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Many-Valley Dipole Scattering of Electrons in Germanium anti Silicon

ALLAN D. BomoMAN

Department of Pure and A pplied Physics, Royal College of Advanced Technology,
Salford, Lancashire, England

(Received 17 January 1966)

The theory of dipole scattering is developed for germanium and silicon, whose conduction-band structure
can be described by a simple many-valley model. A formalism is used which employs a linear approximation
to the distribution function, and is due to Herring and Vogt. It is shown that, in the approximation, an
alternative approach due to Samoilovich et al. gives an identical result. The relaxation-time ratio nfl/rq is
computed as a function of energy and it is shown analytically that, as 8~ oo, v fl/rq ~ 3.69. This is ap-
proximately the square root of the corresponding result for point ions. Thus the scattering due to dipoles
is less sensitive to the anistropy of the energy surfaces than in the point-ion case. This can be explained by
considering the form of the cross sections presented by each type of scattering center. Finally, some numer-
ical work on the mobility and the effective anisotropy parameter is presented.

I. INTRODUCTION

HE problem of dipole carrier scattering arises in
semiconductors containing approximately equal

numbers of donors and acceptors. As has already been
described in I' the donors and acceptors may relax to
form dipole centers which then constitute a new scat-
tering mechanism. The most favorable conditions for
such scattering are a low temperature (to reduce the
importance of lattice scattering) and a high degree of
compensation.

There has been, to the author's knowledge, only one
detailed experimental study of ion pairing in semi-
conductors. ' This work concerned the Hall mobility of
holes in P-type germanium. Unfortunately, these re-
sults are djLIBcult to discuss, for a realistic band struc-
ture, because of the complex nature of the valence band.
Furthermore, the sample used was not very heavily
compensated (Xn ——2.8)&10"cm ', Sg ——3X10"cm ')
and the effect on the mobility in this case can almost be
explained by subtracting out the dipoles and neglecting
them.

The theoretical calculation in I was based on the
assumption of spherical energy surfaces and was in fact
a generalization of calculations due to Stratton' and
Samoilovich et uL4 The new feature was the relaxation
of the usual Brooks-Herring restriction on the screened
scattering potential but, as is well known, the assumed
simple model of the band structure cannot be justified
for materials like Ge and Si.

In this paper we will introduce a more realistic many-
valley band structure but the generalization discussed
in I is not included because the scattering matrix ele-
ments' are so complex. However, it was shown in I that

' A. D. Boardman, Proc. Phys. Soc. (London) 85, 141 (1965).
Hereafter referred to as I.' H. Reiss, C. S. Fuller, and F. J. Morin, Bell System Tech. J.
35, 535 (1956).

3 R. Stratton, J. Phys. Chem. Solids 23, 1011 (1962).
A. G. Samoilovich, M. V. Nitsovich, Fiz. Tverd. Tela 5,

2981 (1963) I English transl. : Soviet Phys. —Solid State 5, 2182
(1964)j.

~ Throughout this work we will neglect the role of intervalley
impurity scattering.

g'= 4vrne'/eks T, (2)

where k~ is Boltzmann's constant, T is absolute tem-
perature, and n is the free-carrier density.

The formalism we shall use assumes that the disturbed
distribution function f(k) of the electrons is a linear
function of the momentum k and that the scattering
occurs in a many-valley solid such as Ge. The necessary
technique in this approximation has been fully discussed
by Herring and Vogt~ and a completely general approach
has been discussed by Samoilovich et e$.7

We shall calculate E,=r»/r~, where r«and r, are
the principal values of the relaxation time tensor r;;
and the anisotropy parameter IC= (m»/m&) ((r&)/(sf[))
for a combination of lattice and point-ion scattering.
m«and m& are the principal values of the energy-
independent mass tensor m;;.

Finally, we will calculate the electron mobility as a
function of temperature.

