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We have measured self-diffusion along widely spaced edge dislocations in nickel. A surface-accumulation
counting technique was used. The dislocations were arranged to be perpendicular to the surface which was
counted and were pure edge in character. The diffusion measurements were carried out in the temperature
range of 500 to 600°C where lattice diffusion was not significant. Solutions of the diffusion equation for a
variety of boundary conditions are presented. The operative boundary conditions in the present experiment
were determined by a tracer-sectioning technique. The diffusivity along the edge dislocations can be de-
scribed by Dpedse= (20 cm?/sec)[exp (—1.6 eV/kT)]. Q,%%¢/Quuc=0.55. The analysis of the data results
in a value for the radius of the high-diffusivity dislocation core of about 10~7 cm.

INTRODUCTION

T is now widely recognized that dislocation cores are
regions in which enhanced diffusion can take place.!
The most direct experimental evidence comes from
diffusion experiments using bicrystals with low-angle
tilt or twist boundaries.?* Applying a dislocation model
to these boundaries, values for the diffusivities along
edge and screw dislocations were obtained. However,
although the observed anisotropy of the grain boundary
diffusion* supports the concept that grain-boundary
diffusion enhancement is caused by dislocation pipe
diffusion, there are two points of uncertainty remaining.
First, since the spacing of the dislocations in the lowest
angle grain boundaries used in the experiments referred
to above (tilt and twist angles of nine and ten degrees,
respectively) is of the order of six Burgers vectors, the
observed grain-boundary diffusion enhancement oc-
curred in the presence of a large amount of overlap
between the stress fields of the dislocations. Secondly,
the analysis of the grain-boundary-diffusion problem
which has been applied requires an estimate of the width
of the high-diffusivity region at the boundary. It has
been generally assumed that this width is of the order
of the Burgers vector. However, there is no independent
support for this estimate.

The present experiment has been undertaken to
examine self-diffusion along widely separated edge dis-
locations under conditions where the analysis is not
dependent upon the estimates of the dislocation core
size. Self-diffusion studies in plastically deformed nickel
single crystals performed at temperatures less than half
the melting temperature will be described. Several solu-
tions of the diffusion equation which are potentially
applicable to the problem will be discussed and applied
to the experimental data. Values of the diffusivity of
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edge dislocations and of the ‘“core diameter” will be
derived. Nickel has been chosen because its isotope %Ni
is ideally suited for the experimental technique used.5

EXPERIMENTAL PROCEDURE

Single crystals were grown from nickel of nominally
99.9999, purity in an electron-beam zone-refining device.
Rectangular bars about 20 mm X5 mmX3 mm in size
having the orientation shown in Fig. 1(a) were cut from
these crystals using a spark-erosion machine. The bars
were plastically deformed by bending them around a
3-in.-diam mandril using the [121] axis as the bending
axis. The bending operation resulted in single slip on the
(111) plane in the [101] direction. Single-crystal plates
having faces parallel to the (121) plane and of approxi-
mately 0.012-in. thickness were cut from these bars. The
wafers were then chemically polished using a solution
of 30 vol9, HNO;, 40 vol9, HCl, 10 vol9, H;PO4, and
20 vol%, CH;COOH. Sufficient material was removed by
polishing to remove the surface damage introduced by
the spark-cutting process. The wafers were given a 24-h
anneal at 900°C in an atmosphere of 10 vol9, CO,
90 vol9, CO.. (This atmosphere will reduce NiO and is
in equilibrium with a carbon concentration in the Ni of
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F16. 1. Specimen orientation and configuration.

® A. A. Hendrickson and E. S. Machlin, Trans. AIME 6, 1035

(1954).
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I're. 2. Counting rate versus annealing time at 548°C.

107 atom fraction.) Back-reflection Laue photographs
taken of the annealed wafers showed that the wafer
orientation was preserved, no asterism was present, and
indicated maximum subgrain boundary misorientation
of 1.5 deg. Dislocation-etch-pit studies using an etchant
consisting of 50 vol9, conc. HNO; and 50 vol? distilled
water showed that the dislocations were straight and
penetrated the wafer perpendicularly to the plane of the
wafer. The etch-pit pattern was identical on both faces
of the wafer and through the wafer thickness indicating
that the dislocations lay along the [1217]. Since the slip
direction was [101] the dislocations were primarily edge
dislocations. The average dislocation density taken from
etch-pit counts was of the order of 107 cm=2,

A 1000-A-thick layer of the 5Ni tracer was electro-
plated on an area of 0.2 cm? on one side of the wafer
using a carrier-free saturated oxalic acid solution into
which the desired amount of tracer (®3Ni in aqueous
solution as NiCl; having a specific activity 11 000 mc/g)
was dissolved. (The major contaminant was °Co having
a specific activity of 0.1 mc/g.) The other side of the
wafer and the rim of the plated side were masked off
with a lucite-benzene lacquer as indicated in Fig. 1(c).
Autoradiographs confirmed the uniformity of the tracer
plating. The tracer plating was covered with a protective
over-plating of nonradioactive nickel that covered the
whole plated side. This procedure resulted in diffusion
samples as shown in Fig. 1(d).

