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Theory of the de Haas —van Alphen Effect in a System of Coupled Orbits.
Application to Magnesium*

L. M. FAxzcovj AND HE~ex STAcaowIAKf

Department of Physics and Institute for the Study of Metals, University of Chicago, Chicago, Illinois
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A Green's-function formulation for the calculation of amplitudes of the de Haas-van Alphen effect is
developed. The theory can be applied to the case of metals in which magnetic breakdown takes place.
The exact theory is presented and then approximated by a wave-packet approach susceptible of a simple
physical interpretation; this approximation is proved to involve no error for the free-electron gas. The
method is then applied to a hexagonal network corresponding to the case of magnesium for magnetic fields
parallel to the hexad axis. Curves are presented for the magnetic-field dependence of the amplitude of various
important periods at T= 1 K; they are in agreement with preliminary experimental data. The method is
also proved to give a density of states which agrees with that obtained from Pippard s model for the hexag-
onal network of coupled orbits.

AC Cp
80(a.u. ) = 2.673 X10-'v(G).

2xe

Consequently, measurements of the de Haas —van Alphen
frequencies give direct and detailed information on the
electronic structure. The amplitude of the oscillations
on the other hand is a much more complex quantity to
analyze and many factors are known to contribute: the
curvature of the Fermi surface at the extremum, the
temperature, the mean free path of the electrons, and
the spin-orbit coupling among others. The functional
dependences of the amplitude on the temperature and
on magnetic Geld strength are, however, in most cases
practically identical to that found theoretically for the
free-electron case.' This means that the free energy of
the system shows a dependence of the form

X AcRo
F ~ Hs~' —— cos

sinhX eH ) (1 2)
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1. mTRODUCTrom

HE de Haas —van Alphen eGect has proved to be
an extremely useful tool for investigating the

electronic properties of metals and semi-metals. ' At low
temperatures the magnetization exhibits oscillations
periodic in H whose frequencies v are directly pro-
portional to extremal cross-sectional areas 0',p of the
Fermi surface, i.e.,

for each extremal cross-sectional area Sp of the I'ermi
surface (or their rnultiples). In (1.2)

2x'kggT
X=—

co. is the cyclotron frequency corresponding to the area
0!p, and yp is an arbitrary phase.

Some metals however, Zn in particular, ' are known
experimentally to follow a different behavior, namely
a much slower increase or even a decrease in the
amplitude of some oscillations as the magnetic GeM
increases. This behavior can be explained qualitatively
in terms of magnetic breakdown, a phenomenon which
in the last Gve years has received considerable atten-
tion from the theoretical~" as well as the experi-
mental" " point of view. Nonetheless, no complete
theory of the de Haas —van Alphen effect in metals with
magnetic breakdown has been presented so far, and,
although the value of the frequencies can be easily
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understood from the basic properties of the magnetic-
breakdown phenomenon, the amplitude of the oscilla-
tions and particularly its magnetic-field dependence
need further examination.

Two recent developments motivate our study. Firstly,
new and detailed experiments" on the de Haas —van
Alphen efI'ect in magnesium show such a wealth of
information that a theory of the effect becomes a
necessity if one is to interpret the data correctly.
Secondly, the quantum mechanical properties of elec-
trons in a system of coupled orbits' ' have been ex-
haustively studied and an extension to include the
theory of the de Haas —van Alphen effect became thus
possible.

In Sec. 2 we present a theoretical formulation of the
problem by developing an exact Green's function or
wave-packet approach. The exact theory is then ap-
proximated by introducing some simplifying assump-
tions. The method is tested by performing the calcula-
tion for the simple cases of the free-electron gas' and
the free-electron gas with scattering included, ' and
comparing our results with the well-known ones for
these examples.

In Sec. 3 the method is applied to the case of mag-
netic breakdown, i.e., the case in which orbits are
coupled. In Sec. 4 the specific case of magnesium is
studied and a calculation of the relative amplitude of
various important de Haas —van Alphen periods is
carried out. The method is tested again by comparing
the resulting density of states with a numerical calcula-
tion of the density of states corresponding to the specific
band structure computed by Pippard. 7

BF
M(B)=-

OH
(2.1)

the free energy Ii is in turn given by'

F=A i 2k' T p(E,B)—

Xln(1+exp/(i E)/AT j)dE, (2.2a)—

or equivalently, if an integration by parts is carried on
in (2.2a), by

F=Xf'—2 f(E,T) p(E',B)dE'dE. (2.2b)

2. FORMULATION OF THE THEORY

In calculations of the de Haas —van Alphen effect, the
magnetization of the metal is calculated by the standard
formula

dependent density of states. The major task in the
calculation is thus the determination of p(E,H).