2. GENERAL THEORY

In the 6rst instance we will develop expressions for the
relaxation times with the aid of the Herring and Vogt
formalism. We will then show how these expressions can
be transformed into expressions which can be derived
from the linear approximation of Samoilovich et OI.

6 C. Herring and E. Vogt. , Phys. Rev. 101, 944 (1956).
7A. G. Samoilovich et al. , Fiz. Tverd. Tela 3, 2939 (1961)

LEnglish transl. : Soviet Phys. —Solid State 3, 2148 (1962).
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the Brooks-Herring potential is satisfactory for a study
of the more lightly doped materials (say 10" or 10"
cm ') so we will confine our attention to these and use
an impurity potential of the form discussed in I'4

V(r) =Ze'R co&[(1+qr)/er'j exp( —gr), (1)

where r is a position vector, Z is the degree of ionization
of the impurity centers, 8 is the dipole length, P is the
angle between r and the dipole vector, ~ is the dielectric
constant, and q is the reciprocal of the screening length.
The expression for q, assuming nondegenerate statis-
tics is
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Fso. i. Coordinate axes de-
Gning P space: $,=+ sine cosa;
Q„=qb sin8 sina, f,=@cosg.

The differential cross section for elastic electron scat-
tering from a state k to k' is proportional to

~
V(k—k')

~

'
=

~
V(K) ~s, where V is the Fourier transform' of (1).

lf we therefore consider an array of randomly orientated
dipoles we obtain

16m'Z'e4E'h'

i V(K) is=
36

The anisotropy can be described in terms of a mass
tensor rn;; and a relaxation time tensor rg(E). Since the
valence-band structure is more dificult to deal with for
Ge and Si we will assume that the majority carriers are
electrons which lie in energy minima near the zone
boundaries. For simplicity the energy surfaces are taken
to be ellipsoids of revolution about the (111)axes in Ge
and the (100) axes in Si. We, of course, obtain an iso-
tropic drift mobility since the crystals are cubic.

Following Herring and Vogt, let us now define a P
space in which the energy surfaces are again spheri-
cal, i.e.,

where the summations are over the principal axes of the
ellipse. The l}l space is defined in Fig. 1. At this stage,
from the symmetry, we write m~ =m*„=no*& and
m*,=m*«. The notation is conventional. We can also
note that, if dQs is an element of solid angle in ii space.

P 2dQp= Q 2dQp= Q 2dQ@=4x@2

$2= 2E,
(3)

where n labels the principal axes of the ith ellipsoid, m*
are the eigenvalues of the eGective mass tensor, and
k &'& is the band-edge momentum vector.

Point-ion scattering has already been discussed by
Ito' and Samoilovich et el. and in the notation used by
Ito, namely, x= cos8, y= cos8', r= m*&/rn*~&, and
Q=k'qs/2ma&~E, Eq. (4), becomes

} V(K)fs=
16m. Z e'Rsks (x—y)s+r((2 —x —y )—2}(1—y )(1—x ) I'' cos(o. cs'))—

3es4em*„[Q+(x y) s+ r—{(2 x' y'—) 2—[(1 —y') (1 —xs)j'"—cos(n —a') )j'
(6)

In I we introduced a parameter ps= (a%see/2m*ekes)(rs/Ts) which delineated the applicability of a Brooks-Herring
potential. If, in this case, we replace tea by mall we obtain Q=4y~ ~s/g where rl= E/ksT and the condition y~ ~'((1
is again the necessary condition for a Brooks-Herring treatment to be valid.

Since the Herring and Vogt theory is so well known it is not necessary to dwell on the details leading to the
relaxation-time expression.