A low-background beta counter was used to monitor
the tracer flux through the wafer. It consisted of a thin-
window gas-flow counter and a gamma counter. The
latter was used with anticoincidence circuits to cancel
cosmic radiation counts. Both counters were housed in
a S-in. lead shielding. Typical background counting
rates achieved were 0.35 counts/min. The wafers could
be repositioned under the counter such that the counting
rates were reproduced to within 397,

The wafers were positioned under the counter with
the nonplated side facing it. The maximum energy of the
beta radiation emitted from the ®Ni tracer is 67 keV.
Beta rays of this energy are attenuated by a factor of
1/e by a thickness of nickel of about 1 . Thus, only beta
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radiation emitted from tracer atoms located close to the
nonplated side can be counted. The wafer thickness will
totally self-shield the radiation emanating from the
plated side. This self-shielding feature of the counting
geometry is an essential advantage of the experimental
technique and can only be accomplished if pure weak
beta emitters such as ®Ni are used as a tracer. The
absorption of the beta radiation will produce x rays
having wavelengths of the order of 0.2 A which have a
linear absorption coefficient of the order of 12 cm™. As
will be shown shortly, an experimental increase of in-
tensity of the order of dI/I=0.15 was observed at the
nonplated surface. This would correspond to a lattice
penetration of the ®Ni into the specimen of about 10—2
cm if it was caused by the x rays. As shown in the dis-
cussion this is orders of magnitude greater than can be
expected from lattice diffusion under the present experi-
mental conditions. Therefore, the observed increases of
intensity cannot be due to x rays; which may however
provide a part of the constant background. (The counter
used has an efficiency for 67-keV x rays, which is a
factor of 30 less than for 67-keV beta radiation.)

The trace impurity in the tracer, ©Co, emits a 1.17-
meV and a 1.33-meV photon and a 0.314-meV beta
radiation. Gamma radiation of this energy will not be
counted because of the anticoincidence circuitry. The
range of the 0.314 beta radiation in nickel is about
9X10~% cm. The experimentally observed increase in
intensity, dI/I=0.15, would correspond to a lattice
diffusion of Co into the Ni specimen of about 0.9X10~3
cm if it was caused by the Co betas. As shown in the
discussion these are orders of magnitude greater than
can be expected from lattice diffusion. Therefore, the ob-
served increases of intensity cannot be due to the €Co
beta radiation; which, however, provides a part of the
constant background.

The diffusion measurements were performed by meas-
uring the activity of the wafer from the nonplated side
as a function of annealing time. The temperature of the
specimen was controlled to £0.02°C and measured to
=+0.5°C during the diffusion anneals which were per-
formed in the CO-CO; mixture described above. The
specimen was placed into a lightweight basket made of
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F16. 3. Normalized activity versus reduced annealing time.
(See text for the normalization procedure.)
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tantalum sheet suspened on a thin wire and which could
be lowered and raised by a magnetic device, operated
externally. Because of the small heat capacity of the
specimen assembly, the time required for the specimen
temperature to be raised to the diffusion temperature
and for the specimen to be gas-quenched to room tem-
perature after each anneal was of the order of 1 min.
Consequently, no corrections were applied to the anneal-
ing times used. Since the counting technique was non-
destructive a single specimen was used for all the
measurements of each run.

RESULTS

Figure 2 shows a typical plot of the counting rate
measured from the nonplated side versus annealing
time. Three features can be noted in the data: (a) The
counting rate of the nonplated side increased with
annealing time. As will be discussed below, this increase
can only be understood if enhanced dislocation pipe
diffusion occurs. (b) The rate of increase of the counting
rate decreased with annealing time, indicating a satura-
tion phenomenon which will be seen to be very important
in interpreting the data. (c) The counting rate for zero
annealing time is significantly higher than the back-
ground counting rate of the counting system used. This
last observation was due to the 0.314-meV beta of the
®Co contaminant of the tracer, to x rays which result
from absorption of the %Ni beta radiation, and to back
scattering of radiation from the plated side. The increase
of activity with annealing time was measured in the
temperature range 500-600°C and the data are shown
in Fig. 3. (The specimen dimensions are listed in
Table I.) As will be shown shortly the coordinates
chosen in Fig. 3 reduce the data to a single curve.

(a)

(b)

Fic. 4. Autoradiographs of nonplated wafer face before (a)
ang aﬁ;er (b) a diffusion anneal. Exposure times differ for (a)
an .
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F16. 5. Tracer counting rate versus distance from the nonplated
surface after a diffusion anneal of 1000 min at 550°C.

Autoradiographs were taken of the nonplated side of
all the wafers before the first and after the last diffusion
anneal (Fig. 4). Microdensitometer traces taken across
the radiograph obtained after the diffusion anneal
showed that no additional intensity was introduced be-
tween the edge of the specimen and the central area.
The darkening around the outside of the specimen was
due to radiation backscattered from the plating as can
be seen from the sharp outline of the specimen perimeter.
The observation that the rim of the specimen was free
of tracer rules out the possibility of tracer transport by
surface diffusion or by vapor phase transport.

It was observed that no successful diffusion runs could
be performed below 500°C. The measured increase in
counting rate of the nonplated side was barely detect-
able at 480°C and no increase at all could be observed
at lower temperatures. This point will be subsequently
discussed. At temperatures above 600°C the annealing
times became too short to yield reliable results.