In order to calculate p(E,H) we introduce now a
Green's function G(r, rp, t) which satisfies Schrodinger's
equation

(2.3)

subject to the initial condition

G(r, rp, O) =5(r—rp). (2.4)

In (2.3) K is the one-electron Hamiltonian of the
crystal, acting on the variable r. It is easy to prove (see
Appendix A) by expansion of G in the eigenfunctions
of X, that

G(rp 1'p t) expLiEt/h jdrpdt. (2.5)

Consequently, the knowledge of G(1p, rp, t) 'is equivalent
to the knowledge of the density of states p(E) since
one essentially is the Fourier transform of the other.

Equations (2.3)—(2.5) are susceptible of very physi-
cal interpretation: G(r, rp, t) describes the evolution of a
wave packet which at t=0 is perfectly localized at
r= rp. As time evolves (both in the positive as well as
the negative directions) the wave packet spreads out.
The amplitude and phase of this wave-packet at every
instant of time at the point of initial localization ro,
integrated over all values of ro, give the Fourier trans-
form of the density of states; that is, we should focus
our attention to those parts of the wave packet that
stay localized at ro or return to ro after a given interval
of time.

In order to gain further insight into the properties
of G, we calculate it for two simple cases: (a) a two-
dimensional field-free electron gas, and (b) a two-
dimensional free-electron gas in the presence of a mag-
netic field. The usefulness for our purposes of the two-
dimensional (rather than three-dimensional) problems
will be apparent later. %e shall assume that the two-
dimensional electron gas is confined to an area L~L2
and that all energies are measured with respect to the
Fermi energy, assumed to be a constant independent of
magnetic fields.

(a) Two-Dimensional Field-Free Electron Gas

Since the eigenfunctions are plane waves, Eq. (A2)
in Appendix A immediately yields

In (2.2) f' is the Fermi energy, f(E,T) the Fermi-Dirac
distribution function and p(E,B) the magnetic-field-

"R.B.Dingle, Proc. Roy. Soc. (London) A211, 500, 51'' (1952).

G(rp, rp, t) = P expL —ih(k —krP)t/2mj
L&L2 k

exp

Likker

Pt/2m)b~ (t).

(2.6)
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In (2.6) kr is the Fermi wave vector,

2 6
S,(z) =-,'~(z)+

2~$ x' (2.7)

p(E) =—LrLp, E)—
7rA2

)
2m

and the factor of 2 is due to spin degeneracy. Insertion
of (2.6) into (2.5) yields the expected result

(ii) Only the two dimensions normal to the magnetic
field are considered in G. That is, if H is parallel to the s
axis, k.- is a good quantum number. The two-dimen-
sional 6, which will be denoted by 6„ is a function of
x, f xp yp, and t, and of k, as a parameter. In this way
(2.5) does not yieM the total density of states p(E) but
only a two-dimensional analogue p, (E,H, k,) correspond-
ing to a given value k, of the k-vector parallel to II.
The total, three-dimensional, density of states can
however be easily obtained by integration

=0
7

(2.8) I.3
p(E,H) =—p. (E,H, k,)dk. .

2Ã
(2.11)

(b) Two-Dimensional Free-Electron Gas in the
Presence of a Magnetic Field

The derivation for this case is given in detail in
Appendix B. It is shown there LEq. (B5)$ that
G(rp, rp, i) consists of a series of 8+ functions with argu-
ments (t—pti), where p is any integer and

27/ 271'm C

eH
(2.9)

is the free-electron cyclotron period. Again the 8+ func-
tions guarantee no states for E&—EI+&fscv, and the
consequent convergence at the lower limit of the inte-
grals involving p(E).

In the two cases seen above L(b) of course reduces to
(a) when H=O] we can see that, if we are interested in
energies close to the Fermi energy (E~) and far
away from the bottom of the band, i.e., ~

E~((E&, it
is a good approximation to replace in (2.6) and in
(BS) the h+-functions by simple 8 functions. This sub-
stitution involves no error in the region of interest but
it should be remembered that, when integrating over
energies, the lower limit will give rise, in general, to a
divergence. The de Haas —van Alphen eRect however
arises only from the oscillations of the integrals at the
upper limit of integration and consequently the ap-
proximation is exact if contributions from the lower
limit are neglected.

For the rest of this paper we make the following
approximations and assumptions in the calculation of G:

(i) All energies are measured from the Fermi energy,
i.e.,

/=0,
p(E) =p(E 1), -

G(rp, rp, t) = exp(ift/fi)G(rp, rp, i).
(2.10)

It can be seen that the appearance in (2.6) of a b+
function rather than a simple Dirac 5 function guaran-
tees that p(E) is zero for energy values below the bottom
of the band E,= Er = ——ll'k~'/2prp; this insures con-
vergence in the lower limit of all integrals involving
p(E).

G, (rp rp t) =P F; exppp, 8(t—i,), (2.12)

where F, and y; are the amplitude and phase, respec-
tively, of that wave packet returning to rp at a time t, .
In particular y, is given by the usual Onsager rules, ' "
1.e.)

p, =ti~ (k.) p, p,
—

where y, p is a constant phase, independent of H,

(2.15)

ht,"

P —~—I—
eH

(2.14)

and 8;(k,) is the area in k space swept by the wave
packet j when it returns to rp at time t, . The first term
in (2.13) corresponds to 2rr times the number of mag-
netic flux quanta hc/e which the electron has encircled
when it returns to rp.