Thus

where

1 3B(g)
(x—y) s(M)dxdy, (7)

4g'e'E'E~*,
~(v) = (s)

3vlesks(nse) )ks T)"'g"s

and (M) means the integration over a and n' of (6).After the integration in (31) has been performed, we obtain

1—= see.B(g)
—1 —1

' (x—y) '[(x—y) '(Q+ (x—y) ')+r(2 —x'—y')(Q+ (x—y) ')+r'(x' —y') 'jdxdy

[(Q+(x—y)')'+2r(2 —*'—y')(Q+ (*—y)')+r'(*' —y')')"'

This integral can only be solved analytically in the limit
r —+ 0. We must therefore resort to numerical quadra-
ture. Equation (9) is similar to the expression for point-

8 R. Ito, J. Phys. Soc. Japan 18 1604 (1963).
sA. G. Samoilovich, Fis. Tverd. Tele 3, 3283 (1961) )English

transl. : Soviet Phys. —Solid State 3, 2385 (1962)j.

ion scattering obtained by Ito, indeed the denominator
is identical. However, as discussed in the Appendix, the
Herring and Vogt treatment is a linear approximation
and is therefore ~deet~cul to the Samoilovich treatment in
this approximation. This point has not previously been
explicitly made.
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FIG. 2. The ratio of the longitudinal relaxation time to the traverse relaxation time for one valley
in Ge plotted against energy. The asymptotic form was obtained from Eq. (14).

Thus, in the Samoilovich formalism Eq. (9) becomes

1 6xB(«I) ' x'dx

7„(1—r) g Lx'+r/(1 —r)]

where

1+23' 1
X —2'ln 1+—,(10)

2(1+2 ')

g[(1—r)x'+r']
and in a similar fashion we obtain

1 3n.B(g) ' dx

r, (1—r) g (x'+r/(1 —r)]
1+23'

X —3'ln 1+—
2(1+3') 2rll

These one-dimensional integrals can be handle
conveniently, e.g., the asymptotic forms are especially
easy to 6nd. It has always of course been implicit that
the two approaches must be entirely equivalent in the
linear approximation. The work of Ito' and Samoilovich'
on point-ion scattering should therefore be in exact
agreement.

If the limit r —+ 1 is taken in Eqs. (10) and (12) we ob-
tain the usual isotropic case."4

The theory described here can only be used to cal-
culate quantities which depend only on the 6rst power
of 7, e.g., the drift mobility. If we desire to calculate the

Hall mobility which depends on r' then the inherent
error in the results is multiplied by 2.' However, to go
beyond the Herring and Vogt approximation we need
to employ the sophisticated techniques of Samoilovich
so we will concentrate only on the quantities p and E.

Even if the linear approximation is transcended, the
formal Herring and Vogt expressions for the galvano-
magnetic coe%cients are sufhcient provided one uses the
more accurate expressions for ri& and r~ obtainable from
the work of Samoilovich. '~"

dx
E,=—

2 ) Lx'+r/(1 —r)]

x2dx

, Lx2+ r/(1 —«)]
(13)

"I.Ya. Korenblit, Fiz. Tverd. Tela 4, 168 (1962) /English
transl. : Soviet Phys. —Solid State 4, 120 (1962)j."P. M. Eagles and D. M. Edwards, Phys. Rev. 138, A1706
{1965).

'2 I. V. Dakhovskii, Fiz. Tverd. Tela 5, 2332 (1963) I English
transl. : Soviet Phys. —Solid State 5, 1695 (1964)j."D. G. Andrianov et a/. , Fiz. Tverd. Tela 6, 2825 {1964)
LEnglish transl. : Soviet Phys. —Solid State 5, 1695 (1964)j.

3. SCATTERING PARAMETER

It has been noted in previous calculations of point-ion
scattering" that the ratio r~, /rL tends asymptotically
to a hnite limit as E~~. This limit is often called the
maximum anisotropy and of course exists in this case
also (cf. Fig. 2). We can discuss this limit by considering
small-A expansion of the integrands of (10) and (12).

The expression for E, then becomes
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which becomes

1 ((1—r)'/ /r'/ 7 tan 'P(1—r) /2/r'/ ]
E =— 1 0

2 1—[r"'/(1 —r)'"] tan '((1—r)'/'/r'/']

K, K K,

B

K,

If we now de6ne the part of the integrand of (10) which

depends on A as

1+2A '
f(A) =—

2(1+A')
we see that when A —+~

(
A2&

(i6)

f(A) (6A') '.