Sectioning experiments® were performed on the speci-
mens after the diffusion anneal to determine the distri-
bution of tracer throughout the speciemn volume. The
chemical etchant used was 509, HNO; and 509,
CH3;COOH. Sections having a uniform thickness of the
order of tenths of a micron could be removed. Figure 5
shows the intensity measured on the specimen face
versus distance from the nonplated surface. The results

TaBLE I. Summary of specimen parameters and
derived experimental results.

Annealing Specimen

temperature thickness! #? Dp=a? 7o
(°C) (cm) (sec™?)  E2/n* (cm?sec™?) (cm)
506 0.020 1.0X10°5 0.1 4.0X10° 2X1077
520 0.015 2.7X1078 0.1 6.1X10* 3X1077
548 0.011 1.2X10™ 0.1  1.5X10°® 3X1077
551 0.015 9X 1075 0.1 2.0X10°8 3X1077
599 0017 1.7X10* <03 49X10~8 <4X1077

¢ F. D’Alessandro, M.S. thesis, University of Illinois, 1965
(unpublished).
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F16. 6. Schematic of the dislocation pipe configuration and the
variation of the diffusivity with radial distance from the disloca-
tion center. Solid curve—assumed variation of diffusivity with
distance. Broken curve—schematic representation of probable
variation of diffusivity with distance.

of these experiments indicated that the increases in
measured intensity were due to tracer material trans-
ported towards the nonplated side by diffusion and
located within 0.3 u of the nonplated side. (The activity
in the second section was due largely to the difficulty
in removing completely uniform sections.)

DISCUSSION

For the temperatures and times used in the present
experiment, the maximum lattice “penetration depth,”
2(Dy/t)112, is calculated to be 6 X 1077 cm using Dp=1.3
Xexp(—2.89 eV/kT) as obtained from high-tempera-
ture lattice-diffusion measurements.” Thus, the increase
of the counting rate cannot be the result of bulk diffu-
sion. The sectioning experiments showed that the in-
crease in intensity at the nonplated face was due to
tracer atoms located within 0.3 x of the surface and the
autoradiographic results showed that the radioactive
tracer cannot have reached the nonplated side of the
wafer via surface diffusion around the edges or by vapor
transport. It may be concluded that the observed in-
crease in counting rate at the nonplated side of the
wafer was caused by an enhanced diffusion process
through the wafer, i.e., dislocation pipe diffusion.

Quantitative analysis of the experimental results
requires that the diffusion equation be solved for the
present specimen configuration.®—!! In the model used
it will be assumed that the dislocation pipe configuration

"R. E. Hoffman, F. W. Pikus, and R. A. Ward, Trans. AIME
206, 483 (1956).

8 A number of solutions of the problem of diffusion along
isolated dislocations have been published (Refs. 9-11). The
form of these solutions and the boundary conditions applied are
not applicable to the present investigation.

9 M. G. Brebrec, C.E.A. Report, DM 144, March 1965
(unpublished).

10 Lars C. Luther, J. Chem. Phys. 43, 2213 (1965).

u J_ P. Stark, J. Appl. Phys. 36, 3938 (1965).
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can be described by an array of noninteracting dis-
location pipes which penetrate the waver perpendicu-
larly. (This configuration is supported by the dislocation
etch-pit results.) It is further assumed that the diffusion
coefficient has a value D, inside the pipe radius 7o and
the value of the diffusion coefficient in the bulk Dy for
r>ro. This configuration is shown in Fig. 6. In solving
the diffusion problem, one has to allow for pipe diffusion,
for loss from the pipe into the bulk, and for bulk
diffusion. The diffusion equations are

D,V2C,'=09C, /dt; r<ry
DyVCy=08Cy/dt; r>ry

Cp'=C, (x,r,t)=concentration 1)
in the dislocation pipe.

Cy'=Cy/(x,r,t)= concentration in the bulk crystal.
The boundary conditions at r=r, are
C,/=Cy; Dy(8C, /dr)=Dy(dCy'/0r). (2)

The solutions will depend on the boundary conditions
at the “entrance,” x=I, and the “exit,” x=0, of the
pipe and on the source function. Since these are not
known @ priori, the procedure followed will be to solve
the set of Egs. (1) for all combinations of boundary
conditions and then compare the results to the experi-
ment. The detailed mathematical analysis will be given
in the appendices. In the following sections the problem
will be analyzed for one choice of boundary conditions.
Consider the case where

aC, /9x=0; x=1,
C,/=0; x=0, 2!, 3)
Cy=a[é(x—1)+d6(x+1)7]; t=0,
Cy'=0; t=0,

where § is Dirac’s delta function. This corresponds to a
Green’s function sourceof strength aat the pipe entrance
and rapid surface diffusion at the pipe exit. The use of
Cy'=0 at =0 assumes no lattice transport from the
plated surface which is in accord with the values of D,
in the temperature range of interest. The solution of
Egs. (1) with the boundary conditions of Eqgs. (2) and
(3) is given in Appendix A. The expressions resulting
from this “exact” treatment of the diffusion problem
are difficult to use in an analysis of the experiments. A
somewhat simplified treatment of the problem will
therefore now be presented.

