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A four-particle cluster approximation is worked out for the free energy of ferroelectric KHIPQ4, taking
into account the overlap of the protonic wave functions between the two sites in a hydrogen bond as well as
short-range and long-range forces and a part of the proton-lattice interactions. The approximation reduces
in the classical limit to the Slater-Takagi-Senko-Uehling treatment of the order-disorder transition in this
crystal. It is shown that the changes in the Curie temperature, the spontaneous polarization, and the domain-
wall mobility on deuteration can be derived from the decrease in the hydrogen overlap between the two
sites and the lowering of the zero-point energy in an anharmonic potential.

I. INTRODUCTION

N the preceding paper, ' a high-temperature cluster-
s. expansion series has been derived for a simplified
partition function of order-disorder —type hydrogen-
bonded ferroelectric crystals. Here we wish to refine
this model and to apply it to the case of the ferroelectric
transition in KH2PO4. '

The basic experimental facts about the ferroelectric
transition in KH2PO4 may be summarized as follows:
The presence of a small but definite thermal hysteresis'
in the dielectric constant near the critical point
(T,=121'K) in KHqPO4, and the coexistence of the
para- and ferroelectric phases in the vicinity of
T,= 221'K in KD2PO4 as shown by the deuteron mag-
netic resonance data, 4 seem to prove that the ferro-
electric transitions in these two crystals are of first
order, though they are very close to second order. This
statement is supported by the fact that in KD2PO4 the
smallest nonzero polarization reported' is already about
30% of its full value. Neutron and x-ray diffractions
have further shown that the ferroelectric transition in
KH2PO4 is accompanied by an ordering' of protons,
which are disordered in the paraelectric phase, as well
as by large displacements' of the potassium and phos-
phorus ions, indicating a strong proton-lattice coupling.
Direct evidence for deuteron motion from one off-center
position in the hydrogen bonds to the other has been
obtained from deuteron resonance relaxation-time meas-
urements' in the paraelectric phase.
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The rather large isotope effects in the Curie tempera-
ture, ' in the shape of the polarization curve, ' and in the
saturation value of the spontaneous polarization (P, n is
for about 20 jo larger than P, ,rr) on replacing hydrogen
by deuterium indicated the role of the hydrogen atoms
in the transition. The most striking isotope effect, how-
ever, is the big difference' in domain-wall dynamics
between KH2PO4 and KD2PO4. The domain-wall mo-
bility in KD2PO4 is about six orders of magnitude lower
than in KH~PO4, thus reflecting the large difference
between the proton and deuteron mobilities in the
hydrogen bonds.

The model theories of the ferroelectric effect in
KH&PO4 and KD2PO4 may be divided into two cate-
gories. The theories introduced by Slater" and refined
by Takagi, " Senko, " and Uehling and coworkers, "
concentrate on the short-range near-neighbor inter-
action of protons around a given PO4 group. ln the
modifications of Senko" and Uehling, "long-range forces
have also been included. So far, however, these theories
neglect quantum effects, and in particular the finite
overlap of the protonic wave functions between the two
sites in a hydrogen bond. Nevertheless, they yield a
relatively good description of most experimental facts.
There are, however, two notable exceptions: a consist-
ently too large transition entropy is predicted, "and a
really satisfactory explanation of the observed isotope
effects cannot be given.

The molecular-field theories, " "on the other hand,
concentrate on long-range forces and have no difhculties
in taking into account quantum effects. Thus they seem
to provide a basis for the understanding of the isotope
effects. However, because of the neg1ect of short-range
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correlations, they fail in some other respects and are,
for instance, unable to give even an approximately
correct description of the shape of the spontaneous
polarization curve.

