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Atomic-Beam Study of the Stark Effect in the Cesium and Rubidium D Lines*
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Details of a new atomic-beam method for the study of the Stark effect in optical transition are presented.
The method is then applied to a study of the transitions 62p1/2, 3/g ~ 6's1/2 in cesium and 5'p1/2, 3/2 ~ 5's1/2 in
rubidium. The splitting by the electric Geld of the p3/2 level into two levels is observed. It is shown that the
characterization of the Stark eGect in the 2p levels by a simple scalar and tensor polarizability does not hold.
Fine-structure eGects giving rise to diGerences of the p1/2 and 'p3/2 radial functions are sufBciently strong
that the Stark eGect of the 'p level must be expressed in terms of three parameters. If the polarizability
0, (n'p~q) is deGned by the relation AS'(n'p~q) = ——,'E'a(n'p~J), where E is the electric Geld and bW'

the induced energy shift, then the following values of the polarizabilities are deduced. For cesium, 0, (Pp&/g}
=187(29)X10~' cm'; a(6'pp2~$) =196{30))&10~' cm'; and n(6'pe/2~q) =273(42) )&19 cm'. For
rubidium, o. (5'pj, /2) =112(17)X10~ cm'; +{5'p3/2~~) =102{15))&10~' cm'; and 0, (5'p~/2&)) =148(23)
X10~4 cm'. The polarizabilities are compared with results deduced from Stone's recent oscillator-strength
calculations for cesium and with values deduced from the method of Bates and Damgaard.

INTRODUCTION

ECENTLY, there has been a considerable revival
of interest in the study of the Stark effect. New

theoretical techniques have been developed for studying
the infinite sums appearing in the expressions for the
Stark shift. ' From the experimental point of view, new
techniques have been developed for observing small
frequency shifts in hyper6ne and Zeeman transitions. t

In this paper, details are given for an atomic-beam
technique for studying the Stark eBect in optical transi-
tions. The method is then applied to measurements of
the Stark eBect in the D-line transitions in both cesium
and rubidium. A detailed theory of the Stark effect in
these states is developed with which the experimental
results are compared. These results are of interest as a
test of a recent calculation of cesium oscillator strengths,
They also serve as an important preliminary to the
measurement of the cesium and rubidium isotope shifts
in the D lines. '

Surprisingly, there seems to have been no Stark-
e6ect work on the cesium and rubidium D lines. Meas-
surements have been made on the 6p —Ss transitions in
rubidium and the 7p 6s transitions in cesi—um. ' How-
ever, in this work the splitting of p3/2 into the predicted
doublet was not observed, and is not useful as a test
of the theory of the Stark eGect.

*This work supported by the U. S. Atomic Energy Commission.
t Present address: Department of Physics, University of

California, Davis, California.
' R. M. Sternheimer, Phys. Rev. 96, 951 (1954); C. Schwartz,

Ann. Phys. (N.Y.) 6, 156 (1956).' R. D. Haun and J. R. Zacharias, Phys. Rev. 107, 107 (1957);
E. Lipworth and P. G. H. Sandars, Phys. Rev. Letters 13, 716
(1964); B. Budick, S. Marcus, and R. Novick, Phys. Rev. 140,
A1041 (1965);J. Blamont, Ann. Phys. (Paris) 2, 551 {1957).'R. Marrus and D. McColm, Phys. Rev. Letters 15, 813
{1965).

4 Y. T. Tao, Z. Physik 77, 307 (1932).

THEORY

The perturbation of an energy level by an external
electric field E is described by the Hamiltonian

where p is the induced dipole moment and is given by

p= —eP r;,

r, being the position vector of the jth electron. It is
assumed that polarization of the nucleus is negligibte.
Specializing to an alkali for which we neglect perturba-
tion of electrons in closed shells, then p= —er, r being
the position vector of the valence electron .