The parameters for Ge are m*ii= 1.588, ms*i=0.08152,
r=0.0513 and for Si are ns*l1=0.80, as*~=0.192. Thus
the analytical form (14) predicts

E, = 3694 (Ge),
g ~&~ (15)

E, = 1.924 (Si).

Pro. 3. The prolate energy surface of revolution as a model of
one valley. The e6ective masses and relaxation times associated
vrith the longitudinal and transverse axes are shown.

surface of revolution" whose longitudinal axis lies along
a symmetry axis. (See Fig. 3).

As a rough measure of r))/r2 we will take r(K2)/r(K2)
where we consider, in turn, an electron traveling along
the minor or major axis of the ellipsoid. Essentially the
relaxation time is proportional to the probability of a
transition from a state K to state K', and the scattering
matrix element is a function of

~
K—K ~. The distinction

between the action of dipoles and point ions can be

TABLE I. A comparison of scattering matrix
elements as a function of carrier energy.

This means that in the low-energy region

1 32(2 r) B/3) 1—
:+

Q' 5 3(1—r)

1 32(1—r) B(3)/1
I

—+
r3 Q2 (15 3(1—r)

(i9)

Point Ions

Dipoles

[ I—K' i-4

Constant

[K—K'] '
fK—K'[2

High
Low

High
Low

Scattering mechanism Matrix element Energy of carrier

so that the value of E, becomes

E,= (1+4r)/(3+2r).

Thus, numerically

E, = 0.3gg4 (Ge),

E, = 0.5405 (Si).
F~ ~0

(2o)

(21)

The quantity E, which refers to one valley is a meas-
ure of the scattering anisotropy. It has been discovered
that, as E—+~, for point-ion scattering E,=12.S'9'4

However, Eq. (15) shows that the anisotropy in the
scattering due to dipoles is much less, so it is of interest
to consider a rather nonrigorous argument which leads
us to expect this result.

A single valley is represented by a prolate energy

made by referring to Table I. Thus we can predict the
trend of the E, values by setting (for E +~)—

r(K2) E2'/E2' (point ions)
(X (22)

r(K2) E2'/E2' (dipoles).

Therefore, since E, 12 for point-ions, we expect in the
dipole case that E,~(12)"', which is roughly what we
obtain. A previous attempt to predict the trend of Is,
for point-ion scattering in this way, due to Herring, ""
led to the opposite conclusion.

4. ELECTRON MOBILITY

Since a Brooks-Herring potential has been used
throughout, the electron mobility is evaluated at
g=Er/O'T=2 (cf. I) when the averaging is performed.
The isotropic result is"

21/222/g2($ T) 1/2

pr=
2r" Z2R2tn~"'eB.V~/(2+2/y')/(1+2/y ) y' 1n(1+2/y')]-

We must now compare this result with the anisotropic mobility obtained from

4e 2 1
pa= (r,)+ (r„)

9~'~' m*, m*„
'4 F. S. Ham, Phys. Rev. 1OO, 1251 (2955)."C. Herring, Bell System Tech. J. 34, 237 {1955)."J.D. Zook, Phys. Rev. 136, A869 (1964).