Both theories have so far assumed that the protons
move in a rigid-lattice potential and have thus neglected
proton-lattice coupling. "

Here we wish to present a high-temperature treat-
ment which considers both short-range and long-range
forces, the finite overlap of the protonic wave functions
between the two sites in a given hydrogen bond, and a
part of the proton-lattice coupling. The approximation,
which we discuss, is based on the cluster expansion of
the partition function of an order-disorder —type hydro-
gen-bonded ferroelectric crystal, derived in the pre-
ceding paper. ' The interactions between the four protons
surrounding a given PO4 group are taken into account
exactly and the rest is replaced by a molecular field,
which is determined self-consistently. An attempt is
made to account for the eftect of one proton on the
tunneling integral of another. The present approxima-
tion reduces in the classical limit to the Senko-Uehling
modification of the Slater theory. It should be noted
that in contrast to the case discussed in part I, we are
dealing in KH2PO4 with four-body forces, and the
4-particle cluster is thus the smallest cluster appropriate
for the discussion of short-range eGects, as the 2-particle
cluster was the smallest appropriate cluster in the case
of two-body forces.

HsR=E
i=l kq, k2, a3, k4=g, g

and

kk k k k n 1k«'n 2kk'n 3k«n kk4'(4)

4

HLR= —
3 p p J,*'»'(n'&t n—,,k)(n, &t'n—; & I)', (5)

i, i'=1 j,j'=1

where the representation of localized particles is used,
and the summation extends over all X PO4 groups in the
crystal as well as over all four hydrogen sites near a
given PO4 group.

Here s;,+ and s;, are again the proton "jump"
operators

s;;+=b;,g~b;;g,

and the n,;I, are the proton "number" operators:

(k=l, l)

bijI, and bijI, being the proton creation and annihilation
operators': p;, k = b;,kt

~

0). The sign ]' or & means that the
proton is created or annihilated near the upper or lower
oxygen atom, respectively, of a given PO4 group, where
the expression "upper" or "lower" refers to the direction
of the ferrolectric z axis. The dehnitions of the tunneling
integral I',; and the interaction parameter J;;.j,' are the
same as in Ref. 1, and the 61,yI, 2&3/4 are the Slater-Takagi
energies of the di6erent proton configurations around
a given PO4 ion, i.e., the matrix elements

II. THE HAMILTONIAN

The Hamiltonian of our problem' can be written in
the following form:

Q =H~+Hl. +Hg,

where H„ is the full many-body proton Hamiltonian in
a rigid lattice, Hr, =pk Itkokaktak is the Hamiltonian of
the lattice vibrations in the absence of proton motion,
and Hr= Zk(Vkak+ Vktakt) stands for the proton-lattice
interaction. " The operators UI, and Vl,t operate on
proton variables, "whereas a~~ and aj, are creation and
annihilation operators for phonons with energy Igorj, .

The proton self-energy Hamiltonian H~ can be written
as a sum of a tunneling term H&, describing the motion
of isolated protons between the two possible sites in a
given hydrogen bond; a short-range term HsR, which
accounts for the interactions of protons surrounding a
given PO4 group; and a long-range term HI, R, which
describes the interaction between those proton sites
which do not belong to the same PO4 ion:

H SR, i &0-~ i0+ &1~ It i1+&2 ~~ i2

+&2(Ãi2 A jk )+ 3'V3j3+ 34.' «;4 «(9)
where

Ã;,=iV, ( ),
1V'I=-i"(' )+X,(U')+3;(. )+.V,( .),

1V;.'=X,(: )+1V,( ~.)=.a,(. )+&y,(:),
1V, =X; '+ V;('g')+X;(.g.),
X,3=~'V;(: )+E;(:)+.y, (. :)+iV,.(:

(fo)

where Hpo4, .* is the complete Hamiltonian of a given
PO4 group and the integration is done over all internal
coordinates of a given PO4 ion. Higher vibrational states
of the proton are not included and only the leading term
in the proton overlap integral is taken into account.

The short-range interaction term for a given PO4 ion
can be written as a sum of terms describing states with
zero, one, two, three, and four protons close to a given
PO4 ion:

with
Hy= Hi+HSR+HIR, (2) and

E;3=1V;(:g:),
.V 4

H, = —-', l' P P(s,,++s;, ),
i=1 j=l

"R. Blinc and M. Ribaric, Phys. Rev. 130, 1816 (1963)."R.Blinc and S. Svetina, Phys. Letters 15, 119 (196S).
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Using the condition that there is one and only one is thus, up to constant terms,
proton in a given hydrogen bond,

7z;jt+sijg= 1 ~

and summing over all PO4 groups, we may up to a
constant term rewrite HSR in the following simpler form:

+[w1(iV '0+A '4) + w (A '1+-V '3)+elV '2 j

Hsa ——P [w~X;0+w(ÃQ+1V 3)+6$Q'+wQN 4) (1'3)

where
w =

g (6y+ e3) e2 q

/

~1=6P—61+63—62,

R'2= 64+ 61 f3 62 ~

As the configurations with no protons or with four
protons near a given PO4 group should have rather high
excitation energies and should therefore play only a
minor role in the ferroelectric behavior of KH2PO4-type
crystals, we shall for the sake of simplicity assume that
z2 ——xl, so that HSR will depend only on 3 parameters:
zeal) w) and 6.

