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An exact solution is given to a particular model for the problem in which a reactant (vacancies) diBuses
to an absorbing boundary (sinks) but is occasionally delayed by traps. The solution is compared with a
second solution developed using a rate-theory approach with dispersed sinks.

I. INTRODUCTION

~ 'HE manner in which point defects in excess of the
equilibrium concentration are removed from a

lattice is a major area of investigation. The details of a
given process will depend on a number of factors—
concentration and mobility of the defects, concentration
and configuration of annihilation sites, and concentra-
tion of traps. As a result, no general formulation of such
processes is feasible.

Under these circumstances, it has been natural to
seek an analytic solution of a particular problem by
emphasizing the dominant reaction, either ignoring side
reactions or treating these as perturbations. This
approach has been exploited very electively by
Damask and Dienes' (DD) in a series of calculations
based on chemical rate theory. A second approachis
typified by the calculations of Koehler et c/. ' Here, the
"exact" equations were presented, including diffusion
terms, but the solution was based on approximation
techniques.

In this paper we present "exact" solutions for a par-
ticular problem in which generalization follows easily.
The problem we consider is the migration of vacancies
to sinks, in which further interactions perturb the mi-
gration. The choice of vacancies as the defectunder
study is arbitrary. Ke present solutions of this problem
using, alternately, diffusion theory and chemical rate
theory. A comparison of the solutions is then made.

We consider a particular model in order to obtain
solutions which are more easily examined and because
we believe that this model is appropriate to a number of
actual physical cases. As an example, in thefollowing
paper we apply the solution to the recovery of electrical
resistivity in stage IU in platinum. The recovery can be
accounted for by the diffusion of vacancies with con-
current trapping by impurities.

This problem has been considered within the frame-
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' A. C. Damask and G. J. Dienes, Point Defects in ttletals
(Gordon and Breach, Science Publishers, Inc. , New York, 1963);
Phys. Rev. 120, 99 (1960).' J. S. Koehler, F. Seitz, and J. E. Bauerle, Phys. Rev. 107,
1499 (1957).

alld

h=84Iv exp( —E/kT),

p=7v exp( —(E+B)/kT7 .

(3)

(4)

Here I is the concentration of impurities (assumed
constant, as discussed above); v, the atomic attack fre-
quency (=10" sec '); E, the activation energy of

' A. Sosin, Phys. Rev. 122, 1112 (1961).
4 Upon completion of this work we have been made aware of a

calculation by D. G. Hurst of the problem dealt with below in
Sec. DA. IAtomic Energy Commission, Limited report AECL
1550, 1962 (unpublished) g. Hurst's work should be consulted for a
larger number of numerical examples.' A. Blandin and J. Friedel, Acta Met. 8, 384 (1960).

work of chemical rate theory by DD and Sosin. ' The
results described in the DD work bear close qualitative
agreement with ours. However, DD assumed that an
impurity atom could no longer trap a second vacancy
when it had already trapped one. With this assumption,
the resulting differential equations are nonlinear. We
take the impurity concentration to be a constant. This
assumption is reasonable if the impurity concentration
exceeds the vacancy concentration sufficiently. In addi-
tion, it may be possible that impurities trap more than
one vacancy. The assumption is valuable in that the
resulting diA'erential equations are linear and may be
solved analytically. 4 The problem of diffusion in the
absence of impurities has been discussed by Blandin
and Friedel. '

II. THEORY

A. Diffusion Theory

The problem we have defined is specified by the
equations

jv/Bt =DV'v hv+ pc, —

itc/Bt = hv —yc,

where v and c are the concentration (atomic fraction)
of vacancies, and vacancy impurity complexes, re-
spectively. The term DV'v is related to the migration of
vacancies under a concentration gradient. Trapping of
vacancies by impurities is represented in Eq. (1) by
(—hv) and release from these traps, by (pc). The rate
constants, X and p, are defined by'
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p.++t (1+f)T'=
p' —p.

D=a'r exp( —E/kT) . exp (p„+t)

Equation (5) is appropriate for diffusion of a vacancy
in a cubic crystal where u is the lattice constant.

The boundary and initial conditions imposed on
Eqs. (1) and (2) are

p=+t (1+f)
+ exp(p„—t) . (15)

p=—p-'

Here p„+ and p„are the solutions to the quadratic
equation,v= vo for r(R at t=O,

v=0 for r=R all t,
c=co for r&R t=O.

(16)p„'+p (X+p K) —pK =—0.
Similarly,

7 Ep-++t (1+f)]
T '= exp(p„+t)

(p-+ p. ) (p—-'+t )

&Q. +t (1+f)]
+ exp (p t) . (17)

(p= p-')(p +—t)

With these conditions, Eq. (1) describes the diBusion
of vacancies with initially uniform distribution to un-
saturable sinks which we take to be located on the
surface of a sphere of radius R. A physical situation
which corresponds to this model is the annihilation of
vacancies at grain boundaries or mosaic boundaries.

