent the sums over
densities of states. The signed quantities m.* will be
used in setting up these integrals.

The derivation of the direct edge electroabsorption
will essentially parallel that of Tharmalingam.® Using
the results of Bardeen, Blatt, and Hall, and Elliott!®
for the absorption coefficient, we find for direct tran-
sitions
e

2 C?|¢(0) |8 (Es— Ei— ) ,

nemiow i

a=

(A2)

where C¢® contains the matrix elements of the inter-
action, the sum is over all states in relative coordinates,
and ¢(r) is the properly normalized solution of the
relative-coordinate Hamiltonian

n 92 w92 n 92

___+ —_—
Im* a2 2m* Oy Im*

+e€-r+Ej¢()=0, (A3)

in the usual approximation which neglects the Coulomb
interaction between the hole and electron. Eq. (A3)
has the exact solution'®

¢()=C.C,C. Ai(—¢2) Ai(—4,) Ai(—&), (Ad)

19 J, Bardeen, F. J. Blatt, and L. H. Hall, in Photoconductivity
Conference (John Wiley & Sons, Inc., New York, 1956), p. 146.
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where Ai(x) is the Airy function, to be discussed in
Sec. B, and if we define

<pi3= 62 5,‘2/2;1”1«1'* (AS)
for each coordinate r;=x, vy, or z, then
ti= e/ hoitrh B (2m*e8:)\ 3, (A6)

where ¢; is the energy associated with the solution for
the coordinate ;. Obviously

E=etete. (A7)

The constants C;, which give a delta-function normali-
zation with respect to the energy integral over each e;,
are given by

Ci=N(e| &:|)"*/nhe:, (A8)

which is shown in Sec. B. N is the normalization con-
stant of the Airy function defined in Eq. (B2a). The
sum in Eq. (A2) may be converted directly into integrals
over e, €, and e, using the constants C,, C,, and C,,
obtaining after substituting for |¢(0) |2

465C2| 8,8,8,| N®
a(8)=

/ dezdéydéz

nemPor* S o2 0,2 2
— €z — €y — €z

x [Ap( ) Ai2<————) Aiz( )
ho, hoy ho,

Xa(Ey',_ €z+€y+ € h(d):l ) (A9)

where Ai?(x)=[Ai(x) 2. This is the integral which must
be evaluated to give (&) from which the experimentally
measurable change in absorption coefficient

Aa(8)=a(8) Ilsllr—n»o a(8) (A10)
will be calculated. As expected, the sign (direction) of
the field along any major axis does not enter as can be
seen from Eqgs. (AS) and (A9). Moreover, the sign of
the reduced mass, which enters through ¢; by Eq.
(AS), will not affect the prefactor of Eq. (A9), but only
the arguments of the squares of the Airy functions. We
will now introduce the signs of the reduced mass
explicitly by defining for each coordinate

02=| ¢i|3=*62/2hus, (a11)

which is consistent with Tharmalingam’s notation, his
work involving only positive reduced masses.

If we multiply Eq. (A9) by two to include spin
degeneracy, define the quantity

28CP (8uapyu:\'?
Rm (22}, (a12)

fuoncm? /A

which includes the density-of-states factor, and ex-
plicitly include the sign of the reduced mass according
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to the sign convention given earlier, we find Eq. (A9) takes the following forms for each of the critical points:

4RNS @ B —€s — €y —€;
My a(8)=——— / dede,de, Aiz( )AP(——) Ai2<—)6(E,—— fw+teate,+ e,)] , (Al13a)
mh2(0.0,0.)2 ] L ho. h, ko,
4RN® © B — € —€y +e.
M;: a1(8)=——————/ dede,de, Aiz( )Ai2< )Aiz( )S(Eg—hw-f—e,-i-e,,-}—e,)] , (A13b)
12(0.0,0,)"2 ) _, L\ 78, 78, 49,
4RN® *© [ +te +e, —€,
M,: a2(8)=——————/ dede,de, Aiz( ) Ai“’( ) Ai2( )B(E,,——hw-{—e,—i— et e,)] , (A13c)
T42(0,8,0,)2 ) L\ 70, 78, %0,
4ARN® - F e\ te\  /te
M;: a3(8)=——————f dedede, Ai”( Aiz( ) Ai“’( )B(Eg— hw—i—e,—{—e,,—i-e,):l , (A13d)
T12(0,6,0,)12 ] _, L\ 79, 49, 79,
in which all constants are positive. representations are?
We now show that there is a direct relationship )
between ao(&) and a3(8), and also between «;(&) and SN ® 1
a2(8). Suppose we replace e, ¢, and €, in Eq. (A13d) Ai(x _E . ds cos[3s'+as], (B2a)
with —e;, —¢,, and —e,. The result is
1 0
4RN = ds eia3/3+izs’ (BZb)

6 00
a3(8)=~—-——————/ dede,de,
mh2(0.0,0.)'2 J _

z —€ €z
><Ai2< ‘ ) AiZ( ") Ai“’(—e)
76, 70, 7,

X(Ey— hw—ez—ey—e.) .

(A14)

Since the delta function is an even function we may
multiply its argument by —1. But the resulting ex-
pression is precisely ao(&) given by Eq. (A13a) with
(Ey—#w) replaced with (Aiw—E,). Therefore, we have
shown

00(8) - (Eﬂ_hw))=a3(8’ (Ea_hw)) ’ (Alsa)
a1(8, — (E;—hw))=a(8,(E,—hw)), (A15b)

the latter following from a parallel treatment. We need
therefore obtain only ao(&) and «;(8) and the problem
is solved for all four critical points.

In order to proceed further, it is necessary to derive
relationships which can be used to evaluate the integrals
of Egs. (A13). These will be derived in Sec. B, and
applied and the results discussed in Secs. C, D, and E.