If the total Hamiltonian is denoted by 3C, then
X KQ+X and we ask what terms it is appro-
priate to consider as part of 3CQ for the states under
investigation here. For the 's~~2 and 'p~~2 states of
rubidium and cesium, we include in XQ all terms through
the hyper6ne structure. More speci6cally, 3CQ includes
the central 6eld, the spin-orbit eGect, and the hyperfine-
structure operator. The inclusion of hyperane structure
is important for s1/2, since the Stark shifts induced are
of the same order as the hyper6ne structure. For pq~g,

the Stark shif t is considerably larger (by about an order
of magnitude) than the hfs, but it is no inconvenience to
include hfs in the zeroth-order Hamiltonian. For 'ps/2,
the hfs is an order of magnitude smaller than the Dop-
pler width of the lamp, and almost two orders of
magnitude smaller than the induced shifts. Accordingly,
hfs is neglected for pa~2.

A. Ayplication to 's~/2 ++~ pl/2

It is well known that for states of well-defined parity
the Hamiltonian Eq. (1) produces no 6rst-order shift.
Hence we can write the second-order shift due to Eq. (1)
55



MARRUS, Mc COLM, AN 0 YELLI N

as
I (y I

er E.
I
nrem„, lPm, & I

s

AW(J= —,')=Q
~E(il, s)

oscillator strength. Hence the study of the Stark effect
can be regarded as a method for the study of oscillator
strengths or as a method for checking theoretical oscilla-
tor strengths.

The electric Geld in this experiment is parallel to the
Gelds and Geld gradients in the A and 8 magnets and
may be taken along the s axis. It is convenient in
evaluating Kq. (2) to employ spherical tensor methods.
Therefore, we write

«E=(4w/3)'"eErl'z'(tl, z ), (3)

B. Apylication to 'P3/2

As discussed above, it is reasonable to neglect hyper-
fine structure for the sps/s states. Thus, the Stark pertur-
bation takes the form

AW(n ps/sz =~se E
where Y~ is the zeroth component of the spherical
harmonic of rank one. The form of Eq. (3) limits the
states P to those having the same mz as the initial state.
Thus, we rewrite Eq. (2) as

ps/sm$&
x Z . (g)

ft follows that the splitting is proportional to (m$)',
so that states with the same absolute value of nsJ
remain degenerate under the action of the Stark Geld.
Therefore, the 'ps/s energy level is split into two levels
under the action of the Stark Geld, corresponding to
mz ——&as and m$ ——&-,z. The evaluation of Eq. (8)
leads to

AW(J=-,z)=-', rezEss
1(n' f', ,fF'm,
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If we use standard tensor identities relating 3j
symbols and the Biedenharn-Elliott sum rule, ' it can
be shown that Kq. (4) is independent of the quantum
numbers Ii and esp, provided only that the hyperGne
energy of the states it is neglected in the denominator
of Eq. (4). Under this circumstance, Eq. (4) can be
written

I &n'ds/sllrllnps/s& I

'
AW(nsPs/sass) = e'E' P—

25 ~' DE(n'ds/s, nps/s)

1&n'ds/sllrllnps/s& I

'
, (9)
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AW(nsPs/sm$=% ,')= -e'E'Q

225 s' AE(n'ds/s, n ps/s)
For the case n's~~2 this becomes

I
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'
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and for n'p~~2 this becomes

I &n'$z/sllrilnpz/s& I

'
~W(n pz/s)= se E Z

AE(n Sz/2 npz/2)

(6)
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'
+54 +50 . (10)

AE(n'ds/s, nps/s) AE(n'$z/s, nps/s)

We now define polarizabilities (n) for each of the
above energy levels according to the usual relation

AW(n'f Jm$) = 'E'o/(n'f Jm$) —. — (l l)
So far as it is possible to neglect differences in the radial
wave functions for n'pz/s and n'ps/s and for n"ds/s
and n"d5/2, the following simple relation among the
polarizabilities holds