(23)

(24)
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Tol

where (r)= jo"dp r(rl)e "p"'. The mobility averaged in the way described above becomes

2'~'e'k'(m~ k T)"'f 2 1
9 "z' 'R'Iv m'. Lw', J(2) sP„L(2))

2"'e'k'( m)k~T)"'(1 r) —2

9m 3/2Z2e3EIE~*~
+

m*,I.(2) m*„iV(2)

where I(g), J(g) are the double integrals such as (9) and I.(g), M(g) are the integrals involved in (10) and (12). As
an illustration we consider Ge containing 3X10"cm ' donors and 2.8X10" cm ' acceptors; this is the n-type
counterpart of the case described in the Introduction. The compensation is 0.0345. This is really representative of a
minimum required degree of compensation; the dipole density' is 1i)'z while the carrier density is (1))Tn—1V&).
For the sake of simplicity we will neglect freeze-out of electrons at low temperatures. We can now express p~ as

2'~'6'k'(m*) )kgT) "' rÃ,
pa= 1+

9~')'Z'e'E'. V~*,'J(2) 2
(26)

where E, is to be evaluated at F=2ksT. If we now compare this result with (23) we obtain

A 8~Ill/2~43/2 P Q~
1+ — fh')

pr 9m, 'J(2) 2
(27)

which can easily be seen to reduce to unity for r= 1.For Ge e~16, m* 0.25, so that numerically Eqs. (23) and (25)
become

1.934X 10'T'/2
pa= L1+0.0257',1 cm'/V sec,

F(T)J(2)

9.173X104m»2
Pl= cm'/V sec,

F(T)t (2+2/y')/(1+2/y') —y' In(1+2/y') j
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by Dakhovskii, "is

p1.=2.82X10'T—'" crn'/V sec
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(29)

and the ion-mobility, obtained from the Samo lovic
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S. EFFECTIVE ANISOTROPY PARAMETER

The anisotropy of one valley can be studied directly
from magnetoresistance and piezoresistance experi-
ments. "The results here will apply only to the linear
range of piezoresistance" since the valleys shift relative
to each other at large stresses'o and the varying number
of carriers in each valley alter the effective screening
radius we would have to use.

We consider the quantity E= (m*&~/m*&)((r&)/(r~~))
as a function of temperature. The brackets ( ) represent
the usual Maxwellian average. In Fig. 7 we see E com-
puted for a combination of ions, lattice, and dipoles.
As we commented in the last section, the upper curve
can be roughly explained by assuming the ion popula-
tion to be No—Nz. However at 200'K an error 15%
would be made by such an assumption.

If highly compensated materials become available,
then it should be possible to speciically examine the
dipole scattering anisotropy E,directly, i.e., the validity
of E,~3.69 as Q~Q can be checked. This was done
experimentally for point-ions by Laff and Fan."

"R.A. La8 and H. Y. Fan. , Phys. Rev. 112, 317 {1958)."M. J. Katz, Phys. Rev. 140, A1323 (1965).

6. DISCUSSION

We have calculated the anisotropy in the scattering
of electrons from a set of randomly orientated dipoles.
Naturally the experimental situation will be such that
partial alignment of the dipoles will occur."4 We would
then have to consider the anisotropy of the cross section
and the energy surfaces. This problem has yet to be
solved.

The degree of anisotropy cannot be compared to an

experimental result because there are no relevant availa-
ble data on Ge or Si.

However, some work done on the InAs-CdTe alloy
system" may provide a means of comparing part of the
theory with experiment. In this case the band would be
spherical but the nonparabolicity would have to be
included.

The calculations presented here are based on the erst
Born approximation. This leads to results of limited
applicability below 50'K" because the cross section is

"J.Appel and W. B. Teutsch, J. Phys. Chem. So~lds 23, 1521
(1962'."F.Slatt, J. Phys. Chem. Solids 1, 262 (1957).
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overestimated. It is clear that partial-wave calculation"
must be performed to account for the temperature range
T&50'K more accurately. The 4'&culty here is that
for spherical energy surfaces the radial Schrodinger
equations, which must be solved numerically, are
coupled. Also there is a basic defect in such a partial-
wave analysis, namely, the lack of a self-consistency
condition. Such a condition exists for metals in the form
of the Friedel sum rule. In semiconductor work we can
only assume the scattering potential and then devise
qualitative arguments which lead to a choice of the
screening length, or the cuto6 parameter, which yields
results which are insensitive to the detailed form of the
potential. "
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APPENDIX