B. MATHEMATICAL RELATIONS
The defining equation of the Airy functions is?®

(B1)

where F (x) is either Ai(x) or Bi(x), the solutions regular
and irregular at infinity, respectively. The integral

® H. A. Antosiewicz, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of

Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 446.

2N J o
1 )
Bi(x)=;/ ds [e=#*14=s—sin (3s°+xs5)], (B2c)
0

where the normalization constant N is usually taken as
w2 or mr. It will be left as NV in the following so the results
will be applicable to either normalization, since both
are used in the literature.?

In order to evaluate most phase-space integrals, it
will be necessary to derive the integral representation
of Ai?(x) and examine the differential equation

@*F (x) dF (x)
=4y +2F (),
dx? dx

(B3)

which has the three linearly independent solutions
F(x)=Ai*(x), Ai(x) Bi(x), and Bi*(x).® By Eq. (B2b)

1 0
Ai2(x)= 4—Nz / ds dit eis*3+id33+iz(ate) | (B4)

If new variables o, v are defined as a=%(t—s) and
v=t+s, both of which range from minus to plus
infinity, the double integral of Eq. (B4) is converted
into a form in which the integral over o can be done
explicitly, giving

VT dy
AR (x)=—o / — cos[¥r*+xy+inr]. (BS)
2N? 0 \/ Y
2 Reference 20, p. 447.
2 The Handbook of Mathematical Functions uses the normali-
zation N =m. The N =+/r normalization is used by Landau and
Lifschitz (Ref. 15) and has been used in the previous weak-field

approximation electro-absorption work, for instance, Refs. 3 and 5.
% Reference 20, p. 448.
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The representations given by Egs. (B2) and (BS)
are improper integrals and care is required in inter-
changing orders of differentiation and integration when
these operations are performed on the representations,
e.g., it is not possible to equate (d%/dx®) Ai*(x) to the
third derivative of the integral in Eq. (BS) obtained by
interchanging orders of integration and differentiation:

Voo
- / dy v*2 sin[Fyy*+wy+ir]
2N% J,

and thus show directly that Eq. (BS) is a solution of

Eq. (B3). Equation (BS) is however, a solution in the
sense that

)/
Ai?(x)=]inl‘/‘ _73—5[(1112)7“+zv+rl4]
’ X cos[rFay+in] (B6)

is a solution, as can be easily shown. The limit is taken
following the differentiations.

Equation (B6) is a solution of Eq. (B3) for any
constant phase 8 replacing i in the cosine argument,
therefore the integral

F(x) \/T/wdy in[&y*+xy+ir] (B7)
x)=— | —sin[&Hy*+ay+inr
2N2 . \/’Y 12 4
must also be a solution of Eq. (B3), or
Vro e dy
— | —sin[FH¥V+xv+in
e Rt i1
=¢o Ai2(x)+c1 Ai(x) Bi(x)+c2 Bi2(x), (BS8)

where co, ¢1, and ¢; are constants. To evaluate these, we
obtain the asymptotic expansion of the integral for
large positive x. A contour integration over the rays
z=r and z=re*!("/®) gives

Vo e dy
[ —-sin[y+ar+i
2N2/;> Vv sl +artia]

VT e di
= —\Ze‘““z)‘“‘“/”“ sin[$V3xt+37]  (BY9a)
0
VT dt
~% Vte‘(””” sin[3V3xi+ 3]
0
T
——12, (B9b)

Since Bi?(x)~ (r/N2)x12%, Ai(x) Bi(x)~ (r/2N2)x 12,
and Ai?(x)~ (r/4AN?)x12~%, where {=22%2% we have
immediately c;=0 and ¢;=1. Evaluating Eq. (B8) at
x=0 gives ¢o=0, hence

Voo dy
= / < snlAy b= AiG) BiG),

% Reference 20, pp. 448-449.

(B10)
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We next consider integrals of the form I (x)= /¢° dt t»
XF(t+x), where F(y) is any of the functions Ai(y),
Ai'(y), or Aii(y), where Ai'(y)=(d/dy)Ai(y) and
Aii(y)= ;" dt Ai(¢). The corresponding integrals con-
taining Bi functions are all divergent. Integrands of the
form of products of polynomials and Airy functions can
be expressed as sums of integrals of this type, and
certain results will be useful in evaluating integrals
containing products of Airy functions, derivatives, or
integrals. We first obtain a reduction formula for these
integrals.

Since for >0

/ dtl"Ai’(t+x)=—n/ dt i1 Ai(t+x) (Blla)
0

0

d 00
=—/ dttr Ai(t+x), (Bllb)
dx 0

and for n>—1

0 1 0
/ dt i Aiy(t+x)=—— / dt i Ai(t+x) (B12a)
0 n+1Jo

=/ dx/ dtt» Ai(t+x), (B12b)
z 0

it is sufficient to consider integrals of the form

Jo” dt t Ai(t+=). From Eq. (B1) it follows immediately
that

/ dt t* Ai(t+x)
0

© d?
=f dt 11— Ai(t+x)
0 d

—x / dt i Ai(t4x) (B13a)

0
@

=|i;;2~—x] /0 " g Ai(t+x), (B13b)

where, in Eq. (B13b), [ (¢?/dx?)—x] is an operator upon
the resulting function of «. Equations (B13) reduce the
power of ¢ by 1, ending when the exponent # of ¢ lies
in the range 02 #> —1. The interchange of integration
and differentiation can be justified without difficulty.