'9 see, for instance, A. B. Pippard, Repts. Progr. Phys. 23,
176 (1960).

'0 The integral of a function expPjy(x) j over x, vrhen q varies
quadratically with x: p(x) =a+bx' and the interval of integration
comprises the origin x=0 and many periods of ~ on both sides, is
approxiruately equal to 2xp exp/i (aarr/4)], where xp =-,'Lp. ~b

~ j '~'
and the plus or minus sign corresponds to positive or negative
values of b, respectively. For more details see Ref. 19.

For the oscillatory components of p, the integral in
(2.11) can be simply carried out by means of the so-
called Cornu's spiral method"' usually employed in
the theory of oscillatory eRects in solids.

(iii) G, (r, rp, i) will be approximated by a super-
position of wave packets that follow the classical tra-
jectories with well determined phases. These wave
packets are formed by electron wave functions in the
neighborhood of the Fermi surface and consequently
will determine the density of states accurately only for
energies close to the Fermi energy; these states are the
only ones of interest for the de Haas —van Alphen eRect.

From the definition of G.(r, rp, i) and the wave-packet
approximation it is evident that except for the con-
tribution to the coefficient of h(i), which is equivalent
to a constant density of states, only those wave-packets
that return to rp at a later (or earlier) time give a
contribution to G, (rp, rp, t) Conseque. ntly, for a system
which is macroscopically spatially uniform
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In order to test the validity of the approximations
we apply the method to the calculation of the de Haas-
van Alphen e6ect in the free-electron gas, ~ and include
later the effect of collisions. "

In the case of the free-electron gas, all electrons being
at rp at t=0 return to rp at times

wave-packet amplitudes decay in time like

M(t) =exp( —)t~/2r), (2.23)

where r is the usual relaxation time. In this way

2'
G, (ro, ro, t) =—j exp/( —

) l ) 4/2r)+ilPC~(k. ) i—pm]
A '—"

XE(t—lh), (2.24)
2+i

t)=ltd=
roc

(2.15)

are y.ven by In the case of magnetic breakdown, the independent
o i=lPttx(k. )—oooo, (2.16) semiclassical orbits used in the general formulation thus

far become coupled, and the system can be represented
by an equivalent network. ' At each junction (see

%(k.) =or(k»' —kz') = t'ai(0) —ork* (2.1t) Fig. 1) a wave arriving through one of the incoming
branches with amplitude 1 and zero phase, will leave
the junction (a) by continuing on the free-electron
trajectory, with amplitude p and phase too or (b) by a
Bragg refiected trajectory with amplitude q and phase

(2m/k) P exp[ilPtt&(k, ) i pz—]h(t lt,),—(2.18) yo. It has been proved' ' that

where

Substitution of all these values in (2.12) yields

G, (ro, ro, t)

and the 6nal results show a damping of the oscillations
where l is any positive or negative integer. The ampli- by an exponential factor expL rrl/—oo,r]
tudes F~ of all the b functions are in this case identical
and equal to the value 2m/fs determined in (2.6). The 3. SYSTEMS WITH COUPLED ORBITS
phases

which agrees with the exact equation (35) if b is re-
placed by 8+ and q&p is chosen to be equal to lx. If
(2.18) is inserted in (2.5),

p.(E»,k.)

po+ go (3.1)

(3.2)

In addition the probability of continuing along the
free-electron trajectory is given by' '

P=p'= expL —Ho/H], (3.3)
=LgLo Q exp{ilDttt, (k,) O'Et—g s]),—(2.19)

xk' &—~

Xcos(lg(ti(0) —k—'Eti]—or/4). (2.20)

Finally, the oscillatory part of the free energy is

FOS.=2rr 'L&LoLom P(—1)'l o"P-'"tg '

where

Xl g
X cos lPSi(0) ——,(2.21)

sinhXg 4

2x'lk~T
X)=m-h 'ltgkgT= = lXg. (2.22)

which integrated by means of the Cornu's spiral method
over k, (Ref. 20) according to (2.11) gives for the
oscillatory part of the density of states

I jI.21.3 ~
t- (E»)= Z(—1)'(ltd) '"

xk

where Hp is a parameter which depends on details of
the band structure. For the phases, lacking any detailed
knowledge of their value, we follow Pippard~ and choose
py 2' pq 0 This will enable us to compare in the
next section our calculation with Pippard's band
structure. '

The function G, (ro, ro, t) takes now the form

2m
G, (ro, ro, t) =—Q C,M,R; exp(iy, )8(t—t,), (3.4)

h ~

where all the symbols used here will be defined in turn.
Under the one label j we have collected all equivalent
wave packets, i.e., all those wave packets which return
to rp at the same time t, with the same phase q; after
having followed in their networks similar trajectories,
that is, trajectories which become identical after a
rotation and/or a translation. The phases oo; are given
by Onsager's rule (2.13).