The solution to this problem may be obtained through
the direct application of Laplace transformation
methods. However, it is more informative to proceed
diBerently, resorting to Laplace transforms later. Ke
assume that the spatial and time dependences of v and
c are separable and, further, that they possess the same
spatial dependence:

Combining the spatial and temporal parts of the
solutions through Eqs. (6) and (7), we have

2 Q ~ (—1)"+' nprr

v(r, t) =—vp—g sin T„'(t), (18a)
7i r &=1 R

and
2 Il (—1)"+' /nprr

c(r,t)=—vp—g & sin~ T '(t) . (18b)
r -1 t n ER

v (r,t) =p(r) T'(t), (6)
and

motion of vacancies; k, the Holtzmann constant; T, the ratio of trapped to untrapped vacancies). The inverse

temperature; 8& the vacancy-impurity binding energy; transformations to Eqs. (13) and (14) may be evaluated
and D, the diffusion coeKcient for a free vacancy, by the method of residues to yield
given by

c(r,t)=t (r)T (t),
where r is a radial coordinate. Then

DV'p= Ep,

dT'/dt jdT'/dt= KT",
and

dT'/dt=XT" pT'—
(8)

(9) 6 ~ 1
sf„(t)=—Q —T. (t)

n
(19a)

The quantity which is most easily related to experiment
is the total concentration of free vacancies and bound
vacancies at time t. These quantities, following inte-
gration over r in Eq. (18), are

The eigenfunctions satisfying Eq. (8) are' 6
M, (t) =—P T„(t)—(19b)

2 8 - (-1)"+' nor
p.(r) = vp-sin

7r r n R

K„=—n'pr D/R', (12)

where n is a positive integer and E„are the eigenvalues
of Eq. (8).

Equations (9) and (10) become, under Laplace
transformation,

p Te 1+p Tc f K Tv (13)

p T ' f=AT ' pT '. — —
The overbars indicate transformed functions in the
Laplace variable, p. Here f is de6ned as cp/vp (the initial

' J. Crank, The MtJthemotics of Diglsion (Clarendon Press,
Oxford, England, 1956), p. 86.

7l &=j n

It is significant to observe the effect of different values
of the binding energy B. Changing the value of 8
changes tp pEq. (4)], yielding different roots, p
LEq. (16)].This, in turn alters T„"and T ' LEqs. (15)
and (17)]. As a result, the time dependences of v(r, t)
and c(r,t) are altered LEq. (18)].The spatial depend-
ences are unaltered. Thus, there is one-to-one corre-
spondence between the spatial distribution of defects
represented by the nth component of the sum for p(r)
at any particular time with the same component under
trapping conditions given by a diGerent value of j3
(including 8=0 in the no-trap case) at some different
time. The time shift between these two identical com-
plexions of the nth component is reflected in a diferent
time basis in Eq. (19)—an important consideration for
later discussion.
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The solution developed here may be altered to accom-
modate diGerent boundary conditions. For example,
one may treat the volume diffusion of point defects to
internal cylinders, representing isolated dislocations or
the volume diGusion of point defects to internal
spheres, representing jogs or clusters of vacancies. The
solutions in these cases involve a rede6nition of the
constant E„in terms of the pertinent physical parame-
ters and of diGerent numerical factors.

The above solution may correspond to the physical
case of a quench where an excess concentration of va-
cancies is frozen into the lattice. During the quench
some vacancies may have been trapped at impurities
which would correspond to a finite value of f The.ap-
propriate initial conditions for the migration of vacan-
cies created by irradiation with charged particles at low
temperatures is f=0

that

where

Accordingly,

8+=q+A+,

q+=—ErI/(a++Err) .

(28)

(29)

A+=ro(a++Err(1+ f))/(a+ a —),-
=s-o(a +E-zz(1+f))/(a a+—),

a++Err(1+ f)8+=v&II
(a a ) (a +EII)

a-+Erz (1+f)8 =e(gCyI
(a —a ) (a +Err)

(30a)

(30b)

(31a)

(31b)

C. Comparison of Rate and Detrusion Theory

In order to facilitate the comparison of the solutions,
we compare the first eigenfunctions of the diffusion

theory

pz++u(1+f)—r, exp(p, +t)
pz pl

pz +u(1+f)
+

pl 'pz
exp(p, —t), (32a)

and

pz++u (1+f)
(20) r y, exp(pz+t)

(pz+- pz )(pz++u)

B. Rate Theory

This same problem may be solved within the frame-
work of chemical rate theory. Damask and Dienes have
presented numerical solutions taking into account ex-
plicitly the change in the impurity concentration I.
Within the approximation that I is a constant, the
kinetic problem lends itself to an analytic solution,
which is identical to the first eigenfunction (rr = 1) of the
diffusion equation. Using a notation similar to that of
DD, we define the kinetic problem by

Kr
a+I ~~ c,

Zzs

Then

Kzry

e - sinks. (21)
pz +u(1+f)

+ exp(pz t), (32b)
(pr —pz+) (pz +u)

Here

d5/dt = —EzIc Ezzz'v+ Erzc ~—

dc/dt =EzsI —Ezzc.

