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Electric-Field Effects on Optical Absorption near Thresholds in Solids*
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The weak-field effective-mass-approximation calculations of the absorption coe%cient in the presence of an
electric field for direct and indirect transitions at a normal (M0) threshold are extended to an arbitrary
orientation of the electric field in an anisotropic solid. To do this, a systematic method of evaluating density-
of-states integrals arising in the electroabsorption or Franz-Keldysh effect is presented. Certain integrals
obtained in prior calculations at the Mo threshold which have not been previously evaluated are given in
closed form. This method is also used to derive the change in absorption coefficient, de(8), occuring at the
saddle-point edges Mi and M2, as well as the edge M3, for an arbitrary field direction in an anisotropic solid.
It is shown that there is a direct correlation between b,o(g} for the Mo and M3 edges, and also for the Mi
and M2 thresholds. Reduced masses of opposite signs, as in the Mi and M2 edges, give rise to two branches in
b,o.(E}.

INTRODUCTION

INCE the initial calculations of Franz' and Keldysh, 2

there has been much experimental and theoretical
interest in the eBect of an electric Geld on the absorption
of light in a semiconductor or insulator in the vicinity
of normal (Mo) absorption edges. Tharmalingam' and
Callaway have given the 6eld-dependent optical ab-
sorption for direct transitions, and the theory for the
Geld-dependent absorption via indirect transitions has
been done by Penchina, ' Chester and Fritsche, ' and
Yacoby. ' These calculations have been tested by direct
measurement of the change in optical absorption An

resulting from the application of an electric field" and
by measurement of the field-induced change in re-
Qectivity, '~i2 which can be related to Ao. through the
framers-Kronig relations. "Used as a tool, the electro-
absorption effect has resulted in a much greater under-
standing of the optical properties and band structure of
germanium- and zinc-blende-type structures at energies
above the fundamental edge. "

In the weak-field approximations of Tharmalingam'
and Penchina for the direct- and indirect-transition
optical absorption at an Mo edge, solution of the equa-
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tion of an electron-hole pair in the presence of a uniform
electric Geld is required. This solution is the Airy func-
tion. "As Elliott shows, the evaluation of the absorption
coe6icient reduces to the problem of evaluating sums
over initial and final states of a matrix element weighted
by the probability of finding the electron and hole at
the same point of space, "which in turn reduces to the
evaluation of integrals involving Airy functions. We
will present a systematic method of evaluating these
integrals and will apply this method in extending the
solutions in the weak-field approximation at the Mo
edge to an arbitrary orientation of the electric Geld in
an anisotropic solid.

Optical absorption increases markedly not only at
Mo edges, but also for photon energies near any critical
point of the band structure, de6ned by V g, (Ec Ev) =0, —
which results in a singularity in the joint density of
states. " Band-structure calculations show that higher
lying critical points may be saddle points of type 3I&
and M2, where one or two of the three reduced masses
are negative, or the point 3f3, where all three are
negative. " There is experimental evidence of saddle-
point transitions in electroreQectance measurements. ""
The electroabsorption theory for the edges M&, M2,
and N 3 will be derived in this paper by an application
of the method of evaluating Airy function integrals.
The change in absorption coefFicient associated with
each of these critical points will be given as a function
of the direction of the electric field. We first define the
problem, then derive the necessary mathematical rela-
tions which are applied to obtain the electro-absorp-
tion results.

A. ELECTRO-ABSORPTION AT CRITICAL
POINTS

In the eftective-mass approximation, the constant-
energy surfaces near the energy minima of the con-

"L. D. Landau and E. M. Lifschitz, Qgantgm Mechanics
(Pergamon Press, Inc. , New York, 1959), pp. 70—71, 491.' R. J. Elliott, Phys. Rev 108) 1384 (1957)."L.Van Hove, Phys. Rev. 89, 1184 (1953}."D.Brust, Phys. Rev. 134, A1337 (1964)~
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m;*= m„m„;/(m„+mp~), (A1)

for each coordinate r, =x, y, or 2, enter. The applied
electric field 8 is broken up into components 8, 8„,
and h, along these three major axes.

To be consistent with Brust, "we describe the edges

by the following sign conventions for the reduced
masses:

Mp.

Mg.

M2.