As shown in Appendix A and Ref. j.7, a part of the
proton-lattice interaction can be taken into account by
a renormalization of the proton tunneling integral and
the proton-proton interaction parameters. In the follow-
ing we shall assume that this has already been done and
that all our parameters are renormalized.

Another part of the proton-lattice interaction (Ap-
pendix A) can be accounted for in our approximation by
adding a molecular-Geld term,

4

I. = 'Z -Z—[ -vo(p&(&' t &* ~)+—'vo(P& j —(15)-
to the long-range proton-proton interaction Hamil-
tonian. Here (p) is the mean ~alue of the reduced
hydrogen-bond dipole-moment operator

and yp is a proportionality constant. In view of the
approximation in which we are going to work, we shall
neglect other e8ects of the proton-lattice interactions
(for instance, their dependence on the hydrogen tunnel-
ing frequency).

%e shall use the technique developed in Ref. 1 and
shall investigate the free energy of our crystal in a
four-particle cluster approximation, as this is the lowest
approximation in which we can account for the specific
properties of KH2PO4-type crystal lattices. Thus we
shall take into account the short-range interactions of
the four protons surrounding a given PO4 group exactly,
and the rest only on the average. Specifically, we shall
replace the long-range interaction term (5) with a
molecular-6eld term, similar to expression (15).

The final expression for our approximate Hamiltonian

where it should be remembered that the A;,(o=0,
1, , 4) are four-particle operators and that y is now
a constant describing all long-range effects, i.e., direct
proton-proton coupling as well as coupling through the
lattice vibrations in a molecular-field approximation.

+[wg(X;p+1V;4)+w(X~+Ã;3)+ eiV,2']) = Q Q;. (20)

In the unperturbed Hamiltonian, we treat each proton
as moving in the average field of its neighbors. In addi-
tion to the long-range 6eld y(p&, we describe the average
interaction of a proton with its neighbors by two inde-
pendent fields: an effective field 6,, which makes the
potential well in the H bond asymmetric, and a field g
which takes into account the eGects of other protons on
the tunneling integral of a given proton, and thus repre-
sents the change in the effective tunneling integral due
to proton correlations. It should be pointed out that g is
nonzero even above T, and, in fact, goes towards zero
only if T&)T„ i.e., if the diGerent protons are in fact
moving as independent particles.

Both 6 and p are obtained by a minimization of the
approximately determined free energy:

where

and

F—Fp+F~

Fo —kT In Tre e~', P=1/——kT,

Tre i'~

(21)

(22)

F =F—Fp= —kT 1n =—kT ln Trppe
Tre—i'~0

kT ln(e e"&, — (23)

III. FOUR-PARTICLE-CLUSTER
APPROXHNATION

Let us now divide our Hamiltonian (17) into an un-
perturbed part Hp and a perturbation term H', which
is equal to the di6erence between the total and the
unperturbed Hamiltonian:

H=Hp+EP,
with
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with po being the unperturbed density matrix

p =e en4/Tre en&&

and the operator V being dehned, as in Ref. 2, by

g
—P (Hg+H') ~

—PH p~
—P V

(24)

(25)

Using the same procedure as in Ref. 2 and remember-
ing that the link Q; we are using is in fact a four-particle
cluster, we can express V as

FIG. 1. Critical
values of e, m, and
y yielding a phase
transition in the clas-
sical limit.

kTc o
046

0.2
l. order

with

N
1'=Z Q'' (26)

042 0.4
Y

kTc o

0.6

i.order

Q''=Q'+ —,L oQ'j+ —,L oL oQ'jj+. " (»
2!