Equations (B11b), (B12b), and (B13b) are useful
when the reduced integrals can be expressed in closed
form, obviously the case when # is an integer. Here,
reduction eventually yields a derivative, integrable
immediately, an integral /3 df Ai(+x) which is equal
to Aiy(x), or yields

/ dt Al (t+x)=—Ai'(x)—x Aiy(x), (B14)
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which follows from Egs. (B12a) and (B13a). It is
interesting to note that Eq. (B14) is equivalent to

/dx/w dt Ai()=x Ai;(x)+Ai' (x) (B15)

so all repeated integrals of Ai(x) can be expressed in
terms of Ai(x), Ai'(x), or Aii(x) multiplied by poly-
nomials in x.

The integrals can also be evaluated explicitly when
n is half-integral. Repeated application of Egs. (B13)
will eventually yield the integrals

fdlt‘1/2Ai1(t+x), /dlt“‘”Ai(l-}-x),
0 0

or

/ dt 712 A (t4-x).
0

By Eq. (B2a)

gy
/——Ai(t—[—x)
0 Vi

dt =
= — / du cos[ 3w+ xu+tu] (Bl6a)
VitJo

VT o r* du
=——/ — cos[ 3w+ xu+in], (B16b)
N 0 \/u
which by comparison with Eq. (B5) shows that

/ i Ai(tH2) =V AR (2/4) (B17)
0o V1t

where the constant k= 22/3, The same evaluation method
together with a comparison of the result to Eq. (B10)
yields

/ " i) = AiCe/) Bi(x/x). (B1S)
0 AVt

Equation (B17) and (B18) give the very useful integral
vepresentations

A ! " A ) B19.
Px)=— [ — Ai(t+«
i2(x) - /; v i(t4«x), (B19a)

1 r>d
Ai(x) Bi(x)=5/0 :/%Ai(xx—t) , (B19b)

where «=2% and the normalization constant N is
defined in Eqgs. (B2). The integrals in Eqs. (B19) can
be shown to be solutions of Eq. (B3).

From Eq. (B17) we obtain by differentiating and
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integrating with respect to x

* d
] —t Ai'(t4x)=2N Ai(x/x) Ai’ (x/x) (B20a)

0 Vi

© dt
/ :/—lAil(t+x)=x2N{Ai'2(x/K)

' — (x/x) A (x/x)} . (B20b)
Equation (B20b) is derived with the help of

f du Ai2(w) =1 AR(1)— Ai2(), (B21)

which follows from Eq. (B1); for future reference we
write the analogous relation

/ "t Ai(u) Bi(u)=1 Ai(1) Bi()—Ai' (/) Bi'(). (B22)

A similar treatment can be given integrals of the
form /4* dt 1"F (t4x)G(t+x), where F(u) and G(u)
represent Ai(x), Ai’(«), or Aiy(x). These integrals arise
in density-of-states integrations and usually involve
only the products Ai?(x), Ai(x)Ai’(x), and Ai%(x).
Integrals containing one of these three products will
always reduce into each other, so we restrict attention
to them.

As before, the most general integral of this form is
Jo® dt t» Ai2(t+x), since the relations

1d

Ai(x) Al'(x)=- — Ai%(x), (B23a)
2dx

d2

1
Ai"?(x) =- — Ai2(x) —x Ai2(x) , (B23b)
2 dx?

enable integrals over the products Ai(x) Ai’(x) and
Ai”(x) to be expressed as integrals over Ai? (x).

The reduction relations corresponding to Egs. (B13)
are

0

dt t» Ai*(t+x)

0

n °°d ‘d2A2( )
=——— [ dti'— AR(t+x
2(2n+1)./:) ar

2am A2(t+2) (B24a)
- dt "1 Ait(t+x) (B24a
2n+1J,
n 1 =
_ [————Zx:l / di 11 Ai(i+x), (B24b)
2m+1L2 da? 0

valid for »>0. Equation (B24b) is useful if the resulting
integrals can be expressed in closed form, which occurs
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if n is integral or half-integral. An immediate application
of Egs. (B23b) and (B24b) for integer # is found in the
evaluation of the integral derived by Tharmalingam?
for the electro-absorption « for direct first-forbidden
transitions in an isotropic medium where the electric-
field and light-propagation vector are parallel:

a(8lp) « / " Ai”2(t4x)

—3 Ai’2(x)—/w dt (t4x) Ai2(t+x) (B23a)

—2 Ai(x) A" (x)+ 322 A2 (%) — 32 Ai%(x). (B25Db)
The expression for x and the proportionality coefficient
can be found in Ref. 3. The method of extending this
result for arbitrarily oriented electric-field and light-
propagation vectors will be presented in Sec. C.

Integrals involving half-integer values of # can be
reduced to integrals which may be evaluated with
Eqgs. (B5) or (B17). Since it can be shown that for any
function F(x)

/ /——F(u—{—t)—w/;wdrF(r), (B26)

we have from Eq. (B19a) for n=—1%

©du °dt 1
/ — A(utx)=| — | ——
\/u 0 \/[ kN
X Ai(t+ku+«x)

= (r/2N) Ai;(xx), (B27)

where k=2%3 and N is defined in Eq. (B2a). From this
we have

© g
/ —\—/t—tAi(H—x) AV (t4x) = — (wx/4N) Ai(kx), (B28a)

® d
/ ——t— Ai"?(t4x)= — (r/4Nk)[3 Ai’ (kx)
0 V1
+xx Al (kx)],

the last from Eqs. (B27) and (B23b).

As an example of the use of these equations, we
evaluate the integral derived by Penchina® and by
Chester and Fritsche,® which is proportional to the
optical absorption o resulting from indirect allowed
transitions in the presence of an electric field parallel

to a symmetry axis of the reduced-mass ellipsoid at an
M, edge:

(B28b)

0

aind&I(Vo)=/wdy (y— VO)W/ dt Ai2(¢). (B29)
Vo

v
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Using Eq. (B21) and changing variables gives

I(Vy)= _/” du [ (u+ Vo) Ai2(u+ Vo)

—Ai?(u+Ve)]. (B30)
We now use Eq. (B23b) to replace the term Ai2(u+ V),
then use the reduction relation, Eq. (B24b), to get
integrals into one of the forms of Egs. (B27) and (B28).
After some algebra we obtain

I(Vo)= (w/8N)[Ai(r)+r Al (r)+22 Als(r)],

where r=«V,. The function bracketed in Eq. (B31) is,
incidentally, the third repeated integral of Ai(r) with
respect to 7. These results will be extended in Sec. C to
fields oriented in an arbitrary direction.