1&n'ds/sllrllnpz/s& I

'+2, (7)
AE(n ds/si npz/s)

The reduced matrix elements are related to integrals
over radial wave functions in the usual way; i.e.,

0

o('pz/s) =-'L~( ps/sm. = ~s)+~('ps/sm$= +s)7 (l2)

Such a relation can be deduced more directly from a de-
composition of the Stark operator into scalar and tensor
parts. ' As we will see, however, such a relation does not
hold for the cesium 6p state and the rubidium Sp
states. Fine-structure effects are appreciable, and three
parameters are needed to characterize the Stark effect
in each of these levels.

where the radial part of the wave function is E/r.
The square of this radial integral is proportional to the

~See, for example A. R. Edmonds, Angg'ter Moment's in
Qz/arz/a//z Meshazzzes &Prirzcetozz University Press, Princeton, New
Jersey, 1957).

EXPERIMEÃTAL METHOD

The method used here is that outlined by two of the
authors in a recent letter. ' The apparatus employed is a

fl P. G. H. Sandars and J. R. P. Angel (to be published).
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Fro 1. Schematic diagram of atomic beam
apparatus for studying Stark effect.

conventional atomic beam machine with Qop-in magnet
geometry. The C region consists of a pair of electric
6eld plates, with a 0.036-in. gap, capable of sustaining
large electric fields. The space between the plates is
illuminated by 6ltered resonance radiation from a
Varian X49-609 spectral lamp (see Fig. 1). For the
cesium work, a lamp 6lled with '"Cs was employed;
for rubidium, a lamp of isotopically enriched "Rb
was used. For both the D~ and D2 transitions in rubidium
and in cesium, the lamp output consists of a resolved
doublet separated by the ground-state hyper6ne
structure (see Fig. 2). The excited-state hfs' is about
10'%%uo of the ground-state hfs for p~» and even smaller
for the ps~2 state. It makes no essential difference in
the discussion and is ignored.

Measurement of the Stark effect proceeds according
to the following principles. It is well known that an
atomic-beam apparatus refocuses atoms that undergo
the transition my=+-,'+-~nz~= ——,

' in the C region.
Consider now the action of a beam atom of the same
isotopic species as the atom in the resonance lamp. At
zero electric field the absorption lines of atoms in the
beam coincide with the center of the emission lines in
the lamp. Consequently, resonance absorption of
photons takes place. In the subsequent decay, half of
the atoms will undergo spin Qip and will contribute to
the Qop-in signal at the detector. We describe the action
of an electric Geld on the beam absorption lines for each
of the two transition lines separately.

A. Dq Transition ( Pg/2~ sg/2)

It is shown in the section on theory that to second
order in the Stark perturbation all the hyperfine levels
arising from a state with J=-,' are shifted by the same
amount in the presence of an electric 6eld. The relative
shifts of the hyper6ne levels and of the Zeeman sub-
levels can be deduced from recent measurements' to be
smaller than the gross shift in the levels themselves
by at least four orders of magnitude. Accordingly, an
electric field serves to decrease in energy both the pi, 2

and sl~2 levels and to decrease the net transition energy.
When the transition energy is lowered by an amount

' H. Kleiman, J. Opt. Soc. Am. 52, 441 (1962).

i j2 1I

FrG. 2. Schematic diagram of energy levels. The lines A and 8
are both present in the lamp. At zero electric field the absorption
lines 1 and 2 coincide with the emission line B. Signals are also
observed at electric 6elds such that the lines 1 and 2 are made to
resonate with the line A.

equal to the emission linewidth of the lamp, the Qop-in

signal goes to zero. However, when the electric 6eld is
sufFicientlylarge so as to shift the absorption lines by an
amount equal to the ground-state hyperfine structure,
a new overlap of the absorption lines with the emission
lines of the lamp occurs (see Fig. 2) and another flop-in
signal is observed. From the known ground-state hfs
and the E' dependence characteristic of the Stark
effect, the difference in the polarizabilities of the pi~~
and s~~2 states can be determined.