M3.

m *, m„*, m,* positive,

ns,~, m„* positive, m, * negative,

m,* positive, m,*, m„* negative,

m,*, m„*, nz, * negative.

duction band can be approximated as quadratic
surfaces having three axes of symmetry, each with an
eQective mass which can be designated as m„, m, „,
and m„. For the normal Mp edge, these masses are
usually all positive, and the corresponding quadratic
surface of positive curvatures is an ellipsoid. %e con-
sider the hole masses in the valence band along these
symmetry axes to be m&„m», and mz„respectively.
In relative coordinates of an electron-hole pair, the
reduced masses

where Ai(x) is the Airy function, to be discussed in
Sec. B, and if we define

pp,'= e'SP/2 hm;~

for each coordinate r;=x, y, or s, then

(AS)

( = p /hrp +r h '"(2m;*e8 )" (A6)

(A7)

The constants C;, which give a delta-function normali-
zation with respect to the energy integral over each e;,
are given by

C;=X(e~ h;~)UP/xhpp (Ag)

which is shown in Sec. B. E is the normalization con-
stant of the Airy function defined in Eq. (82a). The
sum in Eq. (A2) may be converted directly into integrals
over e„e„,and ~, using the constants C„C„,and C„
obtaining after substituting for

~ P(0) ~

P

4e'C, '
~
S,h„h,

~

EP
a(S)=

SCSS G7+ re p+ p& pz2 446 2 2 2
dp+ppdpg

where e; is the energy associated with the solution for
the coordinate r;. Obviously

Xh(E„+p +e„+p,—Aa)), (A9)

where Ai'(x) —= t Ai (x))'. This is the integral which must
be evaluated to give a(8) from which the experimentally
measurable change in absorption coeKcient

ha(a) =a(8)—lim a(8)
tel~

(A10)
4x'e'

a= P Cp ~4(0) ~
8(Er E;—hpp), (A2)—

scsPcd will be calculated. As expected, the sign (direction) of
the field along any major axis does not enter as can be
seen from Eqs. (AS) and (A9). Moreover, the sign of
the reduced mass, which enters through cp; by Kq.
(AS), will not affect the prefactor of Eq. (A9), but only
the arguments of the squares of the Airy functions. We
will now introduce the signs of the reduced mass
explicitly by defining for each coordinate

where Cp' contains the matrix elements of the inter-
action, the sum is over all states in relative coordinates,
and g(r) is the properly normalized solution of the
relative-coordinate Hamiltonian

O' 8' h' 8' It' 8'—+ --+
2mg Bx 2mp By 2mg Bs 8 =

~ q, ~'=e'BP/2', , (A11)

Throughout the calculations, we will consider the
quantities p, p,„, and p, to represent the magnitudes of
the reduced masses m,*,m„*, and m, ~, and will explicitly
introduce the negative signs of the negative reduced
masses into the integrals which represent the sums over
densities of states. The signed quantities m;* will be
used in setting up these integrals.

The derivation of the direct edge electroabsorption
will essentially parallel that of Tharmalingam. ' Using
the results of Bardeen, Blatt, and Hall, ' and Elliott"
for the absorption coeffi.cient, we find for direct tran-
sitions

+eg r+E y(r) =0, .(A3)

in the usual approximation which neglects the Coulomb
interaction between the hole and electron. Eq. (A3)
has the exact solution"

@(r)=C&„C.Ai( —$,) Ai( —$„) Ai( —t,), (A4)

"J.Bardeen, F. J. Blatt, and L. H. Hall, in Photoconductivity
Conference (John Wiley R Sons, Inc. , Near York, 1956), p. 146.

28 Cp 8p, ~p, yp, g

E.=
kvncnz' h'

(A12)

which includes the density-of-states factor, and ex-
plicitly include the sign of the reduced mass according

which is consistent with Tharmalingam s notation, his
work involving only positive reduced masses.

If we multiply Eq. (A9) by two to include spin
degeneracy, define the quantity
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to the sign convention given earlier, we find Kq. (A9) takes the following forms for each of the critical points:

4EX'
Mp .. np(8) =

ea (e.s„s.) ~

( «z ( «p «g

d«g«„d«, Ai'I Ai'I Ai' s(E, hp—p+«,+«„+«,), (A13a)
& ae. k ae„ae,

4RiV« " —«,q (—«„q (+«,~
n~(8) = d«&"d«* A&'

I
A~'I

I
Ai«I Is(E«—h +«*+"+«*)ea&(e.s„s,)'~' . as. i & ae„ i k ae. i

,(8)=
gr'h'(8, 8„8,)'t'

3E, : np(8) =
x'h'(8, 8„8.)'t'

+«x (+«p) «s
d«g«pd«, Ai' API

I
AP s(E« h«P—+«g+«„+«,), (A13c)

ae. I, as„) as.