Integrals of the form fo®dt¢® Aii(¢+x)F (t+x),
where F () is Ai(u), Ai’(u), or Ai;(u), apparently arise
only rarely in physical situations and can usually be
avoided. They will not be discussed except to point out
that a parallel treatment can be given using

(B31)

/ dt Ai2(0) =1 Ai2()+2 AT’ (t) A, () +A2() (B32)

to obtain the reduction relations. These integrals reduce
in general to integrals containing all possible double
products of Ai(x), Ai’(x), and Aii(x), as a result of the
term Ai2(¢) in Eq. (B32).

Although all integrals necessary for evaluating
density-of-states sums for the electro-absorption effect
have now been derived, it is convenient to examine two
special integrals which occur frequently. First, by Eq.
(B2b)

/ dt Ai(t+=x) Ai(at+y)
T o0
=__/ ds ei(l/ﬂ)sall—aaleix[y—ar] (B338.)
2N?
= (r*/N»)é(y—x) if a=1 (B33b)
T y—ax
= Ai( ) a<l  (B33c)
N(1—o3)/8 (1—ad)18
T ax—7y
= Ai( ) a>1, (B33d)
N(a3_ 1)1/3 (d3_ 1)1/3

the last two coming from a comparison of Eq. (B33a),
for a0, with Eq. (B2b). Equation (B33b) merely
expresses the fact that the Airy functions are orthogonal
over the real axis, a result of their being eigenfunctions
of a Hermitian operator.

Using Eqgs. (B33) and the integral representation
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(B19a), we find

/ dt AR (t+2) Ai2(y—al)

T © du y
= —_ iz(u—[————) (B34a)
2N/ a Jo A u (14-a?)173

=4N1:/a Ai’( :ff;yyfi) ’

if @>0. The integral diverges for < 0 as a consequence
of the asymptotic form of Ai*(x) for large negative x.

Equation (B33b) can be used to obtain the normali-
zation coefficient C; of Eq. (A8) as follows. We define
C; so that the wave function ¢(r) of Eq. (A4) gives the
delta function over energy for each coordinate. Since
the integrations are separable, consider only the «
coordinate. We require

) (Gzl'_ Ezz)

o0 — €z 2m,*e8, 173
=C,2/ dx Ai( + x( ) )
—» o h2

— €z, 2m*e8\13
XAi( +x< ) ) (B35a)

(B34b)

hos, h?
h2 1/3 0 ) €1
=CHl —— / dx Ai{ x—
2m;*e| &, | o heos
€z
XAi<x— ), (B35b)
ho,

which, by Egs. (B33b) and (AS5) leads to
Ca2=Ne| &,| /xe2,

as given in Eq. (A8).
This completes the mathematical preliminaries, and
the results will now be applied to Egs. (A13) of Sec. A.

(B36)

C. ELECTRO-ABSORPTION AT NORMAL
THRESHOLDS

The mathematical relations developed in Sec. B will
first be used to evaluate the electro-absorption for the
M, and M ; thresholds, since these are less complicated
than the results for the M, and M, edges, which have
reduced masses of both signs present. To evaluate Eq.
(A13a), we first integrate over e, to eliminate the delta
function. By changing variables, the result can be
written as

4RN¢(6,0,)'2
a(§)=—""—"—
w02/,
® E—ho 6, 0,
X / drds Ai2( -———r-——s)
—» %6, 0. 6.
XAi%(r) Aiz(s), (C1)
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which can be integrated using Eq. (B34a) [this is
preferable to using the form in Eq. (B34b) which would
give an integral over a product containing Ai(x)]. A
second application of Eq. (B34a) and another change of
variable gives

2
Qo (8) = (033+ 9113)1/6
2

® dudt (0540, E,—hw
X Ai2< u + ) (C2)
0 (ut)ll‘z

6o 786
where
8o*=0.3+6,>+0.%. (C3)

We change variable again and apply Eqs. (B26) and
(B21) to give the result describing direct-transition
electro-absorption at an M, threshold:

ao(8) = (N?/m)R6*{ Ai(n) —n Ai*(n)},
where

(C4a)
n=(E;—hw)/hbo. (C4b)

Equations (C4) have exactly the same form as the
result for an isotropic solid.? R is the anisotropic gen-
eralization of Tharmalingam’s constant R and is given
in Eq. (A12). 6, in Eq. (C3) is the generalization of
Tharmalingam’s 6, obtained simply by redefining the
isotropic reduced mass u to be

11182 8 &
—e e, (cs)
o &1L ps  my  me
so that, by Egs. (C3) and (A11)
6= 62! & | 2/2”0}! . (C6)

Therefore, the anisotropy and field direction enter only
in that the effective mass used in 6 is the effective mass
in the direction of the electric field, i.e.,

1 1 ¢
—=— E(kre1)
Mo n? akrelnz

(C7)

where k.| is the component of the wave vector con-
jugate to the relative coordinate r in the direction of
the field &. Although there appears to be a dependence
on the normalization constant N, there actually is no
dependence since this constant merely cancels the
normalization constant implicit in the Airy functions,
to give one value for the expression regardless of the
normalization used.