B. D2 Transition ('p3/9~2sg/g)

As pointed out in the section on theory, the hfs of the
p3/2 state is negligible. To this approximation the pg/2
level is split into two levels corresponding to mg ——+—,

'
and mz= ~-,'. As the difference in energy between each
of these levels and the 's&~& level is shifted by an amount
equal to the ground-state hfs, new Qop-in signals are
observed (see Fig. 2). Hence, in addition to the zero-
field signal, two new signals should be observed. From
a knowledge of the electric 6eld at which these peaks
occur and the ground-state hfs, the polarizabilities can
be deduced.

DATA ANALYSIS AND RESULTS

A. Cesium

In Figs. 3(a) and (b) are shown the signals observed.
The following qualitative features are of importance.
First, there is only one Qop-in peak observed with the Di
optical line incident on the beam and two Qop-in peaks
with the D2 optical line incident on the beam. This
confirms the predictions made in the theory section.
Second, the heights of the peaks are in agreement with
theory; and third, the width of the peaks agrees with
an independent measurement of the linewidth of the
lamp. Perhaps the most important feature is the fact
that the single p&~2 line occurs at a point considerably
different from that predicted by Eq. (12) and the
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FIG. 3. (a) Ob-
served cesium signal
with D1 radiation
only. (b) Observed
cesium signal with
D2 radiation only.

and the resulting oscillator strengths for transitions to
each of the 6p states from a common upper level which

diGer substantially from the appropriate weight factor.
Using Stone's oscillator strengths and Eqs. (6), (7),
(9), and (10), we have calculated the polarizabilities
for each of the observed levels. These are compared in
Table I with the polarizabilities determined from our
results. Our values for the polarizabilities of the 6p
state are based on recent measurements of the ground-
state polarizabilities by Bederson et al. ' Ke also give
in Table I results for the polarizabilities based on the
method of Bates and Damgaard. ' lt is seen that the
theoretical polarizabilities of both Stone and Bates

Rbe beam and lamp

Dt filter

I
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TABLE I. Cesium polarizabilities (10 2' cm').

(6 ) (6P ) (6P +4) (6P +4)
Stone 65 187 200 273
Bates and Damgaard 56 192 191 246
Measured' 52.5(6.5) 187(29) 196(30) 273{42)

a The meaSured Value fOr a(6Stge) iS taken frOm Ref. 9.

' P. M. Stone, Phys. Rev. 127, 1151 {1962).

positions of the two pa~2 peaks. This must be taken
as direct evidence for the importance of spin-orbit
e6ects on the radial wave functions.

In order to understand this feature of the data we can
use the well-known fact that the radial matrix elements
involved are the same as those that determine the
oscillator strengths for the transition. If spin-orbit
eAects modify the radial wave functions so as to in-
validate relation (12), then this must show up in the
osci1lator strengths in the following way: Oscillator
strengths from pa~2 and p~q2 to the same lower state
must diBer from the ratio of the statistical weights.
Similarly, oscillator strengths from a common upper
level to each of the p states must diRer from the ratio
of the statistical weights. Bearing on this point are
recent calculations of the cesium oscillator strengths by
Stone. ' Stone's wave functions include spin-orbit sects

1 t I i 1
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9 A. Salop, E. Pollack, and B. Bederson, Phys. Rev. 124, 1431
(1961)."D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London
A242, 101 (1949).

and Damgaard are in excellent agreement with
experiment.

B. Rubidium

In Figs. 4(a) and (b) are shown the rubidium signals
with Dj light and D2 light incident, respectively. A
lamp of separated "Rb was used and a beam of separ-
ated "Rb was employed so as to avoid complication
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from '~Rb signals. Qualitatively, the results are similar

to the cesium results. There are two features worth

pointing out. First, the polarizabilities are smaller.