Since we are interested in the diffusion along the pipe
we will treat the tracer “loss” out of the pipe into the
surrounding bulk as a corrective loss term. The diffusion
equation for this case is derived from Fig. 6. Assuming
no radial concentration gradients inside the pipe, i.e.,
Cp=Cp(x,t), the rate of change of tracer concentration
in the volume element 77,%dx is given by

wrdx(8C,/0t) = [ — D p(9C p/d%x) o+ D p(8C /%) 2y-az e
+Dy(3Cs/07) sery2rrodx.  (4)
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TaBLE II. Theoretical expressions for counting rates as measured from the nonplated face versus annealing time.

Boundary conditions

Case x=1l x=0 Q*()
" n k n k\ o (1) tn?
I Cp=ao Cp=0 i+ ——— coth(— +272-sinh{ - )| 2 ————— exp[—¢an]
2k 2k 7 k n/ "1 tn
aC, E\ » (—1)"1(2n—1) k?
II Cpr=ao —_— 14+-E%—x cosh( - | 2 S exp[ — £t ]+ {1 —exp[ — £an?t]}
Ix n n=l En ﬂzfn
aCp ad(t) R\ » (—1)»1(2n—1)
111 —_— Cp=0 1—mcosh{ - |2 ————— exp[—£an%]
dx a? n/ 1 »
aCp ad(t) aCp 7 E\ « k2
v —_—= —=0 1——sinh{ - )2 (=) 1— expl—{an?]
ox a? x k n/) 7t 720
2Dy D, k2 2n—1)222 R2
B = —; (= —; fyp=——————+—
7o In(m/r0) 2 7? 4 7

Expanding (8C,/9%) 442 into a Taylor series and neg-
lecting second-order terms results in

D,(8%Cp/0x%)— (2/70)Dy(3Cs/ 0r) r=rg=(0Cp/8t) (5)

for r<ro. (8C»/07) =1, is the gradient of the solution of
the radial diffusion equation in the bulk with the
boundary conditions

Co(x,70,t)=Cp(x,t) and Cu(x,7m,t)=0,

where 7., is the radius where Cy(x,7,£) =0, i.e., rmip=1/2
and where p is the dislocation density. The assumptions
made in treating the boundary conditions at =7, which
lead to Eq. (5) are equivalent to those used in Fisher’s
analysis of grain boundary diffusion.!? The diffusion in
the bulk is not treated exactly; it is assumed that the
flux in the bulk surrounding the pipe is in the radial
direction only. (The problem is solved without making
this assumption in Appendix A.) While this can be a
rather poor approximation for a sectioning experiment
it is a good approximation for the surface counting
technique applied where the wafer thickness >>2(Dyt)1/2.
Since the flux lost to the bulk is not counted directly,
the flux at »>r, will only have to be considered in a
second-order approximation; the first-order approxima-
tion being the treatment of the loss in an integral
fashion leading to Eq. (5).

In order to simplify Eq. (5) even further it will be
assumed that the radial gradient (8C;/d7) does not
depend on time. In this case the steady-state solution
for the radial diffusion in a cylinder of infinite length
can be used to calculate (8Cs/97),=r,. This yields

a%(3%C,/ 3x%) —k2C,=(aC,/0t),
k*=2Dy/[r¢* In(rm/70)], (6)
a*=D,.
The loss from the pipe will be underestimated using the

steady-state approximation of Eq. (6). For small times
12 J. C. Fisher, J. Appl. Phys. 22, 74 (1951).

the (9Cs'/dr)s=r, Will be much larger than the steady-
state value. However, as shown in Appendix D, the
difference between the steady-state approximation and
the exact treatment is negligible for the experimentally
accessible times in the case of D,.>Ds. Solutions of
Eq. (6) for various sets of boundary conditions (in-
cluding the previously discussed case) and the initial
condition C,(x,0) =0 are given in Appendix C. Using the
solutions for C,, the intensity Q=Q(¢) seen by the
counter from the nonplated side has been calculated in
each case.

The relation between Q and C, will depend on the
boundary condition at x=0. For an “open pipe” and
rapid surface diffusion at x=0, i.e.,, C,(0,t)=0, the
tracer material will be distributed over the nonplated
surface. The counting rate is therefore given by

Q= —vmry? [ D,[3C p(x,t")/dx ] emodt’, )
Jo

where v=number of dislocation pipes operative. For a
‘“‘plugged pipe” (slow surface diffusion), (8Cp/3%) z=0=0
and the tracer material is distributed along the disloca-
tion pipes. On defining x, as a cutoff depth given by the
relation

x0Cp(0,) =/ exp(—vyx)Cpdx,
0

where v is the absorption constant;

Q=mrr02xo[Cp(O,t)+k2 / C,,(O,t’)dt’:|, (8)
0

as shown in Appendix B.

The expressions obtained for Q in Appendix C are
summarized in Table II for the various boundary con-
ditions. The proportionality constants derived in the
appendices have been omitted to facilitate a comparison
of the kinetics of the various cases treated. In each case
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Q* (1)

> 4« m o

F16. 7. Calculated curves for the tracer intensity measured on
the nonplated face as a function of the reduced time, .

e Case I, Appendix C.1.
m Case II, Appendix C.2.
A CaseIII, Appendix C.3.
v Case IV, Appendix C4.