The experimentally measured change in absorption
coefficient defined in Eq. (A10) is obtained from Eq.
(C4) using the asymptotic forms for x —

x A2 (x)~ (m/4AN?)x2e WDz~ Ai2(x)
® AP (=)~ (r/N?) (=)' sin? 3 (— 5+ }r)
Ai"?(—x)~ (m/N?) (—x)"2 cos?(3 (—x)3>+1r),

(C8a)
(C8b)
(C8c)
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for a normalization constant N. Thus

Aao(8)=RO2{ (N?/m)[Ai"%(n) —n Ai(n)]
— W/ —=nH(—n)}, (C9)

where H (x) is the unit step function, equal to one for
positive x and zero for negative x. N has disappeared
in the ao(0) term as required. 4 is given by Eq. (C4b),
and we note that the zero-field-limit term of Eq. (C9)
is completely independent of 6y and therefore of the
reduced mass which is dependent on the field direction,
since the 6¢/? in the prefactor cancels the 4/, in the
denominator of 4/—n». This is required since the zero-
field term cannot depend on the direction of the field of
zero magnitude.

The bracketed function in Eq. (C9) is plotted in
Fig. 1 as a function of n. By Eq. (C4b), increasing #w
is read to the left, so the oscillations in Aao(€) occur
above threshold. Since this curve has been discussed
elsewhere,*25 we do not mention it further.

By Eq. (A15a), the value of Aaz(8) at the M,
threshold is given by Eq. (C9) with » replaced by —»
which is expected physically because as the energy of
the incident photons is increased the (finite) surface
area in % space to which transitions can be made de-
creases for an M edge and increases for an M, edge.
Increasing #w is read to the right, so the oscillations in
Aas(8) occur below threshold.

[Note added in proof. The expressions for Aa(8&) are
based on the approximation that the index of refraction
n is constant. This is a good approximation only for the
M edge; for higher absorption thresholds the variation
n with field must be taken into account. The quantity R
defined in Eq. (A12) is therefore field dependent and
differs in the finite-field and zero-field expressions for a
at any threshold. Unless this dependence is evaluated,
incorrect expressions for Aa are obtained. This difficulty
can be avoided by using the imaginary part of the di-
electric constant, e;= (n¢/w)a, which is independent of
n. The relations obtained are correct for Ae;= (n¢/w)Aa.
The author is indebted to M. Cardona for pointing out
this error. ]

Having the electro-absorption for direct transitions
to the M, threshold, it is a straightforward matter to
generalize Penchina’s results® for the anisotropic solid
with the field aligned with a symmetry axis, to an
arbitrarily oriented field. From Bardeen, Blatt, and
Hall,*® using Penchina’s notation,

dn%e?
inay (8) =2 ——C[$(0)|* (-3 3)
if nemiw
X8(Ep—Ei—hwthvy), (C10)

where ¢(r) is the solution, Eq. (A4), of Eq. (A3). The
upper and lower signs refer to the emission and ab-
sorption of phonons of energy kv, respectively. The
inclusion of phonons gives another degree of freedom;

8 B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).
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Flxn) 2

- -1

FiG. 1. The electro-absorption function F(n) versus n given in
Eq. (Ele) which describes electro-absorption at M, and M; edges,
and for parallel-type orientations of the electric field for the
saddle-point thresholds M, and M.

whereas for the direct absorption, momentum con-
servation requires that the center-of-mass momentum
and therefore the center-of-mass energy E.. be zero,
the energy is now shared between relative and center-
of-mass coordinates. Rather than sum over hole and
electron states, we sum over relative and center-of-mass
wave vectors

Mpi (K oi— K oi) — M eiK i
rel 1= 5

MhitMe;

Kem i= (Kei—Koi))+Kpi,

(Cl1a)

(C11b)

where K represents the position of the conduction-band
minimum.

The sum over relative wave vector is essentially
a(&) given by Egs. (C4), but must be modified in the
following way. The energy argument of the delta func-
tion now includes E.n and kv,,; this change is accom-
plished by the replacement

f1o — hr— EonFhe, (C12)

in Eq. (C4b). The matrix element is now C?(n,,+3413)
instead of C¢?, and the sum over center-of-mass states
can be expressed as the properly normalized integral
QM M M2 =
—_— / E\*dEsm, (C13)
em 2mh? 0

where M;=m..+m; for the coordinates x, y, and 2.
Therefore

AN? ® fEem\ [ Eom\2
@ing, (8) =WH0>— / d( )( )
w2 Jo \hB/\ b,

0

XI: / dt Ai2(t):| , (C14)
(Eg=thv g —#iw) /higo+Eom/ ko
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where 6, is defined in Eq. (C6) and
EC* (nut33)
W 2

wTnemwh®

(C15)

mezmeymezmhxmhymhz)l/2 .

The factor of 2 for spin degeneracy has been included
in W. The double integral of Eq. (C14) is the I(V,)
integral given in closed form by Egs. (B29) to (B31)
with

Vo= (E,hv—he)/hbs, (C16)
SO
720>
Qindy (8) =_2—2_[A1 (r)+r Al (1')4—7'2 All(r):l y (C17)
TK

where r=«V,, k=223 and N is the normalization
constant of the Airy functions. The experimentally
measured difference between finite-field and zero-field
absorption is

10

Aaind;(: (8) =

N
—LAI()+7 AT ()47 Air ()]

K

—r?H(—r);, (C18)

and H(x) is the unit step function. Again, the field
direction only enters through the reduced mass, this
being the reduced mass in the direction of the field,
given by Eq. (C5). The absorption coefficient for
indirect transitions in the presence of an electric field
along a symmetry axis has been discussed elsewhere?8;
since the solution for an arbitrarily oriented field differs
only in the effective mass, no further discussion will be
given.