(+«x) (+«p'I (+«z)
I

Ai'I I&(E«—h«p+ «.+«p+ «.), (A13d)
&as, i Eae„i Eae i

in which all constants are positive.
Ke now show that there is a direct relationship

between np(8) and np(8), and. also between n~(8) and
np(8). Suppose we replace «, «„, and «, in Eq. (A13d)
with —~, —e„, and —e,. The result is

np(8) =— d«g«P«.
x'a'(8.8„8.)'~'

representations are"

Ai(x) =— ds cosI ps'+xsj,
Ã p

s e'"/3+i
2g

(32a)

(32b)

y Ai2 A(2 Ai2

1
Bi(x)=— ds Le

—*'~'+*'—sin(-,'s'+xs) j, (32c)
p

)&S(E«—h«p —«,—«„—«,) . (A14)

Since the delta function is an even function we may
multiply its argument by —1. But the resulting ex-
pression is precisely np(8) given by Kq. (A13a) with
(E,—h«p) replaced with (h«p —E,). Therefore, we have
shown

where the normalization constant E is usually taken as
x'" or m. It will be left as X in the following so the results
will be applicable to either normalization, since both
are used in the literature. ~

In order to evaluate most phase-space integrals, it
will be necessary to derive the integral representation
of Ai'(x) and examine the differential equation

np(8, —(E,—h«p)) =np(8, (E,—Aa&)), (A15a)

n, (8, —(E,—h«p)) =np(8, (E,—h«p)), (A15b)

d'F (x) dF (x)=4x +2F(x),
dh' Ch

(B3)

d's dg eie /3+it /3+iz(a+t)

If new variables n, y are defined as n=,'(t—s) and
y=t+s, both of which range from minus to plus
infinity, the double integral of Eq. (B4) is converted
into a form in which the integral over o. can be done
explicitly, giving

B. MATHEMATICAL RELATIONS

The de6ning equation of the Airy functions is2p

d'F(x)
=xF(x), (31) " dy

Ai'(x) = cosI:,',y'+xy+-,'7rj. (35)
21V' p Qy

2' Reference 20, p. 447.
~'The Handbook of Mathengaticai, Functions uses the normali-

zation E=m.. The E=g~ normalization is used by Landau and
Lifschitz (Ref. 15} and has been used in the previous weak-6eld
approximation electro-absorption work, for instance, Refs. 3 and 5.~ Reference 20, p. 448.

where F(x) is either Ai(x) or Bi(x), the solutions regular
and irregular at infinity, respectively. The integral

20 H. A, Antosiewicz, in Handbook of 3fathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 446.

the latter following from a parallel treatment. %e need
therefore obtain only np (8) and n& (8) and the problem which has the three linearly independent solutions

F(x) =Ai'(x), Ai(x) Bi(x), and Bi'(x)."By Kq. (32b)
In order to proceed further, it is necessary to derive irelationships which can be used to evaluate the integrals A'(*)= (B4)of Eqs. (A13). These will be derived in Sec. 3, and 4g2

applied and the results discussed in Secs. C, D, and E,
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(819a), we find

dt AP(t+x) Ai'(y nt)—

x "dg ( ax+y
AP! u+

21P+n p gu L (1+n')'"i

( ~(nx+y) )
!Ai, !

41P+n & (1+a')'~'i

(834a)

(834b)

if 0.&0. The integral diverges for n & 0 as a consequence
of the asymptotic form of Ai'(x) for large negative x.

Equation (833b) can be used to obtain the normali-
zation coeKcient C; of Eq. (AS) as follows. We define
C; so that the wave function p(r) of Eq. (A4) gives the
delta function over energy for each coordinate. Since
the integrations are separable, consider only the x
coordinate. Ke require

ES'.(S)= (8'+8,')'"
7r'

where

" dudt ( (8 o+8 o)uo E hco

Ai'! t+u + !, (C2)
o (ut)'" ~ 8o a8o i

H3 H 3+H 3+H8 (C3)

We change variable again and apply Eqs. (826) and
(821) to give the result describing direct-transition
electro-absorption at an Mp threshold:

which can be integrated using Eq. (834a) Lthis is
preferable to using the form in Eq. (834b) which would

give an integral over a product containing Aii(x)). A
second application of Eq. (834a) and another change of
variable gives

b(e.,—o.,)
where

np(S) = (1P/or)R8p'"{Ai" (q) —g AP(it)), (C4a)

tr2ns, *eh, '+)
=C,' dx Ai! +x!

a i
/2m *el, ' o)

=':(,.:".',.)'":"'(-;.)
(835a)

rt = (&,—~)/&8o. (C4b)

Equations (C4) have exactly the same form as the
result for an isotropic solid. ' R is the anisotropic gen-
eralization of Tharmalingam's constant R and is given
in Eq. (A12). 8p in Eq. (C3) is the generalization of
Tharmalingam's H, obtained simply by rede6ning the
isotropic reduced mass p to be

f e~,
XAi~ x— —, (83Sb)

Aq.

which, by Eqs. (833b) and (AS) leads to

h,' by' 8,'
+—+

uo

so that, by Eqs. (C3) and (A11)

(CS)

C.o= roe! h. !/x'e&. o, (836)

as given in Eq. (AS).
This completes the mathematical preliminaries, and

the results will now be applied to Eqs. (A13) of Sec. A.