q.e'&&

Equations (2.21) and (2.22) are identical to the well
known result obtained by Landau and Peierls. '

The inclusion of collisions into the problem can be
accomplished. , following Dingle, ' by assuming that the

imp

I' IG. 1. A junction in a
magnetic-breakdown network,
showing amplitudes and phases.
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If the trajectories pass through n; junctions and are
such that the free-electron path is followed at n» junc-
tions and the Bragg-reQected pa, th is followed at the
remaining n2, junctions,

nf j+nQ j—n j) (3.5)

—
(ZP) tlljqt422 (3 7)

One would be tempted at this stage to drop the phase
factors in (3.6), which, being independent of magnetic
field H, can only cause a change in the constant phase
of the oscillations. However, as we shall see in a specific
example, two diferent packets may have identical
times t; and phases y, but diferent R,. factors, and in
that case interference effects which depend on y„and
pq do arise.

The factor M, is the usual Dingle scattering factor"

2M;=exp( —
~

&, ~/2r]. (3.8)

The factor C;, called the weight factor, is real and
positive and gives the total amplitude of all equivalent
packets j. The calculation of C; involves in general a
nontrivial combinatorial problem which needs further
clarification. However, in order to make the explanation
and discussion less abstract, it is useful at this stage to
introduce a specific example and to refer to it. Gen-
eralization to other networks is straightforward and
will not be done here explicitly.

We consider the hexagonal network used by Pippard'
and depicted schematically in Fig. 2. It consists in k
space of a set of spheres of radius kp centered at the
lattice points of a two-dimensional hexagonal lattice
with parameter

~
6

~
equal to the magnitude of the 6rst

Fro. 2. The hex-
agonal network in
real space.

then the factor E, in (3.4), which we call the magnetic
breakdown damping factor, is defined

~,=p""0""expkznz, q „+zzzz, q, j&

or, following our convention

FIG. 3. The division of ve-
locity space into regions S and
I„corresponding respectively
to small (triangular) arms and
large (hexagonal) arms of the
hexagonal network.

reciprocal lattice vector. Figure 2 shows the real-space
network which corresponds to a cross section through
the centers of the spheres, i.e., at k, =0. This model with
difterent values of kp and

~
6( represents very well"

the actual cases for Mg, Zn, and Be.
If the sense of circulation of the orbits is taken into

account, it is seen that the network of Fig. 2 belongs
to the two-dimensional space group p6," i.e., a group
which contains axes of six-, three-, and two-fold sym-
metry, but contains no mirror planes: the corresponding
point group is 6 (or Cz in the SchoenQies notation). "

Since the magnitude of the velocity (or k vector) is a
constant throughout the network, a plot of the ve-
locities (Fig. 3) gives a circle divided into twelve arcs.
The velocities in each arc correspond to those in one
arm of the network and to all other arms equivalent to
it under any translation of the space group. The twelve
arcs of Fig. 3 can be divided into two sets 5 and I
such that within a set all arcs are equivalent under the
rotations of the group. If the angle subtended by each
arc 5 (or L) equals 22rns (or 22raI), we call ns (or nl.)
the weight factor of each 5 (or L) arc, and 622s (or 6ar, )
the total weight factor of the 5 (or L) set.

In order to calculate all the quantities involved in
(3.4) it is necessary erst to draw all possible different
trajectories; here we consider as diGerent only those
trajectories that cannot be made identical by a com-
pletely arbitrary translation and/or one of the rotations
of the point group. In Fig. 4 we have drawn twelve
possible trajectories. According to our deanition orbits
(4) and (12) are not different and one of them should
be eliminated. On the other hand orbits (7) and (10)
are diBerent and both should be included in the
calculation.

Ke make now the following list of parameters for
each orbit: (a) the total number of junctions n, ; (b) the
number of broken-down junctions n». and the number
of Bragg-rejected junctions zzz, zza+2222=22, ; '(c) the
number of small segments ng, and the number of large
segments nI,, comprised in each orbit: n8,+nl,;=n;;
(d) the rotational synunetry of the orbit D;; this is the
number of rotations, including the identity, that trans-
form the orbit into itself; (e) the harmonic order f, of
the orbit, i.e., the total number of times that the wave
packet has been at each and every point of the tra-

"See, for instance, C. Kittel, Introductioe to Solid State I'bye s
(John Wiley 8z Sons, Inc. , New York, 1963), p. 16.
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TAsLE I. Parameters of the orbits appearing in Fig. 4.