%e will now demonstrate that the procedures of
Herring and Vogt' and Samoilovich et cl.~ 9 are entirely
equivalent in the linear approximation. In the Herring-
Vogt formalism the departure of the distribution func-
tion from equilibrium is written as

Fro. 8. Vector diagram showing the scattering from
g to (' together with the polar angles.

where E is a collision operator and t/'~l, . is the scattering
matrix element. In the Herring-Vogt notation we ob-
tain Lneglecting all harmonics above p=1 in (A1)]

dfl~d" ~ 4"(0'' 0')—

&(W(p —+!!!') @,md', p, (A3)

where for dipole scattering

4e'Vg(m* 'm*)i)"'R'

3c'h4

and the transition probability is

f8~ p p

where Y, (@) is the usual spherical harmonic. The re-
laxation times are then assumed and are generated from
the collision equation~ ~

Rng=p Ygg(ng —nj, ),

The Samoilovich formalism generates relaxation times
by setting

Rng —Q Fg„——(y)B„(mn) Yg„(j);

the relaxation times Tii and r& are then B~~ '(0) and
B„'(1), respectively. The functions B;&(m) are ob-
tained from4

(2m~, 'm~„E) '~'
B,l, (m) =

(8, even)

(2j+1)(2k+1)(j—s)!(k—s)!
do. sino. d8 sin8

(j+s)!(k+s)! 0 o

Xcos8W(8,a)P,'(cos8)P~'(cos8)P, „'(cosa)P*, ~(cosa), (A4)

where W(8,a) is the transition probability once more and P, ~ are Wigner functions. "Having de6ned the two
formalisms we will now show how Eq. (9) of the text can be expressed as a single integral (10).We begin with (A3)
which was derived using the transformation (3).

Let us now make the transformation"" (;=isk;/(2m*, E)"' so that Eq. (A3) now becomes

j. 3—=+— ((,—$,') 2A(g ~ $')dQ)dQp, (A5)
7;; Sm.

"This problem is currently being investigated by the author in collaboration with Dr. S. Sampanthar of the Mathematics
Department.

'4 N. Sclar, Phys. Rev. 104, 1548 (1956).
"These functions are clearly de6ned in an article by R. J. Roe, J. Appl. Phys. 36, 2024 (1965). The author would like to thankDr. R. A. Sack of the Mathematics Department for pointing this out to him.
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where
4e4Ng(m*, 'm„~)"'R' Q m~ /h. '(f $—')'

A((~ 6)=
3"&4(2E)'" LV'/2E+2' ~'s'(5 —E')'j'

(A6)

Let us now consider scattering from g to g' such that g—g'= X (see Fig. 8). It is then a straightforward matter to
write, as shown by Zook, "
Thus, "

dQ)dQ p ——XdQ),BdP.

3
d~ V,„A(~ ~~).

4

(A7)

(Ag)

However, we can proceed beyond this stage. Thus, since g and ( are unit vectors it is obvious that 0&X(2 and we
can also write~

X=2 cos8; 0&8&s/2,

where 8 is the angle between 2 and g. In X space we have X = X sing co&', X„=X sintt co&', and X,=X cosP, and the
scattering function is

Therefore,

4e'.V m~, R~ cos'f+r sin'g
A= cos'8

3f'h'(2E)'"m~ '" [Q/4+(cosy+1 sin'iP) cos'8)'

e4Ãgm*, E' ~~' (8 cosQ sing)(2 cos'8 sin8) (cosQ+r sin'iP)d8d@'df

e 0 (2Em*ii) i
0 p p LQ/4+ cos'8(cosg+r sing) $'

(A10)

(A11)

which can be expressed as

See'37~*,R' x2dx1 1 ybdy

e'h'(2m* E)' '(1—r) g fx'+r/(1+r) j 0 (y'+A')'
(A12)

The integral over y can easily be performed and Eq. (10) of the text is recovered.