The symbols identify the curves and the corresponding reduced
times scales. The reduced time scale has been chosen so that
Q*(#) =0.5 at the same point for all four cases.

the correction for loss of the tracer from the pipe to the
bulk is dependent on the term (k/75)? where 52=a2/I2
(See Appendix C.) The time-dependent parts of Q(f),
Q*=(Q*(t), are shown in Fig. 7 for (k/9)?=0.1. The
reduced time abscissa, £*= %, has been adjusted so that

*=0.5 at the same point in all cases.

Case I boundary conditions correspond physically to
a constant source concentration (fast surface diffusion
at x=/) and fast surface diffusion at the pipe exits
(¥=0) which distributes the tracer over the unplated
surface. The total number of tracer atoms transported
to the surface will be shown to be small so C,(0,)=0
for this case. These boundary conditions lead to Q which
increases monotonically with time. Case II boundary
conditions correspond to fast surface diffusion at the
pipe entrance and slow surface diffusion at the exit so
that the tracer atoms leave the pipe via diffusion
through the lattice. This case results in Q(¢) which
increases rapidly as the tracer is distributed along the
pipe and then continues to increase slowly as the tracer
diffuses from the pipe to the bulk. Case III corresponds
to a depletable source at the dislocation entrance (which
may be due to slow surface diffusion at x=1) and to fast
surface diffusion at the dislocation exit, x=0. In this
case the tracer atoms from the source are located pri-
marily on the plane x=0 and Q increases up to an
asymptotic value. Case IV corresponds to a depletable
source at the pipe entrance and slow surface diffusion at
x=0. In this case the tracer from the source is rapidly
distributed along the pipe and then slowly diffuses into
the lattice. Q for these conditions will show a slow
increase with time to an asymptotic value but the
magnitude of Q can be shown to be negligibly small.
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On comparing the time dependence of Q for the four
choices of boundary conditions with Fig. 3 it is readily
seen that Case I does not fit the experimental data
since it does not lead to the observed approach of Q to
a constant value. Cases II, III, and IV cannot be dis-
tinguished on the basis of the diffusion kinetics. How-
ever, the sectioning experiments described indicated
that the tracer material that had diffused through the
wafer was located very close to the nonplated surface.
This observation rules out Cases II and IV and is in
agreement with the boundary conditions of Case IIL

Figure 3 shows the normalized experimental counting
rates, [Q(¢)—Q(0)1/[Q(=)—Q(0)], versus the reduced
time, f*=92%. The solid curve is the calculated curve
using Case-III boundary conditions. All of the data for
the various temperatures can be reduced to a single
curve by suitable choice of the parameters (k/7)? and 52
(which depend on the values of D, and 7o) for each
temperature. The numerical values of these parameters
are given in Table I. The values of D3 extrapolated from
the high-temperature measurements and 7,=3X10"*
cm were used. The calculated curve in Fig. 3 corresponds
to (k/7)?=0.1. It is seen that the calculated curve is in
excellent agreement with the experimental data.

The parameters (k/7)? and n? obtained from the
curve-fitting procedure were used to calculate D, and 7,
at each temperature (Table I). Within the accuracy of
the present experiments, the temperature dependence
of k£%/9? could not be resolved. The results for D, are
plotted in Fig. 8 versus the inverse absolute tempera-
ture. The data indicate an activation energy of self-
diffusion along edge dislocation pipes of 1.6 ¢V and a
pre-exponential factor of 20 cm? sec™!. The expression

4mo™ 8

-8
2%07 -

p[cm2 sec

O | %08}

4x107°

K] 1.2 .3
P pes]

F1c. 8. Arrhenius plot of the measured edge
dislocation diffusivities.
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for diffusion along edge dislocations:
D,(edge)=20 cm? sec™! exp(—1.6 eV/kT)
should be compared to that for bulk diffusion’:
Dy=1.3 cm? sec™! exp(—2.89 eV/kT).
It is observed therefore that
Q»/Qs(edge)=0.55.

The amount of radioactive tracer material plated
onto the wafer should result in a constant concentration
at the pipe entrance if surface diffusion were fast at
x=1. However, the experiments indicate an exhaustible
source which means that only a limited amount of tracer
is actually funneled into the dislocation pipes. The
boundary conditions at the dislocation pipe entrance
depend on the diffusion process occurring at specimen-
plate interface which will depend on the structure of the
plate at the dislocation entrance. The observation that
no intensity increase could be obtained below 490°C
suggests that tracer is supplied by bulk diffusion.
2(Dyt)M? becomes comparable to the lattice parameter
of nickel for the longest annealing times used at 490°C.
At the temperatures for which successful diffusion runs
are reported it is concluded that the dislocation pipe
drains tracer only from a very small volume at its
“entrance.”

A consideration of the total increase of the counting
rate from the nonplated side leads to the same conclu-
sion. The volume ¥V from which the dislocation pipe
drains is given by

V=[0(=)—Q(0)]/(22.2X10"apry),  (9)
Q(0)—Q(0)=total increase in counting rate
[counts min—1],

a=fraction of 47 covered by the

counting assembly; a=0.1,
p=specific weight of nickel,
y=specific activity of %Ni in Curies gram™!.