8p' ——e'!S!'/2tipk. (C6)

Therefore, the anisotropy and field direction enter only
in that the effective mass used in Hp is the efI'ective mass
in the direction of the electric field, i.e.,

C. ELECTRO-ABSORPTION AT NORMAL
THRESHOLD S

1 1 8'
z(k...),

pp ~ ~krerl!
(C7)

The mathematical relations developed in Sec. B v ill
erst be used to evaluate the electro-absorption for the
Mp aild M3 thresholds, since these are less complicated
than the results for the M~ and M2 edges, which have
reduced masses of both signs present. To evaluate Eq.
(A13a), we first integrate over o to eliminate the delta
function. By changing variables, the result can be
written as

4RlP (8„8.)'"
no(S) =

or'h'+8,

where k„r!! is the component of the wave vector con-
jugate to the relative coordinate r in the direction of
the 6eld 8. Although there appears to be a dependence
on the normalization constant X, there actually is no
dependence since this constant merely cancels the
normalization constant implicit in the Airy functions,
to give one value for the expression regardless of the
normalization used.

The experimentally measured change in absorption
coefficient defined in Eq. (A10) is obtained from Eq.
(C4) using the asymptotic forms" for x -+ ~

x Ai'(x) (or/4iP)x'"e —' ~"*-Ai"(x) (CS )(Eo Iua 8„8, —
drds Ai'! ——r——s

A8o 8o 8,

XAi (r) AP(s), (C1)

x Ai'( —x) (vr/1P) (—x)"' sin'(-,'(—x)'"+-'x) (CSb)

Ai' (—x)~ (or/Q )(—x)'I cos (—*(—xP'+ —'or) (CSc)
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for a normalization constant X. Thus

Sap(S)=R8p'I ((X/~)LAi' (~)—~Ai~(~)$
—(v —ii)H( —ri)) (C9)

where H(x) is the unit step function, equal to one for
positive x and zero for negative x. X has disappeared
in the ap(0) term as required. ri is given by Eq. (C4b),
and we note that the zero-field-limit term of Eq. (C9)
is completely independent of 80 and therefore of the
reduced mass which is dependent on the field direction,
since the 8p'" in the prefactor cancels the +8p in the
denominator of g —g. This is required since the zero-
6eld term cannot depend on the direction of the 6eld of
zero magnitude.

The bracketed function in Eq. (C9) is plotted in
Fig. 1 as a function of ri. By Eq. (C4b), increasing hpi

is read to the left, so the oscillations in hap(8) occur
above threshold. Since this curve has been discussed
elsewhere, "'we do not mention it further.

By Eq. (A15a), the value of hap(8) at the Mp
threshold is given by Eq. (C9) with g replaced by —p
which is expected physically because as the energy of
the incident photons is increased the (finite) surface
area in k space to which transitions can be made de-
creases for an M3 edge and increases for an Mo edge.
Increasing Puo is read to the right, so the oscillations in
hap(8) occur below threshold.

)Kore added im proof The expres. sions for Aa(8) are
based on the approximation that the index of refraction
n is constant. This is a good approximation only for the
Mo edge; for higher absorption thresholds the variation
e with 6eld must be taken into account. The quantity E.
defined in Eq. (A12) is therefore field dependent and
differs in the 6nite-field and zero-field expressions for n
at any threshold. Unless this dependence is evaluated,
incorrect expressions for 60. are obtained. This difliculty
can be avoided by using the imaginary part of the di-
electric constant, pp= (nc/ru)a, which is independent of
rp. The relations obtained are correct for 6p p

= (ne/s&) Da.
The author is indebted to M. Cardona for pointing out
this error. ]

Having the electro-absorption for direct transitions
to the Mo threshold, it is a straightforward matter to
generalize Penchina's results' for the anisotropic solid
with the 6Ield aligned with a synunetry axis, to an
arbitrarily oriented 6eld. From Bardeen, Slatt, and
Hall, "using Penchina's notation,

;.~(a) =2 I y(0) I (n„,+-,'+-', )
if SCePou

Xb(Er E, ha&&br„), (—C10—)

where p(r) is the solution, Eq. (A4), of Eq. (A3). The
upper and lower signs refer to the emission and ab-
sorption of phonons of energy hv„„respectively. The
inclusion of phonons gives another degree of freedom;

"B.0. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).

~2

FIG. 1. The electro-absorption function F(g) versus g given in
Eq. (Eie) which describes electro-absorption at M0 and M3 edges,
and for parallel-type orientations of the electric Geld for the
saddle-point thresholds M1 and M2.

whereas for the direct absorption, momentum con-
servation requires that the center-of-mass momentum
and therefore the center-of-mass energy E, be zero,
the energy is now shared between relative and center-
of-mass coordinates. Rather than sum over hole and
electron states, we sum over relative and center-of-mass
wave vectors

krei '=
oljjj(Eej ICpj) 81gjEpj

mI, i+5$ei
(C11a)

E, ;= (E„Ep;)+EI,;, — (C11b)

Ace —+ Ace —E, Whv„, (C12)

in Eq. (C4b). The matrix element is now C'(g„p+~&$)
instead of Co', and the sum over center-of-mass states
can be expressed as the properly normalized integral

(2M~„M,)'"
2x'h'

E. "dE, , (C13)

where M;=m„+mq; for the coordinates x, y, and z.
Therefore

4Ã' " (E, )E,
a; e (8)=Wh'8p' dl

E h8p 'E h8p

X dt Ai'(r), (C14)
{B8&hvqP —ArPi) jhyO+Eem/A80

where Ko represents the position of the conduction-band
minimum.