'
3i

In the four-particle-cluster approximation, we then
obtain' the correction to the unperturbed free energy as:

N

F(,)' ———kT P ln Trpoe eo"—
= —kT&V[ln Tre en&4& —41nTre e &'&j, (28)

where the four-particle-cluster Hamiltonian H(4) is
dehned as

4

&(4)= E L
—(r—kv)(s;,++s;;-)

-(V&p&+l&)( ' -n' )j
+[-.W,.+~, )+-(~, +.~;)+ -~; j, (29)

and the single-particle-cluster Hamiltonian as

= —(I'—~)( '++s' )—(7&p&+~)(n' —'4) (3o)

The total free energy is in this approximation given by

F(4) = —kT1V(ln Tre en&4&

—2 ln Tre en&'&)+&V&&p&' (31)

Minimizing (31) with respect to 6 and &),

BF(4)/86=0, 8F(4)/Br(= 0
& (32)

we 6nd that the two fields g and ~ are determined by
solutions of the following equations:

4

Tr(n;;t n;,4)p(»=—4 Tr P (n;;t n;;4)p(4)—,

4

Tr(s;,++s;, )po& ——
4 Tr P(s;,++s,, )p(4&, (34)

Again we see that the minimization of the free energy
with respect to 0 and g is equivalent to the requirement
that the thermal expectation values of the reduced
H-bond dipole moment operator P4&

=n, ,t n;,4
—and the

proton jump operator s;j=s;j++s;j be the same whether
determined from the four- or from the single-particle
density matrix. The explicit form of Eqs. (33) and (34)
is rather clumsy and is presented in Appendix B.How-
ever, once we know 6 and g as functions of temperature,
we also know the temperature dependence of the free
energy in this approximation, and can deduce all
polarization properties of our system.

IV. RESULTS

Let us erst investigate our approximation in the
classical limit, where the potential barrier separating
the two minima in a hydrogen bond is supposed to be
in6nite. As discussed below, such a model is probably a
rather good approximation for KD~P04, though not for
EH~F04. In this case, F and q are identically zero, and
the energy matrix corresponding to the 4-particle-cluster
Hamiltonian is already in diagonal form. By an elimi-
nation of 6 from (33) and (p) =Tr(n;t —n,4)p(» we can
obtain a consistency equation for the spontaneous
polarization:

2e t'" sinhx+sinh2x
&p)= (37)

e e"'+4e e" coshx+cosh2x+2e e'

= l 1 L(1+&P))/(1 —
&P&)j+&7&p& (38)

In the limit &p) & 0, we get from the above expression
an equation for the temperature T, of the ferroelectric
transition:

Le ecw&+e eccc+e —ecc 1——
p y—[1 e ecccj (39)—

where

and
p(4&

——e en&'&/Tre en&'&

—e eH &4&/Tre &&H &4&— —

Expressions (37) and (39) give exactly the same
results as the Senko-U'ehling model"" and may be

(35) considered as analytical expressions of the equations for
the spontaneous polarization and the transition tem-

(36) perature of their model. This can be easily understood,
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tures decrease with increasing F, i.e., with increasing
proton overlap due to an decreasing width of the poten-
tial barrier between the two sites in a hydrogen bond.
As expected, this eftect increases with decreasing excita-
tion energy w for the creation of an H3PO4 or an HPO4
group. If m were of the order of 10kT„i.e., of the order of
1500 cm ' for KD2PO4, then the transition temperature
T, would be practically independent of the shape of the
intervening potential barrier and thus of I" (and equal
to its classical limiting value 2',) for all physically
admissible values of f' (Fig. 3). However, as borne out
by the already mentioned experiments of Uehling and
coworkers, ' this is not the case in KD2PO4, and thus
the overlap of the hydrogen wave functions between the
two sites has a marked influence on the ferroelectric
properties of KH&PO4-type crystals.

The anomalous specific heat of the transition is:

Tc

Tc 0

1.2

0.8—

0.6

0.4

0.2

w& 2Q5 kTc o

w 4.1 kTc o

0.1064 kTc o

C(,) = 8W/8T, (42)

where the internal energy 8' is obtained in this approxi-
mation as

0.2 Oi4 0.6 0.8 1

kTc o

with

5'= E TrII;,pog(4), FiG. 5. Dependence of the ferroelectric transition temperatures
and the boundary between hrst- and second-order phase transi-
tions on e and F.