Assuming a spherical volume, the values for the present
experiment yield 7~2X 10~7 cm. This shows again that
the pipes are draining tracer atoms from a very small
volume. For the observed increases in counting rates,
the maximum tracer concentration at x=0 is C,(0,!)
~10~% which supports the assumption that the sink
capacity of the nonplated side is infinite.

At the present time the details of the diffusion
processes at =0, / which correspond to the observed
boundary conditions are not fully understood. The
difference in the boundary conditions may result from
the fact that =1 corresponds to the interface between
the crystal and the plate while x=0 corresponds to a
crystal surface.

The mean value of the dislocation pipe radius is
r0=2X10"7 cm or ro~6 Burgers vectors. The treatment
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of the data outlined above does not depend on the value
of the dislocation density except through the parameter
rm and is insensitive to the value of 7,,. However, since
7o is obtained from consideration of the radial loss cor-
rection to the flux along the dislocation and depends on
the value of D; extrapolated from elevated tempera-
tures, the precision with which it is known is not high.
As shown schematically in Fig. 6, 7, is defined as the
radius at which the diffusivity decreases to the mean
value between the value at the dislocation center and
that of the bulk. While the correspondence between the
dislocation core defined in this fashion and the radius
at which the strains due to the dislocation become large
is not established the two “core radii”’ are about equal.
The value of 7 is also consistent with the partial dis-
location separation calculated using a stacking fault
energy of 150 ergs/cm? (The effect of partial dislocation
separation on 7 is presently being investigated.)

The two main results of the experiment described are
the activation energy of self-diffusion along edge dis-
locations in nickel and an estimate for the core radius.
Both numbers characterize properties of the dislocation
core about which little is known as yet. Thus, only some
very qualitative remarks can be made. Self-diffusion
along high-angle tilt boundaries has been studied in
nickel by Upthegrove and Sinnott!® who obtained
Oboundary=1.13 €V (Qpoundary/Q5=0.39). Wazzan!* ob-
tained Qboundary=1.19 €V (Oboundary/Qs=0.41) for diffu-
sion along random high-angle boundaries in nickel.
Qboundary/Qs for high-angle tilt? and twist® boundaries
in silver is 0.44 and 0.40, respectively. The value of
Q5/Q5=0.55 obtained for isolated edge dislocations in
nickel is somewhat larger than the values obtained for
Qboundary/Qb. Since the structure of the high-angle
boundaries used in the above investigations is probably
more complex than assumed in interpreting the
grain boundary diffusion data the differences are not
unexpected.

If a vacancy diffusion mechanism is operative at the
edge dislocations, Q,=E,/+E,’ where E, is the
vacancy formation energy and E,’ is the vacancy
motion energy at the dislocation. At the present time it
is not possible to separate Q, into £, and E,,’. However,
since E//+E,,'=0.55 (E;+ E,.) where E; and E,, are the
vacancy formation and motion energies in the lattice
we can write

En'=0.55E,—045E,+B,

where B is the binding energy of the vacancy to the
dislocation. Studies! of the annealing of quenched-in
resistivity in nickel lead to the value E,,=1.0 eV. Since
Qv=E;+E,=289 ¢V,
E.'=(B—0.3) eV, and E;=(1.89—B) eV.
so?l%glli(.lg%:)g;egrove and M. J. Sinnott, Trans. Am. Soc. Metals
1 Ahmed Rassem Wazzan, J. Appl. Phys. 36, 3596 (1965).

18 M. Wuttig and H. K. Birnbaum, J. Phys. Chem. Solids 27,
225 (1966).
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Therefore, 0.3 eV<B<1.89 eV. Calculations!® indicate
B=0.4 eV. This value leads to the result E,/’<KE/".
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APPENDIX A: CALCULATION OF THE
FLUX ONTO THE NONPLATED
SIDE USING EQS. (1)

For radial symmetry Eqs. (1) are written
I Yall4 ’ PYalts ’
D,,(a Cy L1 aCp +a Cyp )_aC,,

T = y r<ro,
a2 r Or dx2? ot

19Cy

r Or

3?Cy
Db( + (A1)

9%Cy'\ aCy
NI,
r

dx? at
Cy/'=C,/'(x,r,0), Cy=Cy'(x,r,1).

This set of equations can be solved for the boundary
conditions of Egs. (2) and (3). On applying the finite
Fourier-Laplace transformation

21 0
G, = / / C,’ sin(nwx/2l) exp(— pt)didz,
0 0

2l po
éb’=/ / Cb, sin(mrx/Zl) eXP("pl)dtdx ’
0 0

one obtains

82C,’ 140,

r<ro
(A2)

. 2a nw
—kpn?Cy/+— sin(——) =0,
r Or D, 2
9%Cy 14Cy .

+—-——kC'=0, r>r
a2 r or

ar?

where
kpn?=(nw/20)>4p/Dp, kpn?=(nm/20)2+p/Ds.