The sum over relative wave vector is essentially
Qp(8) given by Eqs. (C4), but must be modified in the
following way. The energy argument of the delta func-
tion now includes E, and hv„„ this change is accom-
plished by the replacement
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where 8o is defined in Eq. (C6) and

e'C'(u„+-'a-')tt0 2 2 i I/2(~eg y~ez~hx~hp~hz J ~

WnCm2(oh'
(C15)

terms, the function Ai" (x) can be replaced by means of
the identity of Eq. (823b) at the expense of introducing
a first power of the integration variable. This can be
reduced with the relation

The factor of 2 for spin degeneracy has been included
in W. The double integral of Eq. (C14) is the I(Vo)
integral given in closed form by Eqs. (829) to (831)
with

d t t AP (t+x) AP (y—nt)

dy dt Ai (t+x) AP(y nt),—(C19)

so

Vo= (Eg&hl „o
—hoo)/h8o, (C16) tlat

for 0.)0, giving

8'Ig28p2Ã
n; e~(K)= [Ai(r)+r Ai'(r)+r' Aii(r)], (C17)

2'rK

aa;„&,(a) =
8'h28p2 CV—LAi(r)+r Ai'(r)+r' Aii(r)]

2K

where r=KVp, K=2'", and X is the normalization
constant of the Airy functions. The experimentally
measured difference between finite-field and zero-field
absorption is

dt Ai" (t+x) Ai'(y —at)

1 d'
———x+— dy
2 dx' Ba „4A/'Qn

(x(nx+y) )
XAiii i, (C20)

g (1+no)1/o

by Eq. (834b), from which the direct first-forbidden
absorption for electric-field and light-propagation
vectors in arbitrary directions may be calculated.

and H(x) is the unit step function. Again, the field
direction only enters through the reduced mass, this
being the reduced mass in the direction of the field,
given by Eq. (CS). The absorption coefficient for
indirect transitions in the presence of an electric field
along a symmetry axis has been discussed elsewhere";
since the solution for an arbitrarily oriented field divers
only in the effective mass, no further discussion will be
given.

The relations of Sec. B may also be used to calculate
the absorption coefIicient for direct first-forbidden
transitions at an Mp threshold. The resulting equations
are quite complex, depending both on the orientation
of the electric field with respect to the symmetry axes
of the reduced- mass ellipsoid and the direction of the
propagation vector of the light, because the function

i p(0)
~

' in Eq. (A2) must be replaced by i
hj.V+(r) ~, oo

where j is the unit vector in the direction of the incident
light. "We obtain a series of integrals like that of Eq.
(A13a) over various combinations of Ai(x) Ai'(x)
(cross terms) or Ai" (x) (diagonal terms of

i hj VP~').
We mention that Eqs. (834) can be extended to evalu-
ate the cross term integrals by appropriate diGer-
entiation with respect to x or y, or both. For diagonal

D. ELECTRO-ABSORPTION AT SADDLE-POINT
THRESHOLD S

We next examine the absorption at the Mj. and M2
saddle-point thresholds, which have reduced masses of
both signs. The electro-absorption integral Eq. (A13b),
will be evaluated similarly to the Mp integral. By per-
forming the integration over e, to eliminate the delta
function and changing variables to

t = —o„/h8„, r= —e,/h8. ,
we have

(D1)

ni(&) =
4RA/'o(8„8, )'"

drdt Ai'(t) Ai (r)

E,—h e,
XAP + r— t, (D2)— —

b8 8, 8,

which is divergent as a result of the integration over
the variable r; 8, and 8, both being positive quantities.
We may, however, isolate this divergence to a limit of
an integral in the following way. Since tII, and e„are
positive, the integral over t converges, and its value is
given by Eq. (834b):

~3g 1/2

ng(8) = dr Ai'(r)
ttg(Bp Lu)/SIP +(Q /P ) pj(f +P„&/isf I)-&/&

du Ai(u) (D3a)

~3/ 1/2

tt ttBp —kcu j/fc8

H, i
du dr Ai'(r) Aii u+~—r i,

8 P' (D3b)
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where
8'= 8.'+8„'. (D4)

ned in the upper limit ofThe divergence is now containe
the integra over I,l the integral over r being finite.