Orbit

1
2
3
4,

5
6
7
8
9

10
11

Number of
junctions

12
3
6
6

12

12
12
12
12
12

Broken
down

junctions

n]j

12
0
0

6
8
8
6
8

B�rag-
gre�Qect
junctions

n2j nsj nLj

Number Number
of small of large
segments segments

Rotational
symmetry

D,

Effective
mass

1
30!s

1—6ns
g+2cls

1

3+As
1
1
1
1
1

%eight

Cj

1
6o.s

1—6ns
1+6'.s

6
4+6ns

3
6
2
3
3

Area in k
space

ej(0)
8
8

g+28
2) —8
3X—28
3X—28
3X—28
3A, —28
x+28

m, =ns, ~s+ns„~z„ (3.9)

where o.~ and n~ are the weight factors of the small and
large arcs, respectively, (Fig. 3); (3) the times t;
needed by the wave packets to return to ro..

t, =+M, fg, (3.10)

Jectory; (f) the extremal area of the orbit in k space
Q,,(0)."Of all numbers in the list, nq;, np;, ns& , and. nr, ,
are non-negative; t;, n, , and D, are positive and 8, (0)
can take any value, positive or negative.

With all these parameters written down (see Table I
and Fig. 4 for various examples) we calculate

(A) the effective-mass parameter 6m,.C=——
Dylan

(3.12)

This completes the information required to write 6, in
(3.4). However, when performing the integral (2.11)
over k„ it is necessary to know the variation of 8, (k.)
with k, . This" is only necessary close to the extremum
k, =o, where it can be approximated by

that the upper (lower) sign in (3.11) corresponds to the
upper (lower) sign in (3.10); (D) the magnetic-break-
down damping factor E, given by (3.6) Lor (3.7)5;
(E) the Dingle scattering factor M, given by (3.8) and
(3.10); (F) the weight factor C,, given by"'

y;=aPe, (0)asap, p, (3.11)

where t& is the free-electron cyclotron period (2.9);
(C) the phases rp, at the extremum 80',j

n, (k,) = 8;(0)+ k.'.
8(k,s)

(3.13)

where p is defined in (2.14) and the signs are chosen so We can then calculate (G) the coefficient of the quad-
ratic variation of area S,(k.) at the extremum; a
straightforward calculation gives

Ãmj
8(kP)

(3.14)

When all these values are replaced in (3.4), (2.5),
4 s „,.b&, (2.11),and (2.2), the oscillatory part of the free energy

orbits in the hexagonal Fp c is given by
network.

6
F„,= 2~ 'L L& m p p 't'm; 't't '(ip) "»q"»

j D, /;

"In measuring the orbit area, the orbits or those closed parts
of an orbit which are of the electron type are considered positive,
while orbits or closed parts of orbits which are of the hole type are
negative. In Table I and Fig. 4, Q, 8, and X are positive while x
is negative.

X; x
Xe p[ xm, tq/2' — cos pR, (0)—p, p

——
sinhX; 4

(3.15)

'~ Note added in proof. C, is the product of the effective mass of
the fundamental frequency, (mj/lj), and the number of equivalent,
nonidentical orbits which contribute to j, (6/Dj).
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where tI is the free-electron cyclotron period, TABLE II. Parameters of some important orbits in magnesium.

2x AT
X;=m;XI= m, --

Aco,
(3.16)

and ~. is the free-electron cyclotron frequency.
Formula (3.15) gives the final result of this calcula-

tion. In the next section we apply it to the speci6c case
of magnesium and we also compare the resulting density
of state with a numerical calculation of p(E,H) for
constant H as a function of E obtained by an extension
of Pippard's band structure. 7

4. APPLICATION TO MAGNESIUM

In the case of Mg"

k~=0.7274 atomic units (radius of Fermi sphere);

~
6

~

= 1.2040 atomic units (distance between centers
in the network).

Area
e, (0)

6
26
38
46
8

28
38

2x
X

2X
)+8

2X—8
28 —X

Rota-
tional
sym-

metry
D;

Har-
monic
order

l;

EBec-
tive

mass
mj

1,000
2.000
3.000
4.000
0.069
0.139
0.208
0.861
1.722
0380
0.759
0.449
0.690
1.620

n] j'

12
24
36
48
0
0
0
0
0

8
4
6

16

0
0
0
0
3
6

6
12
2
4
5
3
2

(2)

(3)

(6)

Num-
ber in

n2, Fig. 4

These result in the following parameters for the hex-
agonal network:

&s—5/216 =0.0231,

al —31/216 =0.1435,

6=Area of circle= 1.66 a.u. (Fig. 4. (1)]
8=Area of triangle=6. 49X10 ' a.u. LFig. 4. (2))
X=Area of hexagon= —8.63X10 ' a.u. LFig. 4. (3)),
1~=Area of lens=1.39X10 ' a.u. /Fig. 4. (4)).

The constant

y=or, /~s=6. 2

corresponds exactly to one of the values chosen by
Pippard~ for the calculation of the band structure of
an hexagonal system of coupled orbits t Fig. 8 of Ref. 7).