The solutions of Eqs. (A2) which obey the trans-
formed boundary conditions and remain bounded for
0<r<x are

, 2 sin(mr/Z)l' Dk snK1(ksnro)
= Ll-— Io(k,,,,r)] ,
Daern? 4 (A3)
2a sin(nw/2)[ Dok pnI 1(E pnt
éb'= r pRp 1( P 0) , kbn’) :

Dbo? L o

156{1 Friedel, Dislocations (Pergamon Press, Ltd., Oxford, 1964),
p- 364.
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where
P, = Dpk pnll(kpnrD)KO(kbn70)+Dbk bnlo(kpnro)Kl(k bnfo) .

The Laplace transform of the intensity on the non-
plated surface is given by an equation equivalent to

Eq. (7)
Q'(p)=—»D, / [ ’ / "’ (3C,/3%) smordrd®dt, (A4)

where C,'=C,'(x,,p) is obtained from the inverse
Fourier transform of C,’. Using the integral theorem
for the Laplace transform and the identity

o 7 sin(nm/2) /2
=1  y24p? B cosh(yvr/Z).
Q'(p) is given by
_ ) vrary?
P b coshlilp/ D)1
Targ? o
Dy 3 gln,p)sin(am/2), (A3
n=0
where
K1(konr0) I1(kpnro)
g(n,p)= - .
Pkpnsp

The inverse of ¢ is a sum of three contributions
9= q1+ga+gs.
The contribution from the pole p=0 is
3 K1(Bnr0)I1(Bnro)
O B DAL B0 Ka(Buro)+ Dal o Bur K (Bor) ]
Bn=nm/2L. (A6)

The contribution from the branch point at p= —8,2D,,
is obtained by making the substitutions e exp(i6) = Z and
using the partial fraction expansion for 1,(2)/1,_1(2)."

q2= [exp(—Bﬂszt)]/Bn2Db’02 . (A7)
The third contribution which results from the integral

along the negative real axis is

00

1
gs=—exp(—Ba2Dst) exp(— Du/r0?)
™

ro’Bn*(A~1)/A
ST ) ~8)]
Du(ut+Butrod) [, 02 (049

17 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, London, 1944), Chap. 5.

(A8)
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where

fn= A+ (A—1)B.7?,

A=D,/Ds,

@=D, ful /% o(u)J 1(fn®)+DopT 1() T o(f221?) ,
¥=D ' 2V ()T 1(fa12)+ DoV 1(u) Jo(fn/2) .

It is seen that the first term in @'(p), Eq. (AS) is equal
to the solution of the equivalent pipe diffusion problem
without radial loss and retransforms as shown in
Appendix C.3.

APPENDIX B: DERIVATION OF THE
FORMULA

t

Qexit(t) = V7"02x0 { Cp(oxt) +k2/

0

C,,(O,t')dl’} .

This relation is valid only in the cases where
(8Cp/9x)2=0=0, i.e., there is no flux from the dislocation
pipe to the exit surface x=0. In this case the tracer
counting rate can be divided into two parts: one due to
the tracer located in the pipe, and the other to the tracer
located in the adjacent lattice.

Qexit(t) = Qpipe"'Qlattice . (B 1)
Using the definition of x, we obtain
Qpipe= V7rro2x0C,,(0,t) . (BZ)
In the same fashion Qjatsice is given by
t
Q]gttice= 27!'1’0.7&301)/ Db(GCb/ar),=,odt' . (B3)
0

Using the steady-state approximation for the loss flux
out of the pipe into the lattice (0Cs/dr),—,, is given by

[acb/a’]r=ro= Cyp/LroIn(rm/70)].
Consequently, it follows that

t

anu:ice= 2‘"'7'()-"\701'—/‘ DbCp(O,tl)/I:fo In(rm/ro)]dt' .

0

(B4)

Since by definition

k2=2Dy/[ro® In(rm/r0) ],
it follows that

Qexit(t) = V‘Irrozon:Cp(O,t)'f‘k?/

0

t

C,,(O,t’)dt’] . (B3)

APPENDIX C: SOLUTION OF EQ. (6) FOR
VARIOUS BOUNDARY CONDITIONS

C.1. The case Cp(1,t)=aq, Cp(0,t)=0, C,(x,0)=0.
The Laplace transform of Eq. (6) is

a*(9%C /32— (k2+$)C,=0, a*=D,,

Cp=Cplx,p)= / ) exp(—pt)Cpdt. (C1)
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The boundary conditions transform into C,(l,p)
=ao/p, C(0,p)=0. This system has the solution

sinh[x(k%*+p)"/%/a]
O Sinh[I(k*+p)'/a]

Proceeding as in Appendix A we obtain for the Laplace
transform of the intensity on the nonplated surface

a07l'7'02 (k2+p)1/2
o p*sinh[i(k2+p)!2/a]

On applying the inversion theorem

(C2)

(C3)

2

k 7”9
t)= 2l————| p%+——— coth(k
Q( ) VT Sinh(k/n)[n 2k2 2k ( /77)

" B\ (_ 1)n—1n2
422 sinh(—) > eXp(—s“nn%)} , (C4)
k n/ n=1 g-n
where
1’2=a2/l2’ ;-n=n27r2+k2/,"2_

C.2. The caseCp(l,t) = ag, (0Cp/ 3%x) zm0=0, C p(x,0) =0.
The solution of Eq. (C1) for

Coll,p)=ao/p, (9Cp/0%).m0=0
is
P ag cosh[x(k2+p)1/%/a]
B p cosh[l(k2+p)'2/a] '
Q(p) is in this case obtained from Eq. (8).