By Eq. (B19a) this expression is equa to

then
8„3=em

I
~ I'/2»h (D9b)

as a result of the lower limit.The absorption is infinite as a re
-fi ldThe difference between the finite-ite-field and zero- e

absorptions is again finite, and is

ni(&) =
m2e, »2

K X X (P8 —ACO) /58

" dt

p gt
g2

t{n{p(8)=R8{p" —
I {t Ai'({t)—Ai" ({t)$

X id&Ai(t+$) Ail I+—$ I, (D5) + (V' n)—&( n)—, (D10a)

g = (A —E,)/A8{, .

ni(S) =

ze &~

lim QD R8,' "so"H—(so),
K2 D-+~

—00

where 8{p is given in Eqs. (D9) and
b E s. (B33), exhibit two branches

(D10b)
wh ch should, y q .

e endin on whether 8, is greater or ess t an

q( ), of this condition is
e ne ative of thee ran h obtained depe ds on whether, '/t{, ra e

+ b ', . All quantities p bracketed function o q.is reater or less than 8 '/t{,+ „,t{„.
d 1. Increasing h~ is read to the ri, so

b E . (DSb) h oullfo M). i io y'

bio th hid t M nti 1 oi t.
For the electric field completely paraHel to the

uppose

D dt

Philli 's duality theorem": The change in absorp ion
lim

~/tmax IO, {t(Btl—fico}/A8e }~

r ed. The effect of moving the field orien-
tation away from the negative mass axis is t e sam

where
s = (E —Ace)/A8„0 g

tive y goes o z
satisfied. It is assumed in the above derivationand H(x) is the unit step function.

Lmi fi ld
' t k after allowing the integral.. ite but theexperl- mlt of zero fie ls a en a

it so the infinite limits ofll measurable difference between zero- and bmit to approach infinity, so e i6 ' . E 'o (D6b)
t of the a lied field both or If 8)8, so t e e is

A{0 d E Aced if we assume the limit D respect to the negative mass a e
with E . (B33c) followe y q.

taken before the limit 8 ~ 0; hence evaluated wi q.
(D7a) giving the resultSn, (a) =0,

h.2 h ' 8„')
8.=8;

t{s t{~ t{w ~

g2
n{r(E)=R8)r'12

where

dl Ai(N) Bi(N), (D11a)

dQ Al (Q) (DSa)

8 '+8 ' that is, the field is more nearlyIf 0, &,+ „,
parallel the reduced mass of odd sign, Eq.
together with Eq. (B17) applied to Eq. (D5) yields

g2 (Aos—Eg)/@81~

n{p (8)=R8{p'~'—

8 ' Sy2 h,2

8{r'=8,'+8p' —8,3; —+—)—,(D11b)
P* Py P~

or, if we define a reduced mass

where
b2 62 hs)

+
I

(D'b) t en
t{z t{x t{{{

h,2 8 ' 8,2—+——
tI&r I ~l '-t{* t{{{ t{s—

&0, (D12a)

1

t{{p I 81 —t{z t{x t{{{-

or if we define a reduced mass

1 Bg2 bg2 8 '
&0, (D9a)

8„'=e'I ~ I'/2t {rA (D12b)

. O. Sera hin, Phys. Rev. Letters 15, 107fhI 1Sh 1 f" 1966 LNuovo Cimento Suppl. (to be
.C. Philli s, in Proceedingso t e n erna i

Physics "Enrico Fermi, "
published) j.
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abscissa reversed and the oscillations now occurring
below threshold.

The behavior of M(8) as a function of the direction
of the applied electric field for saddle points is quite
curious in that two branches having a diferent func-
tional dependence on (E,—hs&)/h8 are obtained which
do not mix: either one or the other, but not both, occur
for any given Geld direction. This is consistent, however,
with the results obtained for the normal thresholds,
since the reduced mass to be used in the calculations is
still just the reduced mass in the direction of the electric
6eld. Since the reduced mass in the parallel orienta-
tion is negative and the transverse orientation positive
in the 3f~ edge, for example, the effective mass in the
field direction

FzG. 2. The electro-absorption function G((} versus g given in
Eq. (Elf} which describes electro-absorption at M1 and M2
saddle-point thresholds for transverse-type orientations of the
electric 6eld.

The Gnite difference between finite- and zero-6eld
absorptions is

—
k Ai($)»($)3+(V't)&((), (D13a)

where 8&r is defined in Eqs. (D12) and

g=(Z, —h )/hS„. (D13b)

The bracketed function of Eq. (D11a) is plotted as a
function of variable t in Fig. 2. The oscillations now
occur for energies greater than the threshold E„in con-
trast to the case of the field more nearly parallel the
mass of negative sign at the same edge. The tail of
Da»(8) extending below threshold falls off much more
slowly. The result is dependent on the cancellation of
the infinities for zero- and finite-Geld absorptions, as
before.

Ke note that although there are two branches for
the electro-absorption at an 3/I~ critical point, given
by Eqs. (D10) and (D13), the zero-field limits of the
two branches are identical, as they must be since the
6eld can then have no e6ect on the absorption.