The relations of Sec. B may also be used to calculate
the absorption coefficient for direct first-forbidden
transitions at an M threshold. The resulting equations
are quite complex, depending both on the orientation
of the electric field with respect to the symmetry axes
of the reduced- mass ellipsoid and the direction of the
propagation vector of the light, because the function
|#(0)|%in Eq. (A2) must be replaced by | #§- Vi (r) | ;¢
where ¢ is the unit vector in the direction of the incident
light.”® We obtain a series of integrals like that of Eq.
(A13a) over various combinations of Ai(x) Ai’(x)
(cross terms) or Ai"(x) (diagonal terms of |#g-Vg|?).
We mention that Egs. (B34) can be extended to evalu-
ate the cross term integrals by appropriate differ-
entiation with respect to x or y, or both. For diagonal

RN,z oo w©
a1 (8)= / dr Ai2(r)
(s —
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terms, the function Ai’?(x) can be replaced by means of
the identity of Eq. (B23b) at the expense of introducing
a first power of the integration variable. This can be
reduced with the relation

/ dt t AR (t4x) Ai2(y—at)
e a 0 0
=— | dy / dt A2 (t4-x) Ai2(y—at), (C19)

daJ,

for a>0, giving

/ dt Ai(1+2) Ai2(y—al)

1 & a = m
2 da? oaJ, AN/ e

(x(ax+y)
xAu(—(Haa)m), (C20)

by Eq. (B34b), from which the direct first-forbidden
absorption for electric-field and light-propagation
vectors in arbitrary directions may be calculated.

D. ELECTRO-ABSORPTION AT SADDLE-POINT
THRESHOLDS

We next examine the absorption at the M; and M,
saddle-point thresholds, which have reduced masses of
both signs. The electro-absorption integral Eq. (A13b),
will be evaluated similarly to the M, integral. By per-
forming the integration over e, to eliminate the delta
function and changing variables to

I=—¢,/M0,, r=—e/h0,, (D1)
we have
4RNS(6,6,)12 =
a(§)=—— / drdt Ai2(f) Ai2(r)
7"4\/0: —
E—~ho 6, 9,
XAig( +—r—— ) , (D2)
7o, 0. 0,

which is divergent as a result of the integration over
the variable 7; 6, and 6. both being positive quantities.
We may, however, isolate this divergence to a limit of
an integral in the following way. Since 6, and 6, are
positive, the integral over ¢ converges, and its value is
given by Eq. (B34b):

du Ai(u) (D3a)

k[ (Eg—hw)/h0:+(8:/82) r1(1 +6,3/6:3) ~1/3

R1V3021/2 o

2 k[ Eo—kiw]/F0

© 6,
du/ dr Ai(r) Ai(u—l—x—r) N
o [/}

(D3b)
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where
03=6,2+6,°. (D4)

The divergence is now contained in the upper limit of
the integral over #, the integral over  being finite.
By Eq. (B19a) this expression is equal to

RN2021 /2 ©
K22

* di
du| —
o V't

a1(8)=
Kk (Eg—tw)/H8

o 6,
X / d Ai(4-8) Ai(u+;z) . (D)

which should, by Egs. (B33), exhibit two branches
depending on whether 0, is greater or less than 6. From
Eq. (Al11), an alternative statement of this condition is
that the branch obtained depends on whether &.2/u,
is greater or less than 8.2/u.+ 8,2/u,. All quantities p
are magnitudes, and p. is the magnitude of the reduced
mass of odd sign (negative for M, and positive for M5).
Suppose first 6=0,. By Eq. (B33b),

R9,1? D dt
(&)= lim / — (D6a)
K2 D7 J ax (0k(Eg —Fiw) /i) A/
2R6,172
= ll)im v/D— R0, 25¢!?H (s) , (D6b)
K —>00
where
so= (E,— 1)/ 16, (D6c)

and H (x) is the unit step function.

The absorption coefficient is infinite, but the experi-
mentally measurable difference between zero- and
finite-field absorption is not infinite. Equation (D6b)
is completely independent of the applied field both for
E,2 hw and E,< fw if we assume the limit D — o is
taken before the limit & — 0; hence

Aa; (8)=0 ,

82 82 &2
0.=0; ( +—).
Mz Pz My

(D7a)
if

(D7b)

If 6.°>6.546,% that is, the field is more nearly
parallel the reduced mass of odd sign, Eq. (B33d)
together with Eq. (B17) applied to Eq. (D5) yields

N2 Go—Eg) h01p
a15(8)= R0, 12— f du Ai2(u), (D8a)
T J—n

where

&2 82 82
S .

Kz Mz My

01°=0.—0,5—0,3; (
or, if we define a reduced mass

1 1782 82 &2
—=-[ ————— ]>0, (D9a)
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then

91P3=82| 8[2/2}11]1. (D9b)

The absorption is infinite as a result of the lower limit.
The difference between the finite-field and zero-field
absorptions is again finite, and is

2

Aaip(8)=RO:,12{— Ai2(n)—Ai"(n)]

™

+&/—mH(—n)¢, (D10a)
where 61, is given in Egs. (D9) and
n=(hw—E,)/hb1p. (D10b)

The bracketed function is just the negative of the
bracketed function of Eq. (C9) which is plotted in Fig.
1. Increasing #w is read to the right, so for fields of
orientation given by Eq. (D8b), the oscillations appear
below threshold at an M critical point.

For the electric field completely parallel to the
negative reduced mass (#=0) this result reduces to
Phillip’s duality theorem?®: The change in absorption
coefficient is the negative of the change for an ordinary
(M,) edge in direct transitions with the sign of the
energy reversed. The effect of moving the field orien-
tation away from the negative mass axis is the same as
decreasing the magnitude of the field while keeping it
parallel to the negative reduced mass; the field effec-
tively goes to zero when the condition of Eq. (D7b) is
satisfied. It is assumed in the above derivation that the
limit of zero field is taken after allowing the integral
limit to approach infinity, so the infinite limits of
a1,(8) and a1, (0) cancel identically.