(Cs)

) agTro2xey
?= p cosh[L(k2+p)1/2/a]

The retransform is

(1+k£%/p).  (C6)

Q(t) _ QT o“XoV
cosh(k/7n)

o _1 n—1 —
X (1+k2t—7r cosh(k/7)> (-—M

kZ

g [1—CXP(*&-7)"V)]‘ ) ()

s

X {exp(— )+

where &,=[(2n—1)r/2]>+(k/7)2

C.3. The case (8C,/0x).ci=ad(t)/a?, C,(0,t)=0,
Cp(x,0)=0.

These boundary conditions correspond to an instan-
taneous source of strength « at x=/ and =0 and are
equivalent to the Green’s function formalism as treated
in Carslaw and Jaeger.!® At x=/ an amount of tracer «

18 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids
(Oxford University Press, London, 1959), 2nd ed., Chap. 14.
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enters the dislocation pipe at =0, i.e.,

t
l}“g/ D,[3C (x,l')/ 0% Jemidl =ct. (C8)
e

Equation (C8) is satisfied if
(0C,/0%) smi=ad(t)/a?.

For >0, (8C,/3x).-1=0 as required by the conditions
of an instantaneous source. _

The boundary conditions transform into (9Cp/9%x) 2=
=a/a?, C,(0,p)=0. The solution of Eq. (C1) fulfilling
these boundary conditions is

a  sinh[x(k*+p)"?/a]
" @ (B p)V2 cosh[L(k2+p) /0]
Retransformation yields

2 = 2n—1)*r? k2
Cp=—(! Z (__ l)n—-l exp{[_gl._l___*__jlﬂy}
l 4 2

n=1 n
Xsin[fzn— 1)1rx:| . (C9)
21

Proceeding as in Appendix A we obtain for Q(p)

amry
"~ p cosh[U(k*+p)"2/a]’

which on retransforming yields

Q(p) (C10)

amroy

= ————_—cosh(k/n)l:l — cosh(k/7)
= (—1)*(2n—1)
2 (———(—n——eXP(—snn?t)]. (C11)

n=1 n

C.4. Thecase (dC,/0x)smi=ad(t)/a? (3Cp/ %) zm0=0,
Cp(x,0)=0. _

The solution of Eq. (C1) for (9C,/9x).—1=a/a?,
(6C,./6x) z=0= 0, is

a cosh[x(k2+p)V%/a]

y—— . (C12)
o (k*+ )" sinh[L(E*+$)"%/a]
Q(p) is in this case given by Eq. (8)
~ amro®xew
Uy YD (€19
The inverse is
amro®xeky
® =a—sin—h(%{1—2(n/k) sinh(k/7)
X 3 (=)= k/gur] exp(~tart)) . (C14)

n=1
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APPENDIX D: COMPARISON OF THE
SOLUTIONS OF EQS. (5) AND (6)

The radial flux out of a cylinder of radius 7o having
infinite length into an infinite medium is given by!®

4Dy °  exp(—Dy?t)dp
F()=Cyp— , (DD
rar? Jo u[Jo*(row)+ Yo (ron)]
which on inserting into Eq. (5) yields
a%(02C,/3x%)— k" *Cpf(t)=0C,/ ¢, (D2)

where
a*=D,, Fk’*=8D/r,’r?,

©  exp(—Dyu2)du
o u[Jo2(row)+Yo2(rom)] ‘

The solution of Eq. (D2) for the conditions (9C,/0x) 2=
=ad(t)/a? C,(0,t)=0, Cp(x,0)=0is

f&=

200 »
Cp=—2 (—1)"lexp

n=1

2n—1 27r2 2 t
[_(_n_lt_k” f(t’)dt/:l

Xcos((2n—1)wx/2l). (D3)

On comparing Egs. (D3) and (C9) it is seen that k2% has
been replaced by L=£%"f"y* f(#)dt'. L can be rewritten as

t
L=F%Le where Leore=(k"/k%) / fdr .
0

Computer calculations show that Leorr varies within the
time range where data were taken by not more than
300%, which corresponds to a change in (k/7)? by a
factor of 3. Figure 9 shows two plots of Q*(¢) for

10 e e e e e e e e e e e -
2,2
8 Wtz
~ 6
.
° 4
4 r
& /7%= 08
2 +
o] Il Il 1
) 5 10 15
72t

F16. 9. Dependence of calculated Q* versus reduced time curves on
the loss parameter k2/x? for Case III boundary conditions.

Case III (see Table II) for (&/7)?=3.2X10~! and
(k/7)*=8X10"2 On comparing the small difference be-
tween the two curves with the scatter of the data points
in Fig. 3 it is seen that this difference could not be
resolved. Consequently, L, can be treated as a con-
stant independent of time which is the approximation
used.
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(b)
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F1e. 4. Autoradiographs of nonplated wafer face before (a)
ang Eaf;:er (b) a diffusion anneal. Exposure times differ for (a)
and (b).