%e have calculated the amplitude of some of the
important oscillatory components of the free energy
(3.15) for this case. We have estimated"

HO=5. 8 kG

as the value for the breakdown field (3.3) and we have
chosen a temperature T=1'K., for which

147m'

H(kG)

The various orbits for which the amplitude was com-
puted are described in Table II. The calculated ampli-
tudes (3.15) for fields up to 150 k.G are shown in Fig. 5.

The following features are worth mentioning:
(a) The small triangular orbit 8 is dominant through-

out the studied range of magnetic fields; although at

~ L. M. Falicov, Phil. Trans. Roy. Soc. London A255, 55
(1962).

150 kG the factor q' is rather small ( 1.8X10 '), the
small eBective mass still makes the period a pre-
dominant one.

(b) The harmonic content of 8 decreases strongly as
the magnetic field increases; this can be seen in the
amplitudes of 29 and 38, and is the opposite to the usual
behavior of de Haas —van Alphen line-shapes.

(c) The circular orbit 6 and its higher harmonics
become most important at high 6elds; the harmonic
content in this case increases more strongly than in a
normal oscillation.

(d) The hexagonal orbit X has always an extremely
small amplitude, which explains why, although geo-
metric considerations make it a favorable one to ob-
serve, it has not been detected experimentally. "In this
case the rather large mass m,—0.86 and the very large
magnetic-breakdown damping factor q' result in the
small amplitude throughout.

The abundance of periods as well as the irregular
magnetic 6eld dependence of the amplitudes have been
observed experimentally in Zn' ""and Mg." In the
case of Zn, Pippard' has derived a result practically
identical to ours for the small triangular orbits 8, which
compares very well with the measurements of Dhillon
and Shoenberg. ' Further quantitative comparison be-
tween experiment and the present theory should be of
great interest and it will undoubtedly be made when the
experimental data become available.

Ke have performed one more direct test of our theory
by comparing our two dimensional density of states
p.(E,H) considered as a function of E at a constant H
and q, with that obtained numerically from the mag-
netic band structure calculation of Pippard. '

Our calculation in Sec. 3 yields for the oscillatory

~ J. R. Larson and %.L. Gordon, in Proceedings of the IXth
International Conference on Low Temperature Physics, Columbus,
Ohio, I%64 (Plenum Press, New York, 1965), p. 854.
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q, (E,H) =I.&I., —i-(mp)"»q—"» expL —m, tr/2rj

&(cos[Pn;(0)—ygo
—h-'Em;tr]. (4.1)

As a function of E, ,(E,B) is a
hfi requencies proportionap

'
al to m;. In order

c cu ation with Pi a
h 1' d f

and obtain
o a given fr ueneq cy; we choose r —+~

a chan ein '
g in sign as well as several i~&e

'
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at it can arise from 4.2
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of all 'bl
i m, = contribute. Table III

'
1 d

f'
ch

8. The d
e or ea area is shown in Fi .

seen that they add u ex
in ig 6 and it is

a up exactly to the numerically com-

TmLE III.. Parameters of all orbits with the free-electron mas .
Qe,

n(~.)" 2 — -(~P)"" ""yg oc --— sq 4, (4.2)
Area
ej(O) S2j

Number
Cj in Fig. 4

where, for simplicity and followin Pig pp d, 11 phases
e c osen value of magnetic Geld

p(t, (0)—y, a
——2s.w,. (4.3)

The dependence of (4.2) on q can now
1 1 1 t'

pp

result for the q d d m =
Fig. 6 in the full l' l hu ine abeled "Total ~

rve s ows an unexpected behavior with

6
3X—28
3X—28
3X—28

-3) —28
x+28
x+28
x+28'
x+28b

6
3
2
2
1
2
1
1
1

12
6
8
8
8
4

2

0
6

4
4
8
8
8

10

1

3
3
6
3
6
6
6

(1)
(9)
(&)

(10)
(~)

(11)
(5)

' Corresponds to one hexaexagonal orbit and two try l
ers.
o one exagonal orbit and twice thee same triangular orb't.
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0.4 0.6 I.Oq

as temperature-dependence of the eGect which agrees
very well with previous partial theoretical results' as
well as experimental results in Zn' and qualitative'~ as
well as preliminary quantitative" data for Mg.

(e) It gives the right dependence on the magnetic
breakdown parameters p and q for the oscillatory part
of the density of states which arises from closed orbits.

(f) It does not include spurious oscillations with
magnetic field; i.e., only those osciOations arising from
a,ctual orbits which satisfy Onsager's rule give a con-
tribution to the magnetic field dependence of the density
of states.

I'n. 6. The I'ourier component of the density of states p, (E,H}
for the free-electron mass mp-—1 as a function of the parameter q.
The curve labeled "total for free-electron mass" is the result of
the numerical calculation based on Pippard's band structure
(Ref. 7); the three partial components 6, (3X—28), and (y+28)
are the results of the present calculation, and they add up to the
value of the first curve.

puted curve within the accuracy of the numerical
calculation.