If 6>6. so the field is primarily transverse with
respect to the negative mass axis, Eq. (D5) must be
evaluated with Eq. (B33c) followed by Eq. (B18),
giving the result

N2 0
a17(8) =R, 12— du Ai(u) Bi(uw), (D11a)
T J (Ey—hw) /o1y
where
82 82 &2
01.°=046,2—6.2, <—+——>—> , (D11b)
Kz My Mz

or, if we define a reduced mass

11 [8,2 82 82

wir |82

]>o, (D12a)
Mz MKy Mz

then

B100=e| €]/ 2u1,h. (D12b)
26 J. C. Phillips and B. O. Seraphin, Phys. Rev. Letters 15, 107
(1965) ; J. C. Phillips, in Proceedings of the International School of

Physics “Enrico Fermi,” 1966 [Nuovo Cimento Suppl. (to be
published)].
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Fic. 2. The electro-absorption function G(£) versus £ given in
Eq. (E1f) which describes electro-absorption at M, and M,
saddle-point thresholds for transverse-type orientations of the
electric field.

The finite difference between finite- and zero-field
absorptions is

N2
Aayr(8)=RO1,2—[Ai’(§) Bi' (%)
T

—EAI(H) BiO) I+ WHH (), (D13a)
where 6y, is defined in Egs. (D12) and
&= (Eo‘hw)/helr- (D13b)

The bracketed function of Eq. (D11a) is plotted as a
function of variable £ in Fig. 2. The oscillations now
occur for energies greater than the threshold E,, in con-
trast to the case of the field more nearly parallel the
mass of negative sign at the same edge. The tail of
A1, (8) extending below threshold falls off much more
slowly. The result is dependent on the cancellation of
the infinities for zero- and finite-field absorptions, as
before.

We note that although there are two branches for
the electro-absorption at an M, critical point, given
by Egs. (D10) and (D13), the zero-field limits of the
two branches are identical, as they must be since the
field can then have no effect on the absorption.

By Eq. (A15b), we can immediately extend all
results for the M threshold to the M. threshold by
changing the sign of (E,—#%w) wherever it occurs in
the equations for the M, threshold. Thus, for field
orientations more parallel, the axis of the reduced mass
of odd sign, the positive mass for an M, critical point,
Aas,(8) is given by Eq. (D10a) with 4 replaced with
—n. The oscillations occur above threshold as for the
M, edge. For orientations more of a transverse nature
as defined in Eq. (D12b), the solution is that of Egs.
(D13) with ¢ replaced by —¢, ie., Fig. 2 with the
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abscissa reversed and the oscillations now occurring
below threshold.

The behavior of Aa(8) as a function of the direction
of the applied electric field for saddle points is quite
curious in that two branches having a different func-
tional dependence on (E,—#w)/#%60 are obtained which
do not mix: either one or the other, but not both, occur
for any given field direction. This is consistent, however,
with the results obtained for the normal thresholds,
since the reduced mass to be used in the calculations is
still just the reduced mass in the direction of the electric
field. Since the reduced mass in the parallel orienta-
tion is negative and the transverse orientation positive
in the M, edge, for example, the effective mass in the
field direction

1 182 82 &2
T )

my* 1812 Mz Hy Mz
must become infinite and change sign as the field
direction is swung from parallel to transverse orien-
tations. This is also shown by Eq. (C7), for in going
from the region of negative to positive curvature at the
saddle point, one must necessarily go through a line
of zero curvature where the reduced mass is infinite and
changes sign. The apparent violation of the super-
position principle, in that one might expect both parallel
and transverse effects to appear for intermediate field
orientations, is actually due to the qualitative difference
caused by having reduced masses of opposite signs and

does not represent the true superposition of the com-
ponent fields at all.

(D14)

E. DISCUSSION

Electro-absorption for direct transitions to the M,
M, M4, and M ;3 thresholds can be described completely
as one of the functions

Aa(8)==RO'2F(y), (Ela)
Aa(8)=+ROV’G(E), (E1b)
where
26°Ce? [8Buaryis\'
R= hwncm“’( n ) ’ (Ete)
= elel (E1d)
a 2uh ’
NZ
F(n)=—T Ai"(n)—n Ai(n)]— (—n)"?H(—n), (Ele)
N2
G(§)=—T Ai'(§) Bi'(§)—£ Ai(¥) Bi(§)]
+@)"H (). (Elf)
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TaBLE I. A summary of the electro-absorption results. The definition of the various critical points with respect to the signs of the
reduced masses is given following Eq. (A1). The quantities g; in the table represent the magnitudes of these masses. The remaining
quantities are defined in Eqs. (E1). F(4) and G(£) are universal curves plotted in Figs. 1 and 2, respectively.

Threshold Aa(E) n, £ u
M,, parallel — RO12F (n) ,,__.h“”;Eﬂ izﬁ—i_:z_%_i_f- >0
M, transverse R6Y2G (§) E—E";ahw }‘= [ :"IZ— i:a %’5 —%:3_ >0
o perele R . s il
M, transverse ROVIG(E) E=h@h—oEﬂ i= | é];i_:’ 785_%:3— >0
e

H (x) is the unit step function, and N is the normali-
zation of the Airy function defined in Eq. (B2). The
above expressions are independent of the normalization
N, since the explicit N merely cancels the implicit V in
the Airy-function normalization resulting in one value
of the functions regardless of normalization used. The
results are summarized by giving the defining equations
for Aa(&) and u for each of the critical points in Table I.
The functions F(n) and G(¢) are plotted in Figs. 1 and
2, respectively.