Ez —X/I, —

+n=IJ,

(24a)

(24b)

a +u(1+f)
+ exp(a —t), (33a)

CX A

(22) with

a'+u(1+ f-)
(23) w(t) = r 0 exp(a+t)

n+ —c

a +u(1+f)+ exp(a t) . (33b)
(a

——a+) (a-+ Ezz)

E'nr=zq exp( E/kT) . —(24c) + (1+f)
Here g is a constant related to the sink concentration. ( ) ~ + ++EThe solutions to Eqs. (22) and (23) are

e(t) =2+ exp(a+t)+A exp(a t), (25)

c(t) =B+ exp(a+t)+B exp(a t) (2.6)

Here 0.+ and 0, are the roots of the quadratic equation:

a +a(EzI+Ezz+Ezzr)+EzzEzrz=0, (27)

and A+, A, 8+, and 8—are constants to be evaluated
from the initial conditions:

e= eo at 3=O,
c=co at (=0,

and from two compatibility conditions which demand

Now, pr+ are the roots of the quadratic equation (16)
which is the same equation as is satisfied by 0.+, namely,
(27) rf —Ez=Erzr The only remaining difference
between Eqs. (32) and (33) is the nuznerical factor
6/rr. This factor arises from the fact that we have
singled out for comparison only the 6rst eigenvalue
solution. Note that

Q rr '=-,zrr'.
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On the basis of this comparison, the limitations of the
rate-theory approach may be appreciated. The primary
eGect of ignoring the concentration gradient term in the
diffusion equation is to suppress the higher eigenvalue
terms in the solution of the diBusion equation. Accord-
dingly, an exact comparison between dift'usion-theory
and rate-theory approaches is not possible. At long
times, however, the higher order eigenfunctions di-
minish in importance. A comparison between ap-
proaches is then more meaningfuL In particular, we
may relate q, the sink density, to the appropriate sink
dimension of the di6usion problem.

III. NUMEMCAL EVALUATION

The concentration of free and bound vacancies as
expressed in Eq. (19) was studied as a function of time
for various values of ) and p on an analog computer. In
the following numerical examples, we always take

&„=—n'X 10

This choice electively determines a value for
) exp[ E/kT]—Also a'./R' is a constant for any one
material. Then we note from Eqs. (1), (3), and (4) that
X reQects the impurity concentration I and p the binding
energy 8, respectively.

In Figs. 1 and 2 we present the results of the computer
plots for the fractional free-vacancy concentration
(M,) and bound-vacancy concentration (M,) as a
function of time. A number of observations may be
made:

(1) The number of complexes M, increases rapidly
at early times. During this same transient period, the
number of free vacancies M, decreases correspondingly.
The length of this transient period depends almost
entirely on the value of X (i.e., concentration of im-
purities) rather than on the value of p, (i.e., binding
energy). That is, the time required to establish a dy-
namic equilibrium between free and bound vacancies
is more sensitively determined by the sink and trap

lo
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FIG. 2. Same as Fig. 1 with different parameters.

concentrations than by the binding energy, for reason-
able values of these parameters.

(2) After this initial transient period, both M, and
M, decay steadily and a dynamic equilibrium between
them is followed. This suggests that, to a good approxi-
mation, Eq. (2) may be altered to

Hence,

Bc/R = Xs—)))c=o.

c(t) M.(t)

p r (t) M. (t)

(34a)

TAsLE I. Comparison of Kq. (34) with computer results.

Run M,/M, (2 X10' sec)

18z2 Fig. 1
3@4Fig. 1
1&2 Fig. 2
38z4 Fig. 2

1.9
0.3
5.9
1.0

2.3
0.34
8.0
1.1

The extent to which this relationship holds can be de-
duced from the results in Figs. 1 and 2. Ke have com-
piled the numerical values of Table I arbitrarily for a
time of 2X10 sec.

0.8

0.6

0.4

0.2

k)sec') p(Iii )
I Mv 5XlO"" 2.66 XIO

) I9

1 ( lO sec)

(3) Figures 1 and 2 represent the calculated results
for two diferent impurity concentrations and each
figure represents the results for the same impurity con-
centration and di6erent binding energies. It is clear that
the total vacancy concentration (M,+M,) at any given
time depends on X and p in a complicated manner. How-
ever, the significant delay in the annihilation of the
vacancies by the impurities is apparent when the results
are compared with curve 5 in each 6gure. The magni-
tude of the delay becomes more pronounced at longer
times.

FIG. 1. Plots of free-vacancy (fractional) concentration 3E, and
bound-vacancy (fractional) concentration M, as a function of
time. The impurity concentration has been kept constant (keeping
) constant) but the binding energy has been varied (varying the
value of y) in plots 1-4. Plot 5 pertains to diffusion in the absence
of impurities.
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