Second, Eq. (12) is much better satisfied than in the
case of cesium. This corresponds to the fact that the
spin-orbit splitting in rubidium is much smaller than
in cesium. In Table lI the measured polarizabilities
are compared with calculations based on the Bates-
Damgaard method. Agreement here is also excellent.

The electric field was taken from the relationE= V/d.

TABLE II. Rubidium polarizabilities (10 ' cm').

~(5~I/2) ~(5PI/2) 0.(5P3/2&)) ~(5P3/2+ f)

Bates and Damgaard 46 116 108 151
Measured~ 40(5) 112(17) 102(15} 148(23)

'The measured value for a(SsI/3) is taken from Ref. 9.

Our plates are sufficiently narrow relative to the length
and height that this expression should hold to about
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Configuration interaction is applied to the I' helium continuum between the Grst- and second-quantum
thresholds. Discrete configurations are included which give rise to auto-ionization levels (resonances).
DifFerential oscillator strengths are presented for the nonresonant region, while positions, widths, and g
values are given for the six lowest-lying resonance levels.

I. INTRODUCTION
' 'N the present paper we apply configuration inter-

action to the calculation of 'I' continuum states of
helium in the energy range from 0 to 40 eV above the
first ionization threshold, which contains a number of
auto-ionizing levels. These levels give rise to resonant
structure in the photo-ionization cross section or,
alternatively, produce resonances in the elastic scatter-
ing cross section for electrons on He+. %bile auto-
ionization should be present in the continuous spectrum
of all elements, a considerable amount of experimental
and theoretical effort has been devoted to helium, as it
is the simplest system displaying the phenomenon.
Recent papers are listed' '; these may be consulted for
earlier works on the subject.

To find the positions and structure of the levels, the
projection operator formalism of Feshbach has been
applied with success."'These calculations neglect the
background continuum and thus provide no information
on the line widths; however, Burke and McVicar'
(hereafter called HMc) have treated the problem in the
close-coupling approximation and have obtained values

*This research was supported in part by the National Aeronau-
tics and Space Administration under Grant No. NGR-29-001-008.

' J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Letters 10,
518 (1963).' R. P. Madden and K. Codling, Astrophys. J. 141, 364 (1965).' T. F.O' Malley and S. Geltman, Phys. Rev. 137, A1344 (1965).

4 P. Altick and E. N. Moore, Phys. Rev. Letters 15, 100 (1965).' P. G. Burke and D. D. McVicar, Proc. Phys. Soc. {London)
86, 989 (1965).' L. Lipsky and A. Russek, Phys. Rev. 142, 59 (1966).

for the position, widths, and q values' of the low-lying
resonances.

The above authors have established that the auto-
ionizing levels are associated with doubly excited
configurations of helium. Thus we choose wave func-
tions consisting of doubly excited configurations in
addition to configurations for describing the Is-kp
continuum. The resulting states show resonant be-
havior; we compute the positions, widths, and q values
of the six lowest lying I' auto-ionizing levels, as well as
differential oscillator strengths over the entire energy
range. A six-parameter Hylleraas ground-state function
was used in these calculations. The results are in good
agreement with BMc; the relationship between our
method and the close-coupling approximation is
explored in Sec. lI.

Pano' has laid the groundwork for the use of con-
figuration interaction in the analysis of auto-ionization
but his treatment depends upon a prediagonalized con-
tinuum and does not immediately lend itself to a
numerical calculation. Fano and P rats' have also
formulated the problem avoiding the prediagonalized
basis, an approach which differs from ours primarily
in the suggested method of solution, where we follow a
previous paper by one of the present authors. "

' For a dehnition of q value, see Ref. 8.' U. Fano, Phys. Rev. 124, 1866 (1961).' U. Fano and F. Prats, Proc. Natl. Acad. Sci. India A33, 553
(1963)."P.Altick and A. E. Glassgold, Phys. Rev. 133, A632 (1964).