It is interesting to note that for the (3X—28) area
as well as for (X+28), two types of q dependence
appear, i.e.,

12p'q' —2p'q', for (3X—28);

15p'q' —6p'q'o for (x+28).

The minus signs are due to the imaginary factors in
front of the breakdown amplitude (ip); this imaginary
factor gives rise, as expected, to interference effects.
For instance the amplitude of the period arising from
(1+28), if it could be observed experimentally, should
go through zero for q

—0.85, H 0 8Ho—4—SkG. . .
The agreement between the two calculations is very

satisfactory and is certainly one further argument which
justifies the validity of our wave-packet assumption in
the calculation of G..

5. CONCLUSIONS

We have presented a method of calculating the
amplitude of the de Haas-van Alphen oscillations in
the presence of magnetic breakdown. The main result
of the theory is given by formula (3.15). It has been
shown that the method has the following features:

(a) It is based on an exact Green's function
formulation.

(b) It has been approximated by a semiclassical
approach in which the relevant part of the Green's
function is expressed as a superposition of wave packets
with well defined phases and amplitudes.

(c) The approximations involve no error in the case
of the free electron gas.

(d) It gives the right kind of magnetic field as well

APPENDIX A

If {oo„} a.re the eigenfunctions of the Hamiltonian K
with eigenvalues {E„}

(A1)

it can be seen, by direct substitution and the use of
orthogonality and completeness properties of {oo,},that

G(r, ro, t)—=P oo„*(ro)oo (r) expL iE„t/h] (A2)—

satisfies Eqs. (2.3)—(2.4). The density of states p(E) is
defined by

e~Li(E—E.)i/ajd&. (A3)

Equation (2.5) is now proved by multiplying (A2)
by exptiEt/hj, putting r= ro integrating over space
and time and making use of the normalization con-
dition of {oo„}

q (ro) q (ro)dro=1. (A4)
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APPENDIX 8 At K cpa=cop= —2a&p= 27r/3,

For a free-electron gas in two dimensions (x,y) with sin[(y+1)xx)+q sin[yxx)
a magnetic 6eld II in the s direction, if we choose the +q' '

[(v—1) )=o, (C7)
asymmetric gauge

A= (O,Hx),

the one-electron wave functions are given by'

~&&
—rxlf&(I p)

Ilp -exp(Qy) exp[ (&x h)P/2&)

(nx —kXBti, (82)

where

sin[(y+1)xx —-'p7r)+ q sin[yxx —-'px)

+q' sin[(y —1)xx)=0, (Cg)

sin[(y+1) xx p4
—s.)+q sin[yxx ,'—x)-

+q' sin[(y —1)xx)=0. (C9)

At M o)g=m co2=0

cos[(y+ 1)Pxpr) —(1—q') q cos[(p—1)-,'xpr)
—q' cos[(y—1)pP x~)=0. (C11)

a= (eH)/(hc) sin[(y+1)Ppxpr)+ (1—q')q sin[(y —1)xpx~)

and B~ is a Hermite polynomial of order / normalized —q' sin[(y —1)-,P x~)=0, (C10)
to unity. The energy eigenvalues are

heH
EtP= (t+-p') —Er = (t+xs)&co,—EP. (84)

Substitution of (82) and (84) into (A2) and integra-
tion over x and y as well as summation over k yield

In these equations y =6.2, q is given by (3.1), (3.3), and
x is related to the energy by

G(rp, rp, t) =—Q exp[—iE(pt/h)
g b=4 3(1+y)hpp,

(C12)

(85)
2rN Ep 4)~)

exp i ——
~t P 8+(t Pt~), —

LQ
dh

2%—
(86)

and in turn this can be replaced by an integral over the
argument of the Hermite polynomials.

APPENDIX C

Pippard's expression for the eigenvalues of the sys-
tem of coupled orbits [Eqs. (35) and (41) of Ref. 7),
can be greatly simplified if one restricts oneself to
special values of the propagation vector in the magnetic
zone. In particular the points F (center of the hexagonal
zone), E (corner of the zone), and M (midpoint of the
side of the hexagon) are particularly convenient. The
energy is given by the roots of the following equations:
At I Rg=&g=&43=0

cos[(y+1)-',xr) —
q cos[(y—1)-',xr) =0, (Ci)

cos[(y+1)-',xr ——p'p-) —
q cos[(y—1)-,'xr) =0, (C2)

cos[(y+1)pxr —st) —
q cos[(y —1)p'xr)=0, (C3)

sin[(y+1)-,'xr) —
q sin[(y —1)p'xr) =0, (C4)

sin[(y+1)-,'xr —-p'p.)—
q sin[(y —1)-,'xr) =0, (C5)

sin[(y+1) pxr —ps) —
q sin[(y —1)pxr) =0. (C6)

where ti is the cyclotron period. Et should be noted
that in obtaining (85) the summation over h has been
replaced by an integration

Equations (Ci) to (C11) are periodic in x, with a
period dx= 10m. A change in energy equal to the free-
electron cyclotron energy corresponds to a change