It should be noted that the calculations have been
done assuming one conduction-band minimum through-
out, and that to extend the results to a practical case,
such as indirect M transitions to the lowest conduction-
band minima in silicon and germanium, it is necessary
to sum over all such minima. Also, all possible valence
bands from which the transition can occur must be
included.

The most serious approximation made for the cal-
culations, particularly for saddle points, is perhaps the
extension of the integration to infinity in the energy
integrals, which represent a nonphysical situation of
quadratic energy bands extending to infinite energy.
The integrals should be cut off at a finite value of the
energy, and this cutoff should be done in Egs. (A13),
the initial expressions for a(§), rather than in the final
expressions since the latter would still give divergences
for fields approaching zero. It seems reasonable to
assume that the calculated changes in absorption,
Ac(8), are probably uncertain by amounts equal to the
value of Aa(8) when (E,—%w) is equal to the cutoff
energy on the least convergent (oscillatory) side.

A second approximation is the neglect of the Cou-
lomb-attraction term between the hole and electron in

27 C. B. Duke, Phys. Rev. Letters 15, 625 (1965); C. B. Duke
and M. E. Alferieff, Phys. Rev. 145, 583 (1966).

Eq. (A3). For a discussion of the effect of this term for
an isotropic reduced mass at an M, threshold, see Ref.
27.

It would be interesting to check the saddle-point
results experimentally by observing electro-reflectance
as a function of field orientation. As a result of the
probable breakdown of the theory at large energies, it
may not be possible to observe the long tail in Aa;7(8)
and Aaor(8) below and above threshold, respectively,
although proper orientation to obtain a large reduced
mass would help. It should be easy to see the large
negative and positive peaks in Aeir(8) just above the
threshold. Since no two thresholds have the same
electro-absorption response, it should be possible to use
the results given in Table I to identify higher lying
direct transitions.

F. CONCLUSION

A systematic method of evaluating the density-of-
states integrals arising in electro-absorption has been
presented, and the results applied to normal ()
direct and indirect transitions, and to direct transitions
near M, M,, and M; critical points. The change in
absorption upon application of an electric field has been
shown to depend on the orientation of the electric field
only through the magnitude and sign of the reduced
mass for direct allowed transitions at all edges. The
results derived previously for M, transitions®5 are
applicable for arbitrary field orientations provided the
reduced mass is calculated accordingly.

The M; and M, saddle-point electro-absorption
effects have two distinct branches, depending on
whether the field is more parallel or transverse to the
symmetry axis of the reduced mass of odd sign. For
orientations more parallel the change in absorption
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resulting from the field is similar to that in a normal
edge. If the field is more transverse, a branch of different
functional form appears and the oscillations in Aer (&)
occur on the opposite side of the threshold. The M;
threshold electro-absorption is similar to that of the
M, edge. Since all edges have different Aa(E) de-
pendences on field orientation and photon energy, it
should be possible to identify the nature of higher lying
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direct optical transitions on the basis of the measure-
ment of the electro-absorption effect.
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Coupling between H~ Localized Modes and Rare-Earth Ion Electronic
States in Rare-Earth Trifluorides*
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Crystals of LaF;, CeF;, PrF;, and NdF; doped with hydrogen and deuterium have been studied spec-
troscopically. Two strong polarized fundamentals and their combinations have been observed in the infrared
for both H~ and D~. The fundamentals appear also polarized in the vibronic spectrum of doped NdF;
coupled to several electronic transitions. Extra electronic lines appearing only in the doped crystals occur
on the long-wavelength side of the usual rare-earth electronic transitions. From frequency differences,
these extra levels are the parent states for the local mode vibronic transitions. The displacement of the
extra electronic lines from the usual electronic transitions is mainly due to a changed crystalline field and
covalency arising from the replacement of F by H, and is greater at higher levels. In addition the extra
electronic levels have slightly different frequencies for hydrogenated and deuterated crystals. This isotope
shift depends in both magnitude and sign on the particular electronic level and ranges from 0.5 cm™ (for
transitions to ‘Fgs) to —2.0 cm™ (for transitions to *F7/2). This effect is accounted for by a large difference
in zero-point amplitude for H~ and D~ localized modes which, through the electron-vibration interaction,

perturbs each electronic level to a different extent.

INTRODUCTION

HE infrared absorption due to localized modes of
H- defects in crystals' as well as the electronic
transitions of the U center in the ultraviolet® are well
known. Because the concentrations of H~ attainable in
certain ionic crystals in which the H™ replaces the anion
are relatively large (of the order of 0.019%) it is possible
to study the coupling of the localized H~ ion vibrations
with the electronic states of rare-earth ions in crystals.
Our study is concerned with such coupling for localized
H- and D~ modes in rare-earth trifluorides, chiefly
NdF,.

The coupling is manifested in several ways: (1) as a
shift in the electronic levels of the rare-earth ion in the
changed environment due to the H~, (2) as an isotope
effect for these shifted lines, and (3) as vibronic transi-
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tions involving the absorption of a photon by the rare-
earth ion accompanied by the creation of one localized
phonon. We also present the results of polarized low-
temperature infrared absorption by the H- and D-—
localized vibrations.

The rare-earth trifluorides are experimentally suitable
for our studies because of the readiness with which they
can be heavily doped with hydrogen and so display
observable optical effects. However, they suffer from
certain difficulties which limit the extent one can at
present push the theoretical analysis of the results.
Various studies involving rare-earth trifluorides suffer
from a lack of agreement as to the crystal structure.
Two slightly different crystal structures have been
proposed for LaF; from x-ray analysis, one involving
two molecules per unit cell with the rare-earth ions at
Dy, sites,5 and the other involving six molecules per
unit cell with rare-earth ions at C,, sites.” Nuclear
magnetic resonance studies® on pure LaF; single crystals
have recently shown that there are six magnetically
different La sites with site symmetry either C, or Cyy,
and based on these results a third crystal structure has
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