By Eq. (A15b), we can immediately extend all
results for the M& threshold to the 3f2 threshold by
changing the sign of (E,—Aced) wherever it occurs in
the equations for the M~ threshold. Thus, for field
orientations more parallel, the axis of the reduced mass
of odd sign, the positive mass for an M2 critical point,
ha»(8) is given by Eq. (D10a) with p replaced with—g. The oscillations occur above threshold as for the
No edge. For orientations more of a transverse nature
as defined in Eq. (D12b), the solution is that of Eqs.
(D13) with $ replaced by —P, i e , Fig. 2 .w. ith the

(D14)

E. DISCUSSION

Electro-absorption for direct transitions to the ufo,
M~, M2, and M3 thresholds can be described completely
as one of the functions

where

So(a) = aRtF~'F (~),

ho. (g) = W»"'G(&),

(E1a)

(E1b)

g2C02 8~~ ~ 1/2

R=
7

~nCm2 A,
' (E1c)

2p, h
(E1d)

(E1e)

g2
G(k) =—LAi'(8)»'(k) —

k Ai($)»($) j

must become in6nite and change sign as the 6eld
direction is swung from parallel to transverse orien-
tations. This is also shown by Eq. (C7), for in going
from the region of negative to positive curvature at the
saddle point, one must necessarily go through a line
of zero curvature where the reduced mass is in6nite and
changes sign. The apparent violation of the super-
position principle, in that one might expect both parallel
and transverse effects to appear for intermediate field
orientations, is actually due to the qualitative difI'erence
caused by having reduced masses of opposite signs and
does not represent the true superposition of the com-
ponent fields at all.
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TABLE I. A summary of the electro-absorption results. The dehnition of the various critical points with respect to the signs of the
reduced masses is given following Eq. (A1), The quantities p; in the table represent the magnitudes of these masses. The remaining
quantities are de6ned in Eqs. (E1).F(q) and G(&) are universal curves plotted in Figs. 1 and 2, respectively.

Threshold

M1, parallel

351, transverse

M2, parallel

~2, transverse

Re»~F(~)

—gg»~P(z)

«»'G(s)

—Re»2F(~)

Re» G(g)

Ee»IF(~)

c.' s„~ s,~—+—+—
1 8,' ~~' ~v'

&0
~w

1pRgRgm—+ — &0
tww pw

1 e.2 s.2 c„'
&0

Pw Pw

1 g.~ g„' S.'
&0

tww A

s.~ s„~ e,~

+ +

H(x) is the unit step function, and X is the normali-
zation of the Airy function defined in Eq. (B2). The
above expressions are independent of the normalization

E, since the explicit S merely cancels the implicit X in
the Airy-function normalization resulting in one value
of the functions regardless of normalization used. The
results are summarized by giving the defining equations
for Aa(8) and p for each of the critical points in Table I.
The functions Ii (q) and G(g) are plotted in Figs. 1 and
2, respectively.

It should be noted that the calculations have been
done assuming one conduction-band minimum through-
out, and that to extend the results to a practical case,
such as indirect M0 transitions to the lowest conduction-
band minima in silicon and germanium, it is necessary
to sum over all such minima. Also, all possible valence
bands from which the transition can occur must be
included.

The most serious approximation made for the cal-
culations, particularly for saddle points, is perhaps the
extension of the integration to in6nity in the energy
integrals, which represent a nonphysical situation of
quadratic energy bands extending to in6nite energy.
The integrals should be cut oG at a 6nite value of the
energy, and this cutoff should be done in Eqs. (A13),
the initial expressions for n(8), rather than in the final
expressions since the latter would still give divergences
for 6elds approaching zero. It seems reasonable to
assume that the calculated changes in absorption,
ha(8), are probably uncertain by amounts equal to the
value of M(8) when (Ew —Eau) is equal to the cutoff
energy on the least convergent (oscillatory) side.

A second approximation is the neglect of the Cou-
lomb-attraction term between the hole and electron in

"C.B. Duke, Phys. Rev. Letters 15, 625 (1965); C. B. Duke
and M. E. AlferieB, Phys. Rev. 145, 583 (1966).

Eq. (A3). For a discussion of the e6ect of this term for
an isotropic reduced mass at an 3f0 threshold, see Ref.
27.

It would be interesting to check the saddle-point
results experimentally by observing electro-reQectance
as a function of field orientation. As a result of the
probable breakdown of the theory at large energies, it
may not be possible to observe the long tail in An&+(8)
and Aamr(8) below and above threshold, respectively,
although proper orientation to obtain a large reduced
mass would help. It should be easy to see the large
negative and positive peaks in Dn&r(8) just above the
threshold. Since no two thresholds have the same
electro-absorption response, it should be possible to use
the results given in Table I to identify higher lying
direct transitions.