+', po = -' 2 L
—(&'++&' )—y(P)(&' t —&' &)j

+p»z(A;0+ V~4)+»(-& ~1+ ~ ~3)+&~+i2+ Y(p) j (44)

As can be seen from Fig. 4, the specific-heat anomaly
and the associated transition entropy,

"C(„)dT

C

k
40—

wl 205 kTc o

w 4.1 kTc o

g ~0.525kTc o

q - 0.1064k To o
I

0

T

Tc

FJG. 4. Temperature dependence of the anomalous
specific heat for various values of I'.

decrease with increasing F. As our model in the classical
limit predicts a too large transition entropy (65=0.50R,

whereas the experimental value'" for KD2PO4 is
AS=0.32R), we see that the e8ect has the right direc-
tion and that the fit between experiment and theory is
improved if the finite overlap of the wave functions
between the two hydrogen sites is taken into account.

The effect of F on the shape of the polarization curves
is also quite remarkable. The larger F is, the less sharp
is the rise of the spontaneous polarization near the
critical point. This agrees qualitatively with the experi-
mental fact that the onset of spontaneous polarization
is generally sharper in deuterated crystals than in the
undeuterated ones. That is, because of the larger mass
of the deuteron, the value of F is distinctly smaller in
the deuterated compounds than in their undeuterated
analogs.

The boundary between phase transitions of erst and
second order also depends on F. If all other parameters
remain unchanged, then an increase in F moves our
critical point from the first order region towards the
region of second order phase transitions (Fig. 5).

If the finite value of the proton overlap, i.e. of F, is
taken into account, we have, in contrast to the classical
case, no difhculty in accounting for the behavior of the
undeuterated crystals on the basis of the KD2PO4
parameters.

As can be readily shown, and as was 6rst pointed
out by Uehling, " e varies for different particles as the
square of the off-center distance in the H bond. Because
of their lower zero-point energy and the anharmonicity
of the H-bond potential, the deuterons lie farther away
from the center of the H bond than the protons, and
thus ~D) ea. A transition from KD2PO4 to KH2PO4 is
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(8)
K H~ P04

P
P0.9Tc

0.8

0.6

c &Tc 0 l 0.565 0.56
0.2 Pp 9T 0.98P(o 0.87 Pco 0.89P~

6S/R 0.50 0.355 0.%5

0.9
I i l

0.92 094 0.96 0.98
T
T

Fro. 6. Comparison of theoretical spontaneous polarization
with experimental for both KH2PO4 and KDgPO4.

thus accompanied by a decrease in e and an increase in F
due to the increased overlap of the wave functions
between the two sites in the hydrogen bonds.

From the observed change in the 0—H with respect
to the 0-D bond length (Ro H —Ro D 0.14 A for
KH2PO4 type crystals" ) and using (sn/en) = Qo/err)'',
where g is the corresponding off-center distance of the
particle site in the H bond, one finds that eH should
amount to about 56'Po of en. Similarly one 6nds that
because of the smaller mass and the decreased width of
the potential barrier, " FH should be about two orders
of magnitude larger than FD.

As the precise value of F is not known, let us for the
sake of simplicity assume that FD=0 for KD2PO4. In
such a case, Uehling's set of parameters ~0=115 cm—',
y= 23 cm ', and m) =625 cm ' gives the best fit for a
second-order transition and, with a slightly smaller
value of en/y, also for a ftrst-order one. If we now de-
crease ~H in comparison to eD by the ratio of the squares
of the off-center distances, and increase FH to about
130 cm—', both the transition temperatures and the
predicted shapes of the polarzation curves (Fig. 6) of
KH2PO4 and KD2PO4 agree with the experimental
ones. The predicted transition entropy of KH2PO4,
65=0.355R, also agrees rather nicley with the experi-
mental' one: 65=0.37R.

Such a good agreement for KH2PO4 is probably
fortuitous. As demonstrated recently, "the specific-heat
anomaly in KH2PO4 exhibits a logarithmic singularity
at T„whereas such behavior is not found in our approx-
imation. In this connection it is interesting to note that

"B.S. Garret, U. S. Atomic Energy Commission, Oak Ridge
National Laboratory Report No. ORNL-1745, 149, 1954
(unpublished).