1(hr
bx=

3(1+y) 216

x xi'
C(x) =3—4 x between xi and x~,

(C13)
x x~= —1—0.5, x between x~ and xK.

xK xM

"In the same context, the harmonic order of any orbit j is
given by @=216m;. In particular e takes the values of 15 for 8,
82 for X and 186 for x. Although only the calculation for m=216
is reported here, all harmonic orders up to n —900 were calculated
and good agreement was found throughout.

i.e., it is related to a frequency which is the 216th har-
monic of the fundamental frequency. "

Due to the tight binding character of the energy
curves, ' the points F and E correspond one to the
bottom and the other to the top of the magnetic bands;
x~ always lies between a xi and a xK point and in
addition the bands may touch, but never overlap. The
density of states was calculated by assuming that the
expression C(x) [Eq. (41) of Ref. 7) given by Pippard
could be linearly interpolated between two neighboring
xi and x~ values, and between two neighboring x~
and xK values, i.e.,
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p. (C)dC=45. 70. (C15)

The quantities of interest are the amplitudes of the

The density of states was finally approximated by

p, (C)= 10.20—4.16C+0.765C' —0.5 (C(3
= —1 80—28 16C+0 765C' —1&C&—0 5
=52.80—24C, —1.5&C&—1.

(C14)

Equation (C14) is a good approximation to the two-
dimensional density of states for an hexagonal tight-
binding system. It has been arbitrarily normalized
such that

Fourier components of this two-dimensional density of

states, i.e.,

1
p (q) = p (x) expt —inx/5]dx

1(hr

5~

p, (C)—cosPnx/5]dx.
5~ p

(C16)

In particular, for the free electron mass, mp= 1, e= 216.
The numerical calculations involved in the deter-

mination of the energy eigenvalues (C1) to (C11) as

well as the integrations (C16) for the Fourier com-

ponents p„were carried out in the IBM 7094—7044

complex of the University of Chicago Computation
Center.
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Radiation from Thick Silver Foils Bombarded by
Grazing-Incidence Electrons~

G. E. JONEsp L. S. CRAM, f mm E. T. ARAKAwA

Health Physics Division, Oak Ridge ¹tioeal Laboratory, Oak Ridge, Tennessee

(Received 14 February 1966)

Silver foils several thousand angstroms in thickness were bombarded by electrons at grazing incidence.
A peak was observed at approximately 3550 A in the optical emission spectrum. For an angle of incidence
of 89' from the foil normal, the peak intensity was approximately ten times as great as that of previously
observed intensities of transition radiation at 3300k from silver foils bombarded with normally incident
electrons. The intensity was found to be directly proportional to the electron energy from 40 to 80 keV, and
showed a marked dependence on the quality of the foil surface. The results are in agreement with the 6ndings
of Boersch et al.

INTRODUCTION'
' 'T was shown by Ritchie that in addition to collec-
t ~ tive oscillations by the bulk electrons in a conductor,
there should exist plasma oscillations on the conductor
surface. I'errell' predicted that bulk plasma oscilla-
tions induced by charged particle excitation should
decay by the emission of monochromatic photons at
the plasma frequency. Since Ferrell's prediction, many
investigators' have searched for plasma radiation. Most
of these investigators have bombarded metal foils with
normally incident electrons and have interpreted the
emission spectra in terms of the decay of volume

*Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.

t Mississippi State University, State Co)lege, Mississippi.
f. AEC Health Physics Fellow, Vanderbilt University, Nashville,

Tennessee.
' R. H. Ritchie, Phys. Rev. 106, 874 (1957).
~ R. A. Ferrell, Phys. Rev. 111, 1214 (1958).'%'. Steinmann, Phys. Rev. Letters 5, 470 (1960); Z. Physik

163, 92 (1961); R. %. Brown, P. Kessel, and E. P. Trounson,
Phys. Rev. Letters 5, 472 (1960); A. L. Frank, E. T. Arakawa,
and R. D. Birkho6, Phys. Rev. 176, 1947 (1962).

plasmons. Recently Boersch et al.4 bombarded silver
foils with 30-keV electrons at grazing incidence and
found an intense peak at 3500 4, which was thought
to be due to the decay of surface plasma oscillations.
However, Ferrell's model of a conductor bounded by a
plane surface forbids emission by the decay of surface
plasma oscillations.

This paper presents the results of a further attempt
to determine whether or not surface plasma oscilla-
tions decay by emission of electromagnetic radiation.
Thick silver foils were bombarded by grazing-incidence
electrons. The emission spectrum was studied as a
function of the angle of incidence of the electron beam,
the electron energy, and the quality of the foil surface.

EXPEMMENTAL

The techniques used in measuring the optical emission
from electron-bombarded foils have been described

4 H. Boersch, P. Dobberstein, D, Fritzsche, and G. Sauerbrey,
Z. Physik 187, 97 (1965).