F. CONCLUSION

A systematic method of evaluating the density-of-
states integrals arising in electro-absorption has been
presented, and the results applied to normal (310)
direct and indirect transitions, and to direct transitions
near M~, M2, and M3 critical points. The change in
absorption upon application of an electric field has been
shown to depend on the orientation of the electric 6eld
only through the magnitude and sign of the reduced
mass for direct allowed transitions at all edges. The
results derived previously for M& transitions" are
applicable for arbitrary field orientations provided the
reduced mass is calculated accordingly.

The M~ and M2 saddle-point electro-absorption
efTects have two distinct branches, depending on
whether the field is more parallel or transverse to the
symmetry axis of the reduced mass of odd sign. For
orientations more parallel the change in absorption
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resulting from the 6eld is similar to that in a normal
edge. lf the field is more transverse, a branch of di6erent
functional form appears and the oscillations in Aa&(S)
occur on the opposite side of the threshold. The M3
threshold electro-absorption is similar to that of the
LVp edge. Since all edges have different Aa (S) de-

pendences on field orientation and photon energy, it
should be possible to identify the nature of higher lying

direct optical transitions on the basis of the measure-
ment of the electro-absorption e6ect.
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Coupling between H- Localized Modes and Rare-Earth Ion Electronic
States in Rare-Earth Trifiuorides*
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Crystals of LaF3, CeF3, PrF3, and NdF3 doped with hydrogen and deuterium have been studied spec-
troscopically. Two strong polarized fundamentals and their combinations have been observed in the infrared
for both H and D . The fundamentals appear also polarized in the vibronic spectrum of doped NdF3
coupled to several electronic transitions. Extra electronic lines appearing only in the doped crystals occur
on the long-wavelength side of the usual rare-earth electronic transitions. From frequency differences,
these extra levels are the parent states for the local mode vibronic transitions. The displacement of the
extra electronic lines from the usual electronic transitions is mainly due to a changed crystalline field and
covalency arising from the replacement of F by H, and is greater at higher levels. In addition the extra
electronic levels have slightly different frequencies for hydrogenated and deuterated crystals. This isotope
shift depends in both magnitude and sign on the particular electronic level and ranges from 0.5 cm ' (for
transitions to 'F312) to —2.0 cm ' (for transitions to 'F7~2). This effect is accounted for by a large difference
in zero-point amplitude for H and D localized modes which, through the electron-vibration interaction,
perturbs each electronic level to a different extent.

INTRODUCTION

'HE infrared absorption due to localized modes of
H—defects in crystals'~ as well as the electronic

transitions of the U center in the ultraviolet' are well
known. Because the concentrations of H attainable in
certain ionic crystals in which the H replaces the anion
are relatively large (of the order of 0.01%) it is possible
to study the coupling of the localized H ion vibrations
with the electronic states of rare-earth ions in crystals.
Our study is concerned with such coupling for localized
H—and D modes in rare-earth triAuorides, chieAy
NdF3.

The coupling is manifested in several ways: (1) as a
shift in the electronic levels of the rare-earth ion in the
changed environment due to the H, (2) as an isotope
effect for these shifted lines, and (3) as vibronic transi-

*Some of the results of this paper were presented at the
September 1965 meeting of the Americal Physical Society. See
APS Bulletin 10, 686 (1965).' G. Schaefer, J. Phys. Chem. Solids 12, 233 (1960),'B. Fritz, J. Phys. Chem. Solids 23, 375 (1962).'B. Fritz, in Proceedings of the International Conference on
Lattice Dynamics, Copenhagen 1963, edited by R. F. Wallis
(Pergamon Press, Inc. , New York, 1965).' R. J. Elliott, W. Hayes, G. D. Jones, H. F. Macdonald, and
C. T. Sennett, Proc. Roy. Soc. (London) A289, 1 (1965).' R. W. Pohl, Proc. Phys. Soc. (I ondozLl 49, 3 (1937).

tions involving the absorption of a photon by the rare-
earth ion accompanied by the creation of one localized
phonon. We also present the results of polarized low-
temperature infrared absorption by the H and D
localized vibrations.

The rare-earth triAuorides are experimentally suitable
for our studies because of the readiness with which they
can be heavily doped with hydrogen and so display
observable optical e6ects. However, they suffer from
certain difhculties which limit the extent one can at
present push the theoretical analysis of the results.
Various studies involving rare-earth triQuorides sufI'er
from a lack of agreement as to the crystal structure.
Two slightly different crystal structures have been
proposed for LaF3 from x-ray analysis, one involving
two molecules per unit cell with the rare-earth ions at
D3$ sites, ' and the other involving six molecules per
unit cell with rare-earth ions at C2. sites. ' Nuclear
magnetic resonance studies' on pure LaF3 single crystals
have recently shown that there are six magnetically
diGerent La sites with site symmetry either C, or C»,
and based on these results a third crystal structure has
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