~ C. C. Stephenson and J. G. Booley, J. Am. Chem. Soc. 66,
139'7 (144); H. Danner and R. Pepinsky, Phys. Rev. 99, 1915
(1955)."J.Grindlay, Phys. Rev. 139, A1603 (1965).

the exact solution of the simplified ferroelectric model
Hamiltonian (Ref. 1) for F=O and a two-dimensional
lattice does exhibit a logarithmic singularity in the
specific heat, since it is equivalent to the corresponding
Ising problem. Evidently higher approximations are
needed to get a more reliable shape of the specific-heat
anomaly. However, it should nevertheless be pointed
out that if we allowed for a nonzero, though small, value
of FD we could get, even in this approximation, a still
better fit between theory and experiment for KD&PO4
than obtained in Ref. 13.The exact value of F in such a
fit is not critical and a relatively wide range of combina-
tions of parameters produces similar effects. %hat is
important, however, is the fact that jtf we simultaneously
allow for the change in e, due to the change in the zero-
point energy, and for a change in F, due to an increased
proton overlap, then we can use the KD2PO4 parameters
to predict the properties of the undeuterated compound.

Though a more detailed treatment of the domain-wall
motion is reserved for a subsequent paper, a tentative
explanation can be given for the observed, rather
striking difference in domain-wall dynamics' between
KD2PO4 and KH2PO4. According to Barkla and Fin-
layson, " the motion of a domain wall in KH2PO4-type
crystals is connected with transfer of hydrogens between
the two sites in the hydrogen bonds. If we now assume
that this intra-bond hydrogen transfer process is rate-
determining for the domain-wall motion, then the ratio
between the domain-wall mobilities of KHsPO4 (err)
and KDsPO4 (pn) can be readily evaluated using the
technique of' Gosar" or Kubo. '4 The general four-
particle-cluster result is rather involved. In the limit
F(&kT, however, the result simpli6es to

pn/po (Pn/Pn) '
~ (45)

provided that the two mobilities are measured at the
same temperature, that the non-tunneling channels can
be neglected, and that the excitation energies m for the
HsPO4 or HPO4 defects (which move in sytnmetric
double minimum potentials by jumps of excess protons
or vacancies from one PO4 group to another) are the
same for both crystals. The above result is only qualita-
tively correct. Nevertheless, it predicts the right direc-
tion and order of magnitude of the observed effects. The
observed drastic decrease in domain-wall mobility on
deuteration thus seems to reQect the diminished overlap
of the wave functions between the two sites and the
reduced chance for the heavier particle to tunnel
through the potential barrier. Thus the same effect
which has been invoked to help explain the isotope
effects in the Curie temperature and spontaneous polari-
zation seems to account also for the isotope effect in the
domain-wall mobility, and it seems that all three
phenomena can be understood from a unified point
of view.

~' H. M. Barkla and D. M. Finlayson, Phil. Mag. 44, 109 (1953)."P.Gosar, Nuovo Cimeuto 30 931 (1963)."R.Kubo, J. Phys. Soc. Jap. 2, 570 (1957).
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APPENDIX A. LATTICE-MEDIATED
PROTON-PROTON INTERACTIONS

IN KH2PO4

Fro. 7. Motion of an ion
with mass M and effective
charges e; in the Geld of
four surrounding hydro-
gen-bonded protons.

e(M

One of the results of the proton-lattice coupling' "in
KH2PO4 is an indirect, lattice-mediated proton-proton
interaction. In order to get a notion of the form of this
interaction, let us consider a simple, classical example of
an ion (for instance K+), moving in the harmonic po-
tential of the lattice plus the superimposed potential
of the surrounding protons.

The total potential of the ion can be written as

V;,„=,'k(r; —ro)'+—Q e„e i op,".r, /47roor, ' (A1)

—oZJ "PP (A2)

where e„and e; are the effective charges of the proton
and ion, respectively; r; is the radius vector describing
the instantaneous and ro is the vector describing the
equilibrium position of the ion (in the "absence" of the
protons); k is the force constant of the lattice potential,
which is in the "absence" of protons assumed to be
harmonic (k =Moo');

e,fop =ego(», t »~i)(/If —
I

is the dipole-moment operator of the jth hydrogen bond
in which the given proton moves; and r; is the radius
vector between the instantaneous position of the ion and
the center of the jth H bond. We assumed that 2/0((r;
so that each hydrogen bond can be represented by a
point dipole, whose dipole moment is proportional to
the off-center distance fo of the protonic site.

For each configuration of the protons we can find the
corresponding equilibrium position of the ion by a
minimization with respect to r;. This equilibrium posi-
tion is different for different configurations (since r; is a
function of r,), and the corresponding minimized total
ion potential contains a term

2&o

which represents an effective indirect proton-prtoon
interaction. The coupling parameter J~~& depends on
the orientation of the hydrogen bonds, the distance
between the centers of the hydrogen bonds and the
equilibrium position of the ion in the "absence" of
protons, the "harmonic" force constant and charge of
the ion, and the value of the H-bond dipole moment.
For the simple case of an ion moving in the field of four
surrounding protons (Fig. 7), the coupling parameter is
explicitly obtained as

J~~~= (1/oooo)(e, e„f'o sin28/2irooa')', (A3)

where the meaning of 8 and f2 is seen from the
6gure.

If the ion frequency co is larger than the frequency of
proton motion between the two sites in a hydrogen bond,
the lattice interacts with the instantaneous value of the
proton charge density. Expression (A2), which has the
same form as the direct long-range proton-proton inter-
action, is thus adequate for handling proton-proton
interaction via tightly bonded ions. If, however, the ion
frequency is smaller than the frequency of proton motion
between the two sites, the lattice responds to the charge
density of the proton averaged over the two sites, and
the two operators Pi and Po in expression (A2) have to
be replaced by their mean values. The indirect proton-
proton interactions via weakly bonded ions can be thus
replaced by a molecular field yo(P&. As the protons
interact both with tightly and with weakly bonded
ions, we can approxnnate lattice-mediated proton-
proton coupling in KH2PO4 by an effective Hamil-
tonian:

z .= '. 2 2 (—4;, -; ~") (»; —»;, )(»' '~ —»' 'i)+l Z r. L
—7o&P&(»'t —»*i)+l~o&P&'3, (A4&

i~1 j Ii, i~=1 j,j'-1

where the first term stands for the interaction through "high"- and the second through "low"-frequency ions.
It should be noted that the relative weights of the two terms depend on the frequency of proton motion between
the two sites and hence on the mass of the hydrogen isotopes.
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APPENDIX 3: CONSISTENCY EQUATIONS FOR THE FOUR-PROTON CLUSTER APPROXIMATION

The explicit form of the four-proton-cluster Hamiltonian H(4) PEq. (29)j in the representation of localized
particles

II f'3'Io&
j=1

is rather clumsy. However, after a suitable transformation SH(4)S '= U(4), the energy matrix can be written as

2b —a
2b e 0
—a 0 zv

K' 2b —a
2b e 0
—a 0 z

U(4) =
2b —a

2b 'Nl 0
—a 0

2b 0 0 0 0
2b zv 2b 2V2b —a 0
0 2b 0 0 0 —2a
0 242b 0 ~ 0 0
0 —a 0 0 m b

0 0 —2a 0 b 0

(32)

where
b= r+ ,'&,— -o= A+2q&p&.

The consistency equations (33) and (34) can be now explicitly written as

(p-.)-w&p&-»& &=o,
and

f &3

((a—q&p))'p (r—q)') '&'—
I

—r) tanh&4((a —y&p))'y (r—q)'j'&'} =4,

where

&p&=f3lfz,

S = 2 ly
with

16

fz Qe e34——

(85)

(34)

(85)

3 9 15

f3=2 Q c,zc;3e '+p c,zc'3e e '+ g t (cjz()+c433+VTcj33)c433+c434c433]e (Bg)

3 9 15

f3 2g c,zC;3e e"'+——p c;zc;ze e"'+ p (c,zzc;34+2C;33C433)e e"',
i=10

(39)

and where the c;, and the X; stand for the eigenvectors and eigenvalues of the energy matrix (82).


